Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (238)

Search Parameters:
Keywords = amphiboles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4687 KiB  
Article
Mineralogical and Geochemical Characterization of the Benavila (Portugal) Bentonites
by Javier García-Rivas, Maria Isabel Dias, Isabel Paiva, Paula G. Fernandes, Rosa Marques, Emilia García-Romero and Mercedes Suárez
Minerals 2025, 15(8), 836; https://doi.org/10.3390/min15080836 - 7 Aug 2025
Abstract
This work aims to perform a detailed mineralogical, crystal-chemical, and geochemical characterization of bentonites from the Benavila outcrop, the largest known deposit of bentonites in continental Portugal. Bulk samples and different size fractions were characterized through X-Ray Diffraction (XRD). Structural formulae of the [...] Read more.
This work aims to perform a detailed mineralogical, crystal-chemical, and geochemical characterization of bentonites from the Benavila outcrop, the largest known deposit of bentonites in continental Portugal. Bulk samples and different size fractions were characterized through X-Ray Diffraction (XRD). Structural formulae of the smectites were fitted from point analyses acquired by analytical electron microscopy (AEM) with transmission electron microscopy (TEM). Smectites are the major component with variable amounts of calcite and minor amounts of quartz, feldspar, illite, and chlorite. Occasionally, amphiboles and dolomite have also been identified. The high content of carbonates in different parts of the sampling area is related to the circulation of carbonate-rich fluids. The smectites present high-layer charge, are intermediate terms of the montmorillonite–beidellite series, and also show an intermediate cisvacant–transvacant configuration. Major and trace elements concentrations were determined by ICP-MS. The geochemical analysis of the samples indicates an enrichment in SiO2 and Al2O3 and a depletion of the more clayey materials in REE, HFSE, and Y, among others. The calculation of the PIA and CIA alteration indices, along with other parameters observed, shows the possible alteration pathways of the Benavila deposit. Research to evaluate the ability of these bentonites to be used as engineering barrier systems (EBS) and sealing materials for radioactive waste repositories is ongoing. Full article
Show Figures

Figure 1

19 pages, 6409 KiB  
Article
Recycling Quarry Dust as a Supplementary Cementitious Material for Cemented Paste Backfill
by Yingying Zhang, Kaifeng Wang, Zhengkun Shi and Shiyu Zhang
Minerals 2025, 15(8), 817; https://doi.org/10.3390/min15080817 - 1 Aug 2025
Viewed by 274
Abstract
Quarry dust (QD) landfill causes environmental issues that cannot be ignored. In this study, we systematically explore its potential application as a supplementary cementitious material (SCM) in cemented paste backfill (CPB), revealing the activated mechanism of modified QD (MQD) and exploring the hydration [...] Read more.
Quarry dust (QD) landfill causes environmental issues that cannot be ignored. In this study, we systematically explore its potential application as a supplementary cementitious material (SCM) in cemented paste backfill (CPB), revealing the activated mechanism of modified QD (MQD) and exploring the hydration process and workability of CPB containing QD/MQD. The experimental results show that quartz, clinochlore and amphibole components react with CaO to form reactive dicalcium silicate (C2S) and amorphous glass phases, promoting pozzolanic reactivity in MQD. QD promotes early aluminocarbonate (Mc) formation through CaCO3-derived CO32− release but shifts to hemicarboaluminate (Hc) dominance at 28 d. MQD releases active Al3+/Si4+ due to calcination and deconstruction, significantly increasing the amount of ettringite (AFt) in the later stage. With the synergistic effect of coarse–fine particle gradation, MQD-type fresh backfill can achieve a 161 mm flow spread at 20% replacement. Even if this replacement rate reaches 50%, a strength of 19.87 MPa can still be maintained for 28 days. The good workability and low carbon footprint of MQD-type backfill provide theoretical support for—and technical paths toward—QD recycling and the development of low-carbon building materials. Full article
Show Figures

Figure 1

39 pages, 8119 KiB  
Article
Magmatic Redox Evolution and Porphyry–Skarn Transition in Multiphase Cu-Mo-W-Au Systems of the Eocene Tavşanlı Belt, NW Türkiye
by Hüseyin Kocatürk, Mustafa Kumral, Hüseyin Sendir, Mustafa Kaya, Robert A. Creaser and Amr Abdelnasser
Minerals 2025, 15(8), 792; https://doi.org/10.3390/min15080792 - 28 Jul 2025
Viewed by 331
Abstract
This study explores the magmatic and hydrothermal evolution of porphyry–skarn–transitional Cu-Mo-W-Au systems within the Nilüfer Mineralization Complex (NMC), located in the westernmost segment of the Eocene Tavşanlı Metallogenic Belt, NW Türkiye. Through integration of field data, whole-rock geochemistry, Re–Os molybdenite dating, and amphibole–biotite [...] Read more.
This study explores the magmatic and hydrothermal evolution of porphyry–skarn–transitional Cu-Mo-W-Au systems within the Nilüfer Mineralization Complex (NMC), located in the westernmost segment of the Eocene Tavşanlı Metallogenic Belt, NW Türkiye. Through integration of field data, whole-rock geochemistry, Re–Os molybdenite dating, and amphibole–biotite mineral chemistry, the petrogenetic controls on mineralization across four spatially associated mineralized regions (Kirazgedik, Güneybudaklar, Kozbudaklar, and Delice) were examined. The earliest and thermally most distinct phase is represented by the Kirazgedik porphyry system, characterized by high temperature (~930 °C), oxidized quartz monzodioritic intrusions emplaced at ~2.7 kbar. Rising fO2 and volatile enrichment during magma ascent facilitated structurally focused Cu-Mo mineralization. At Güneybudaklar, Re–Os geochronology yields an age of ~49.9 Ma, linking Mo- and W-rich mineralization to a transitional porphyry–skarn environment developed under moderately oxidized (ΔFMQ + 1.8 to +0.5) and hydrous (up to 7 wt.% H2O) magmatic conditions. Kozbudaklar represents a more reduced, volatile-poor skarn system, leading to Mo-enriched scheelite mineralization typical of late-stage W-skarns. The Delice system, developed at the contact of felsic cupolas and carbonates, records the broadest range of redox and fluid compositions. Mixed oxidized–reduced fluid signatures and intense fluid–rock interaction reflect complex, multistage fluid evolution involving both magmatic and external inputs. Geochemical and mineralogical trends—from increasing silica and Rb to decreasing Sr and V—trace a systematic evolution from mantle-derived to felsic, volatile-rich magmas. Structurally, mineralization is controlled by oblique fault zones that localize magma emplacement and hydrothermal flow. These findings support a unified genetic model in which porphyry and skarn mineralization styles evolved continuously from multiphase magmatic systems during syn-to-post-subduction processes, offering implications for exploration models in the Western Tethyan domain. Full article
Show Figures

Figure 1

18 pages, 5336 KiB  
Article
Comparative Flexural Response of Mineralized Massive Sulfides and Meta-Rhyolitic Rocks
by Haitham M. Ahmed and Essam B. Moustafa
Geosciences 2025, 15(7), 263; https://doi.org/10.3390/geosciences15070263 - 8 Jul 2025
Viewed by 244
Abstract
An experimental study was conducted to investigate the flexural mechanical properties of mineralized (massive sulfides) and non-mineralized (meta-rhyolitic tuff) rock samples using a three-point bending test. Mineralogical analysis was conducted on samples from both rock categories, followed by the determination of physical properties [...] Read more.
An experimental study was conducted to investigate the flexural mechanical properties of mineralized (massive sulfides) and non-mineralized (meta-rhyolitic tuff) rock samples using a three-point bending test. Mineralogical analysis was conducted on samples from both rock categories, followed by the determination of physical properties (P-wave velocity and density). In the massive sulfide zones, there are three distinctive zones of mineralization, each exhibiting varying degrees of pyritization: the intense pyritization zone (formerly Zone A) exhibited extensive pyrite replacement of sphalerite and chalcopyrite, the transitional zone (Zone B) displays intergrowths of pyrite and sphalerite, and the coarse sulfide zone (Zone C) features coarser, less altered sulfides—polyphase hydrothermal alteration, including sericitization, silicification, and amphibole veining. Mineralized rocks showed a 35.18% increase in density (3.65 ± 0.17 kg/m3 vs. 2.72 ± 0.014 kg/m3) attributed to dense sulfide content. The flexural strength more than doubled (99.02 ± 4.42 GPa vs. 43.17 ± 6.45 GPa), experiencing a 129% increase, due to homogeneous chalcopyrite distribution and fine-grained sulfide networks. Despite strength differences, deflection rates showed a non-significant 4% variation (0.373 ± 0.083 mm for mineralized vs. 0.389 ± 0.074 mm for metamorphic rocks), indicating comparable ductility. Full article
Show Figures

Figure 1

26 pages, 9198 KiB  
Article
The Exotic Igneous Clasts Attributed to the Cuman Cordillera: Insights into the Makeup of a Cadomian/Pan-African Basement Covered by the Moldavides of the Eastern Carpathians, Romania
by Sarolta Lőrincz, Marian Munteanu, Ştefan Marincea, Relu Dumitru Roban, Valentina Maria Cetean, George Dincă and Mihaela Melinte-Dobrinescu
Geosciences 2025, 15(7), 256; https://doi.org/10.3390/geosciences15070256 - 3 Jul 2025
Viewed by 311
Abstract
The Eastern Carpathians are thrust to the east and north over their Eastern European foreland, tectonically covering it over an area several hundred kilometers across. Information about the nature of the underthrust part of the Carpathian foreland can be obtained from the rock [...] Read more.
The Eastern Carpathians are thrust to the east and north over their Eastern European foreland, tectonically covering it over an area several hundred kilometers across. Information about the nature of the underthrust part of the Carpathian foreland can be obtained from the rock fragments preserved in the sedimentary successions of the Carpathian fold and thrust belt, specifically in the Outer Dacides and the Moldavides. Fragments of felsic rocks occurring within the sedimentary units of the Upper Cretaceous successions of the Moldavides have long been attributed to the Cuman Cordillera—an intrabasinal ridge in the Eastern Outer Carpathians. This work is the first complex geochemical and geochronological study on the exotic igneous clasts of the Cuman Cordillera. Igneous clasts from the southern part of the Moldavides (Variegated clay nappe/formation) are investigated here. They include mainly granites and rhyolites. Phaneritic rocks are composed of cumulus plagioclase, albite, amphibole and biotite, and intercumulus quartz and potassium feldspar, with apatite, magnetite, sphene, and zircon as main accessories, while the porphyritic rocks have a mineral assemblage similar to that mentioned above, displayed in a porphyritic texture with a usually crystallized groundmass. SHRIMP U-Pb zircon dating indicated the 583–597 Ma age interval for magma crystallization. Based on calcareous nannofossils, the depositional age of the investigated igneous clasts is Cenomanian to Maastrichtian, implying that the Cuman Cordillera was an emerged piece of land, herein an active source of sediments in the flysch basin for at least 40 Ma, from the Early Cretaceous (Aptian) to the Late Cretaceous (Maastrichtian). The intrusive and subvolcanic rocks show similar trends for trace and major elements, evincing their comagmatic nature. The enrichment in LILE and LREE relative to HFSE and HREE, as well as the element anomalies (e.g., negative Nb, Ta, and Eu and positive Rb, Ba, K, and Pb) suggest a convergent continental plate margin tectonic setting. Mineral chemistry suggests magma crystallization in relatively oxic conditions (magnetite series), during ascent within a depth of 15 km to 5 km. The igneous rocks attributed to the Cuman ridge display compositional and geochronological features similar to Brno and Thaya batholiths in the Brunovistulian terrane, which could be a piece of the Carpathian foreland not covered by the Tertiary thrusts. Our data confirm the non-Carpathian origin of the igneous clasts, revealing a Neoproterozoic history of the Carpathian foreland units, which include a Cadomian/Pan-African continental arc, exposed mainly during the Late Cretaceous as an intrabasinal island of the Alpine Tethys, traditionally known as the Cuman Cordillera. Full article
Show Figures

Figure 1

21 pages, 6026 KiB  
Article
Tectonic Setting of the Neoproterozoic Gabbroic Intrusions in the Luanchuan Area, Southern Margin of the North China Craton: Constraints from Ilmenite and Biotite Mineralogy
by Jianhan Huang, Zhenzhen Huang, Danli Chen, Kekun Li, Xiaoxiao Huang, Minghao Ren and Yazhou Fan
Minerals 2025, 15(6), 602; https://doi.org/10.3390/min15060602 - 3 Jun 2025
Viewed by 345
Abstract
The Luanchuan Neoproterozoic gabbroic intrusions are located at the southern margin of the North China Craton (NCC), intruding into the marble and schist from the Nannihu and Meiyaogou Formations of the Neoproterozoic Luanchuan Group. The gabbroic rocks consist of plagioclase (30%–50%) and amphibole [...] Read more.
The Luanchuan Neoproterozoic gabbroic intrusions are located at the southern margin of the North China Craton (NCC), intruding into the marble and schist from the Nannihu and Meiyaogou Formations of the Neoproterozoic Luanchuan Group. The gabbroic rocks consist of plagioclase (30%–50%) and amphibole (40%–60%), with minor ilmenite (2%–5%), biotite (1%–3%), and titanite (~1%). Based on the occurrence and mineral chemistry, two types of biotites were identified. The first type of biotite (Bt I) is brown, with a fine- to micro-grained anhedral texture, occurring around the magmatic ilmenite and coexisting with titanite. Bt I is characterized by high TiO2 and FeO contents, with TiO2 > 2 wt% (2.03 wt%–3.15 wt%) and FeO ranging from 19.94 wt% to 22.08 wt%. The other type of biotite (Bt II) is light grayish-brown to dark reddish-brown, with a medium- to coarse-grained euhedral texture, coexisting with grayish-green amphibole. Bt II exhibits lower TiO2 (1.40 wt%–1.90 wt%) and FeO contents (18.03 wt%–21.42 wt%). The K2O (7.56 wt%–9.32 wt%) and SiO2 (34.49 wt%–37.04 wt%) contents of Bt I are slightly lower than those of Bt II (8.28 wt%–9.73 wt% and 35.18 wt%–37.52 wt%, respectively). Despite the low Ti content in biotites, the mineral occurrence indicates that both types of biotite yield a magmatic origin, resulting from the reactions between early crystallized minerals and residual magma. Bt I originated from the reaction between ilmenite and residual magma, while Bt II resulted from the production of the reaction between clinopyroxne and residual magma. Ilmenite exhibits low MgO and Fe2O3 contents but high FeO and MnO contents, suggesting genetic similarities to the Skaergaard and Panzhihua intrusions. Both types of biotites record consistent temperatures (T = 766 to 818 °C), pressures (P = 5.30–8.80 kbar), and oxygen fugacities (log fO2 = −12.35 to −14.06), aligning with those of the Fanshan complex and the Falcon Island intrusion. The mineralogy of ilmenite and biotite indicates that the Luanchuan gabbroic intrusions formed in a continental rift setting, which is considered to be associated with the breakup of the Rodinia supercontinent. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

26 pages, 6169 KiB  
Article
Petrogenesis of Mafic–Ultramafic Cumulates in the Mayudia Ophiolite Complex, NE Himalaya: Evidence of an Island Arc Root in Eastern Neo-Tethys
by Sapneswar Sahoo, Alik S. Majumdar, Rajagopal Anand, Dwijesh Ray and José M. Fuenlabrada
Minerals 2025, 15(6), 572; https://doi.org/10.3390/min15060572 - 27 May 2025
Viewed by 513
Abstract
Amphibole-rich cumulates provide crucial information pertaining to the petrogenetic history of suprasubduction zone ophiolites and are, therefore, helpful in constraining the evolution and closure of the Neo-Tethys during the late Cretaceous to the early Tertiary period. Following this, the present contribution examines the [...] Read more.
Amphibole-rich cumulates provide crucial information pertaining to the petrogenetic history of suprasubduction zone ophiolites and are, therefore, helpful in constraining the evolution and closure of the Neo-Tethys during the late Cretaceous to the early Tertiary period. Following this, the present contribution examines the meta-hornblendite and meta-hornblende-gabbro lithologies in the Mayudia ophiolite complex (MdOC), NE Himalaya, based on their field and petrographic relations, constituent mineral compositions, whole rock major and trace element chemistry and bulk strontium (Sr)—neodymium (Nd) isotope systematics. MdOC cumulates potentially represent the fossilized record of an island arc root, where amphibole + titanite + magnetite was fractionally crystallized from a super hydrous magma (10.56–13.61 wt.% melt water content) prior to plagioclase in a stable physico-chemical condition (T: 865–940 °C, P: 0.8–1.4 GPa, logfO2: −8.59–−11.19 unit) at lower crustal depths (30–38 km). Such extreme hydrous nature in the parental magma was generated by the flux melting of the sub-arc mantle wedge with aqueous inputs from the dehydrating slab. A super hydrous magmatic reservoir was, therefore, extant at sub-arc mantle depths in the eastern Neo-Tethys, which has likely modulated the composition of the oceanic crust during intraoceanic subduction. Full article
(This article belongs to the Special Issue Tectonic Evolution of the Tethys Ocean in the Qinghai–Tibet Plateau)
Show Figures

Figure 1

22 pages, 11955 KiB  
Article
Coronitic Associations at Gabrish in the Kovdozero Layered Complex in the Southern Part of the Lapland—Belomorian Belt, Kola Peninsula, Russia
by Andrei Y. Barkov, Robert F. Martin, Larisa P. Barkova and Vladimir N. Korolyuk
Minerals 2025, 15(6), 565; https://doi.org/10.3390/min15060565 - 26 May 2025
Viewed by 414
Abstract
The Paleoproterozoic Kovdozero complex, one of largest in the Fennoscandian Shield, was emplaced in a peripheral region of the SB–TB–LBB (Serpentinite Belt–Tulppio Belt–Lapland–Belomorian Belt) megastructure. Coronitic rocks of ultrabasic–basic compositions, investigated along a cross-section in the Gabrish area, are members of a cryptically [...] Read more.
The Paleoproterozoic Kovdozero complex, one of largest in the Fennoscandian Shield, was emplaced in a peripheral region of the SB–TB–LBB (Serpentinite Belt–Tulppio Belt–Lapland–Belomorian Belt) megastructure. Coronitic rocks of ultrabasic–basic compositions, investigated along a cross-section in the Gabrish area, are members of a cryptically layered series. They crystallized from the northern margin inward, as indicated by variations in mineral compositions and geochemical trends. Unsteady conditions of crystallization arose because of uneven cooling of the shallowly emplaced complex. Rapid drops in temperature likely caused the forced deposition of different generations of variously textured pyroxenes and chromian spinel or resulted in the unique development of narrow recurrent rims of orthopyroxene hosted by olivine. The unstable conditions of crystallization are expressed by (1) textural diversity, (2) broad variations in values of Mg#, and (3) virtual presence of double trends of Mg# as a function of distance. The coronitic textures are intimately associated with interstitial grains of plagioclase (An≤65), also present as relics in a rim of calcic amphibole. The coronas are results of (1) rapid cooling leading to unsteady conditions of crystallization, which caused the sudden cessation of olivine crystallization and the development of an orthopyroxene rim on olivine and (2) an intrinsic enrichment in H2O (and essential Cl in scapolite) coupled with a progressive accumulation of Al and alkalis, giving rise to fluid-rich environments in the intercumulus melt at advances stages of crystallization. These processes were followed by deuteric composite rims of calcic amphibole and reaction of fluid with early rims or grains of pyroxenes and late plagioclase. The coronitic sequences Ol → Opx → Cpx → calcic Amp → Pl (plus Qz + Mca) observed at a microscopic scale reproduce, in miniature, the normal order of crystallization in an ultrabasic–basic complex. A composite orthopyroxene + calcic amphibole corona resembles some rocks in complexes of the Serpentinite Belt. The prominence of such coronas may well be characteristic of the crystallization of komatiite-derived melts. Full article
Show Figures

Figure 1

53 pages, 7076 KiB  
Article
The Diversity of Rare-Metal Pegmatites Associated with Albite-Enriched Granite in the World-Class Madeira Sn-Nb-Ta-Cryolite Deposit, Amazonas, Brazil: A Complex Magmatic-Hydrothermal Transition
by Ingrid W. Hadlich, Artur C. Bastos Neto, Vitor P. Pereira, Harald G. Dill and Nilson F. Botelho
Minerals 2025, 15(6), 559; https://doi.org/10.3390/min15060559 - 23 May 2025
Viewed by 993
Abstract
This study investigates pegmatites with exceptionally rare mineralogical and chemical signatures, hosted by the 1.8 Ga peralkaline albite-enriched granite, which corresponds to the renowned Madeira Sn-Nb-Ta-F (REE, Th, U) deposit in Pitinga, Brazil. Four distinct pegmatite types are identified: border pegmatites, pegmatitic albite-enriched [...] Read more.
This study investigates pegmatites with exceptionally rare mineralogical and chemical signatures, hosted by the 1.8 Ga peralkaline albite-enriched granite, which corresponds to the renowned Madeira Sn-Nb-Ta-F (REE, Th, U) deposit in Pitinga, Brazil. Four distinct pegmatite types are identified: border pegmatites, pegmatitic albite-enriched granite, miarolitic pegmatite, and pegmatite veins. The host rock itself has served as the source for the fluids that gave rise to all these pegmatites. Their mineral assemblages mirror the rare-metal-rich paragenesis of the host rock, including pyrochlore, cassiterite, riebeckite, polylithionite, zircon, thorite, xenotime, gagarinite-(Y), genthelvite, and cryolite. These pegmatites formed at the same crustal level as the host granite and record a progressive magmatic–hydrothermal evolution driven by various physicochemical processes, including tectonic decompressing, extreme fractionation, melt–melt immiscibility, and internal fluid exsolution. Border pegmatites crystallized early from a F-poor, K-Ca-Sr-Zr-Y-HREE-rich fluid exsolved during solidification of the pluton’s border and were emplaced in contraction fractures between the pluton and country rocks. Continued crystallization toward the pluton’s core produced a highly fractionated melt enriched in Sn, Nb, Ta, Rb, HREE, U, Th, and other HFSE, forming pegmatitic albite-enriched granite within centimetric fractures. A subsequent pressure quench—likely induced by reverse faulting—triggered the separation of a supercritical melt, further enriched in rare metals, which migrated into fractures and cavities to form amphibole-rich pegmatite veins and miarolitic pegmatites. A key process in this evolution was melt–melt immiscibility, which led to the partitioning of alkalis between two phases: a K-F-rich aluminosilicate melt (low in H2O), enriched in Y, Li, Be, and Zn; and a Na-F-rich aqueous melt (low in SiO2). These immiscible melts crystallized polylithionite-rich and cryolite-rich pegmatite veins, respectively. The magmatic–hydrothermal transition occurred independently in each pegmatite body upon H2O saturation, with the hydrothermal fluid composition controlled by the local degree of melt fractionation. These highly F-rich exsolved fluids caused intense autometasomatic alteration and secondary mineralization. The exceptional F content (up to 35 wt.% F in pegmatite veins), played a central role in concentrating strategic and critical metals such as Nb, Ta, REEs (notably HREE), Li, and Be. These findings establish the Madeira system as a reference for rare-metal magmatic–hydrothermal evolution in peralkaline granites. Full article
(This article belongs to the Special Issue Critical Metal Minerals, 2nd Edition)
Show Figures

Figure 1

18 pages, 5403 KiB  
Article
Study on the Strength Characteristics and Microscopic Structure of Artificial Structural Loess
by Yao Zhang, Jianxiang Qin, Gang Li, Minghang Shao and Shuaifeng Gao
Buildings 2025, 15(11), 1761; https://doi.org/10.3390/buildings15111761 - 22 May 2025
Viewed by 332
Abstract
The structure, strength, and deformation characteristics of artificial structural loess can be manually controlled, which has significant advantages in scientific research on loess. By preparing and testing artificial structured loess, the natural properties of structured loess can be better investigated and studied. In [...] Read more.
The structure, strength, and deformation characteristics of artificial structural loess can be manually controlled, which has significant advantages in scientific research on loess. By preparing and testing artificial structured loess, the natural properties of structured loess can be better investigated and studied. In this paper, the influence of varying moisture contents and additive dosages on artificial structured loess strength characteristics through triaxial shear tests were analyzed. The moisture content and additive dosage reflecting the structural properties of natural loess were obtained. Based on the microscopic test results, the mineral components, micromorphology, and pore characteristics of artificial structural loess were analyzed, and the mechanism of the structural evolution of loess under mechanical action was revealed. The results show that the minimum differences in the peak strength between W16-Y2.0C2.0 and undisturbed soil under confining pressures of 50, 100, and 200 kPa are 6.481 kPa, 7.676 kPa, and 4.912 kPa, respectively. The minimum differences in the cohesion and inner friction angle between W16-Y2.0C2.0 and undisturbed soil are 2 kPa and 0.2°, respectively, indicating that W16-Y2.0C2.0 is the optimal structural soil with a structural strength closest to that of undisturbed soil. Compared with the undisturbed loess, the content of calcite in the artificial structure loess increases from 9.8% to 11.2%, the proportion of plagioclase decreases from 20.5% to 17.4%, amphibole is consumed completely, and 2.1% of halite is generated. Furthermore, the pores of structured soil exhibit a three-peak distribution and are divided into four types, including micropores (≤0.02 μm), small pores (0.02~0.21 μm), medium pores (0.21~13.5 μm), and large pores (≥13.5 μm). When the pressure increases from 50 kPa to 200 kPa, micropores increase by 4.67%, small pores increase by 4.97%, medium pores decrease by 2.4%, and large pores decrease by 7.24%. The trend of pore structure changes in W16-Y2.0C2.0 is similar to that of undisturbed loess. The research results provide a reference for preparing and applying artificial structural loess. Full article
Show Figures

Figure 1

19 pages, 3019 KiB  
Article
Composition of Pre-Salt Siliciclastic Units of the Lower Congo Basin and Paleogeographic Implications for the Early Stages of Opening of the South Atlantic
by João Constantino, Pedro A. Dinis, Ricardo Sousa Gomes and Mário Miguel Mendes
Geosciences 2025, 15(5), 189; https://doi.org/10.3390/geosciences15050189 - 21 May 2025
Viewed by 599
Abstract
The Lower Congo Basin (LCB) is a rift-type basin with petroleum systems that developed at the western African margin in association with the opening of the South Atlantic. Two pre-salt siliciclastic units of the LCB, Lucula (uppermost Jurassic to Lower Cretaceous) and Chela [...] Read more.
The Lower Congo Basin (LCB) is a rift-type basin with petroleum systems that developed at the western African margin in association with the opening of the South Atlantic. Two pre-salt siliciclastic units of the LCB, Lucula (uppermost Jurassic to Lower Cretaceous) and Chela (Aptian) formations, were sampled in deep wells and outcrops. Heavy mineral assemblages, XRD mineralogy and geochemistry indicate prevailing source in high rank metamorphic rocks from western regions of the Lower Congo Belt. However, sediment composition reveals some provenance heterogeneity. For the Chela Formation, occasionally abundant amphibole in the heavy mineral fraction, coupled with relatively high Fe and Ti proportions, suggest that it formed when deeper crustal units were exhumed. The Lucula Formation collected in outcrops have composition substantially different from Lucula and Chela samples collected in deep wells, indicating distinct provenance and the incorporation of recycled material. A significant diagenetic overprint compromises the interpretation of compositional features in terms of paleoclimate. The presence of a chemical component with dolomite, halite and diverse sulphates and the stratigraphic position of the Chela Formation at the transition to a thick evaporitic succession are compelling evidence of deposition under warm and dry conditions, which are probably more extreme than those associated with the original stages of rifting recorded by the Lucula Formation. Full article
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)
Show Figures

Figure 1

20 pages, 22036 KiB  
Article
Petrogenesis and Tectonic Significance of Miocene Volcanic Rocks in the Ahlatlı–İspir–Erzurum Region, Türkiye
by Mehmet Ali Ertürk and Cihan Yalçın
Minerals 2025, 15(5), 485; https://doi.org/10.3390/min15050485 - 6 May 2025
Viewed by 498
Abstract
The İspir–Ahlatlı region in northeastern Türkiye, situated within the Eastern Pontides, hosts significant Miocene trachy-andesite volcanic rock exposures. This work seeks to elucidate their petrographic, geochemical, and isotopic compositions to enhance comprehension of their genesis and tectonic significance. Geochemistry reveals a transitional affinity, [...] Read more.
The İspir–Ahlatlı region in northeastern Türkiye, situated within the Eastern Pontides, hosts significant Miocene trachy-andesite volcanic rock exposures. This work seeks to elucidate their petrographic, geochemical, and isotopic compositions to enhance comprehension of their genesis and tectonic significance. Geochemistry reveals a transitional affinity, an enrichment in large-ion lithophile elements (LILEs), and a decrease in high-field-strength elements (HFSEs), suggesting a subduction-modified mantle source. Geochemical variations and fractional crystallisation trends indicate that the parental magma underwent significant differentiation, likely involving the fractionation of amphibole, clinopyroxene, and plagioclase. As supported by recent thermal modelling studies, the presence of intermediate volcanic rocks without associated bimodal suites in the study area may reflect elevated geothermal gradients and lithospheric delamination during post-collisional extension. The signatures indicated that the trachy-andesites originated in a post-collisional extensional environment after the closing of the Neo-Tethys Ocean and the ensuing tectonic reconfiguration of the Eastern Pontides. The reported geochemical traits correspond with post-collisional volcanic phases documented in various sectors of the Alpine–Himalayan orogenic system, such as the Eastern Pontides, the Iranian Plateau, and the Himalayan Belt, reinforcing the notion of a subduction-influenced mantle source. These findings increase the comprehension of magma formation in post-collisional settings and offer novel insights into the geodynamic context of the area. This research improves the understanding of post-collisional volcanic systems, their petrogenetic evolution, and their role in regional tectonic processes. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

16 pages, 13448 KiB  
Article
Formation Mechanism of Plagioclase–Amphibole and Amphibole–Spinel Symplectites in the Bijigou Layered Intrusion: Insights from Mineralogical and Crystallographic Constraints
by Baoqun Sun, Xinyu Wei and Huan Dong
Minerals 2025, 15(5), 433; https://doi.org/10.3390/min15050433 - 22 Apr 2025
Viewed by 553
Abstract
The Bijigou layered intrusion is located in the northern margin of the Yangtze block. Based on cumulus mineral assemblages, the intrusion is divided into three major units from the base upwards: the lower zone (LZ), dominated by olivine gabbro; the middle zone (MZ), [...] Read more.
The Bijigou layered intrusion is located in the northern margin of the Yangtze block. Based on cumulus mineral assemblages, the intrusion is divided into three major units from the base upwards: the lower zone (LZ), dominated by olivine gabbro; the middle zone (MZ), composed of gabbro and Fe-Ti oxide ore layers; and the upper zone (UZ), characterized by (quartz) diorite. Previous studies reported various vermicular symplectite textures in layered intrusions, which are thought to be related to the magmatic evolution of the layered intrusions and the mineralization of vanadium–titanium magnetite. However, detailed studies on the specific reaction mechanism of those symplectites are lacking. In this study, the characteristics, mineral compositions, and crystal orientation relationships of minerals in symplectites from Fe-Ti oxide Fe-Ti oxide-rich gabbro are in the Bijigou layered intrusion investigated by an Electron Probe Microanalyzer (EPMA) and Electron Backscattered Diffraction (EBSD) to reveal the formation process of symplectites in gabbros. In the Fe-Ti oxide-rich gabbro, abundant amphibole + spinel (Amp1 + Spl) symplectite and amphibole + plagioclase (Pl2 + Amp2) symplectite are developed between the primocryst plagioclase (Pl1) and Fe-Ti oxide; Pl2 had significantly higher An contents (An92–97) relative to Pl1. The Mg # for Amp1 and Amp2 was 0.78–1 and 0.6–0.84, respectively. Amphibole geothermometer calculations show Amp1 and Amp2 at 934–953 °C and 834–914 °C, suggesting that these symplectites crystallized at a late stage of magmatic evolution. The crystallographic orientation relationship between Amp1 and Spl varies in different areas, and Spl has a particular orientation relationship with the external Ilm. Pl2 and Amp2 inherit the crystallographic orientation of Amp1 and Pl1, respectively. We speculate that in the Bijigou layered intrusions, Amp1 + Spl and Pl2 + Amp2 were formed in two stages: Amp1 + Spl symplectite due to Ilm epitaxial growth as a result of supersaturation and rapid nucleation; and Pl2 + Amp2 symplectite due to dissolution–precipitation. Full article
Show Figures

Figure 1

24 pages, 11385 KiB  
Article
Textural, Mineralogical and Chromatic Characterisation of the Beach Sediments of Cuba: Management Implications
by Ángel Sánchez-Bellón, Eduardo Molina-Piernas, Giorgio Anfuso, Francisco Asensio-Montesinos, Juan Alfredo Cabrera-Hernández, Camilo M. Botero and Enzo Pranzini
J. Mar. Sci. Eng. 2025, 13(3), 557; https://doi.org/10.3390/jmse13030557 - 13 Mar 2025
Viewed by 1648
Abstract
Although it is practically impossible to find locations without a massive flux of tourists, few beach destinations present a great attraction due to their privileged natural characteristics. This is often the case for sites that show splendid beach sands. To maintain their tourist [...] Read more.
Although it is practically impossible to find locations without a massive flux of tourists, few beach destinations present a great attraction due to their privileged natural characteristics. This is often the case for sites that show splendid beach sands. To maintain their tourist attraction and related economic income, it is essential to know sediment characteristics such as their mineralogical composition, particle size, and colour. This paper presents a textural, chromatic, and mineralogical database of 90 beaches in Cuba. The composition of sediments was identified by stereomicroscopy, their texture by digital image analysis, sand colour according to the CIE space and X-ray diffraction, and fluorescence and electron microscopy were used to determine sediment mineralogy. Two main groups of beaches were identified: the lighter and brighter beaches of the cays are dominated by the association of authigenic carbonates (aragonite, kutnohorite, and calcite) while the south and northeastern coasts of eastern Cuba are dominated by darker sediments with larger grain sizes composed of amphibole, pyroxene, serpentines, chlorites, quartz, and plagioclase of detrital origin. The data obtained will allow the design of proper management actions of coastal resources, i.e., the maintaining of beaches’ sediment quality after nourishment works and, at the same time, the promotion and development of new, presently undervalued areas. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

28 pages, 9029 KiB  
Article
Petrogenesis, Geochemistry, and Geological Significance of the Kongco Granitic Porphyry Dykes in the Northern Part of the Central Lhasa Microblock, Tibet
by Anping Xiang, Hong Liu, Wenxin Fan, Qing Zhou, Hong Wang and Kaizhi Li
Minerals 2025, 15(3), 283; https://doi.org/10.3390/min15030283 - 11 Mar 2025
Viewed by 786
Abstract
The Kongco area of Nima in the northern part of the Lhasa terrane has a suite of alkaline granitic porphyry dykes associated with Early Cretaceous granites and accompanied by Cu/Mo mineralization. LA-ICP-MS 206Pb/238U zircon geochronology performed on the dykes produced [...] Read more.
The Kongco area of Nima in the northern part of the Lhasa terrane has a suite of alkaline granitic porphyry dykes associated with Early Cretaceous granites and accompanied by Cu/Mo mineralization. LA-ICP-MS 206Pb/238U zircon geochronology performed on the dykes produced an age of 104.15 ± 0.94 Ma (MSWD = 0.98), indicating the Early Cretaceous emplacement of the dykes. The dykes exhibit high silica (SiO2 = 76.22~77.90 wt.%), high potassium (K2O = 4.97~6.21 wt.%), high alkalinity (K2O + Na2O = 8.07~8.98 wt.%), low calcium (CaO = 0.24~0.83 wt.%), low magnesium (MgO = 0.06~0.20 wt.%), and moderate aluminum content (Al2O3 = 11.93~12.45 wt.%). The Rieterman index (σ) ranges from 1.93 to 2.34. A/NK (molar ratio Al2O3/(Na2O + K2O)) and A/CNK (molar ratio Al2O3/(CaO + Na2O + K2O)) values of the dykes range from 1.06 to 1.18 and 0.98 to 1.09, respectively. The dykes are relatively enriched in Rb, Th, U, K, Ta, Ce, Nd, Zr, Hf, Sm, Y, Yb, and Lu, and they show a noticeable relative depletion in Ba, Nb, Sr, P, Eu, and Ti, as well as an average differentiation index (DI) of 96.42. The dykes also exhibit high FeOT/MgO ratios (3.60~10.41), Ga/Al ratios (2.22 × 10−4~3.01 × 10−4), Y/Nb ratios (1.75~2.40), and Rb/Nb ratios (8.36~20.76). Additionally, they have high whole-rock Zr saturation temperatures (884~914 °C), a pronounced Eu negative anomaly (δEu = 0.04~0.23), and a rightward-sloping “V-shaped” rare earth element pattern. These characteristics suggest that the granitic porphyry dykes can be classified as A2-type granites formed in a post-collisional tectonic environment and that they are weakly peraluminous, high-potassium, and Calc-alkaline basaltic rocks. Positive εHf(t) values = 0.43~3.63 and a relatively young Hf crustal model age (TDM2 = 826~1005 Ma, 87Sr/86Sr ratios = 0.7043~0.7064, and εNd(t) = −8.60~−2.95 all indicate lower crust and mantle mixing. The lower crust and mantle mixing model is also supported by (206Pb/204Pb)t = 18.627~18.788, (207Pb/204Pb)t = 15.707~15.719, (208Pb/204Pb)t = 39.038~39.110). Together, the Hf, Sr and Pb isotopic ratios indicate that the Kongco granitic porphyry dykes where derived from juvenile crust formed by the addition of mantle material to the lower crust. From this, we infer that the Kongco granitic porphyry dykes are related to a partial melting of the lower crust induced by subduction slab break-off and asthenospheric upwelling during the collision between the Qiangtang and Lhasa terranes and that they experienced significant fractional crystallization dominated by potassium feldspar and amphibole. These dykes are also accompanied by significant copper mineralization (five samples, copper content 0.2%), suggesting a close relationship between the magmatism associated with these dykes and regional metallogenesis, indicating a high potential for mineral exploration. Full article
(This article belongs to the Special Issue Using Mineral Chemistry to Characterize Ore-Forming Processes)
Show Figures

Figure 1

Back to TopTop