Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (284)

Search Parameters:
Keywords = amorphous pharmaceuticals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 17212 KiB  
Article
Three-Dimensional Printing of Personalized Carbamazepine Tablets Using Hydrophilic Polymers: An Investigation of Correlation Between Dissolution Kinetics and Printing Parameters
by Lianghao Huang, Xingyue Zhang, Qichen Huang, Minqing Zhu, Tiantian Yang and Jiaxiang Zhang
Polymers 2025, 17(15), 2126; https://doi.org/10.3390/polym17152126 - 1 Aug 2025
Viewed by 383
Abstract
Background: Precision medicine refers to the formulation of personalized drug regimens according to the individual characteristics of patients to achieve optimal efficacy and minimize adverse reactions. Additive manufacturing (AM), also known as three-dimensional (3D) printing, has emerged as an optimal solution for precision [...] Read more.
Background: Precision medicine refers to the formulation of personalized drug regimens according to the individual characteristics of patients to achieve optimal efficacy and minimize adverse reactions. Additive manufacturing (AM), also known as three-dimensional (3D) printing, has emerged as an optimal solution for precision drug delivery, enabling customizable and the fabrication of multifunctional structures with precise control over morphology and release behavior in pharmaceutics. However, the influence of 3D printing parameters on the printed tablets, especially regarding in vitro and in vivo performance, remains poorly understood, limiting the optimization of manufacturing processes for controlled-release profiles. Objective: To establish the fabrication process of 3D-printed controlled-release tablets via comprehensively understanding the printing parameters using fused deposition modeling (FDM) combined with hot-melt extrusion (HME) technologies. HPMC-AS/HPC-EF was used as the drug delivery matrix and carbamazepine (CBZ) was used as a model drug to investigate the in vitro drug delivery performance of the printed tablets. Methodology: Thermogravimetric analysis (TGA) was employed to assess the thermal compatibility of CBZ with HPMC-AS/HPC-EF excipients up to 230 °C, surpassing typical processing temperatures (160–200 °C). The formation of stable amorphous solid dispersions (ASDs) was validated using differential scanning calorimetry (DSC), hot-stage polarized light microscopy (PLM), and powder X-ray diffraction (PXRD). A 15-group full factorial design was then used to evaluate the effects of the fan speed (20–100%), platform temperature (40–80 °C), and printing speed (20–100 mm/s) on the tablet properties. Response surface modeling (RSM) with inverse square-root transformation was applied to analyze the dissolution kinetics, specifically t50% (time for 50% drug release) and Q4h (drug released at 4 h). Results: TGA confirmed the thermal compatibility of CBZ with HPMC-AS/HPC-EF, enabling stable ASD formation validated by DSC, PLM, and PXRD. The full factorial design revealed that printing speed was the dominant parameter governing dissolution behavior, with high speeds accelerating release and low speeds prolonging release through porosity-modulated diffusion control. RSM quadratic models showed optimal fits for t50% (R2 = 0.9936) and Q4h (R2 = 0.9019), highlighting the predictability of release kinetics via process parameter tuning. This work demonstrates the adaptability of polymer composite AM for tailoring drug release profiles, balancing mechanical integrity, release kinetics, and manufacturing scalability to advance multifunctional 3D-printed drug delivery devices in pharmaceutics. Full article
Show Figures

Graphical abstract

33 pages, 2684 KiB  
Review
Biocompatible Natural Polymer-Based Amorphous Solid Dispersion System Improving Drug Physicochemical Properties, Stability, and Efficacy
by Arif Budiman, Helen Ivana, Kelly Angeline Huang, Stella Aurelia Huang, Mazaya Salwa Nadhira, Agus Rusdin and Diah Lia Aulifa
Polymers 2025, 17(15), 2059; https://doi.org/10.3390/polym17152059 - 28 Jul 2025
Viewed by 378
Abstract
Poor aqueous solubility still disqualifies many promising drug candidates at late stages of development. Amorphous solid dispersion (ASD) technology solves this limitation by trapping the active pharmaceutical ingredient (API) in a high-energy, non-crystalline form, yet most marketed ASDs rely on synthetic carriers such [...] Read more.
Poor aqueous solubility still disqualifies many promising drug candidates at late stages of development. Amorphous solid dispersion (ASD) technology solves this limitation by trapping the active pharmaceutical ingredient (API) in a high-energy, non-crystalline form, yet most marketed ASDs rely on synthetic carriers such as polyvinylpyrrolidone (PVP) and hydroxypropyl methylcellulose (HPMC), which raise concerns about long-term biocompatibility, residual solvent load, and sustainability. This study summarizes the emergence of natural polymer-based ASDs (NP-ASDs), along with the bond mechanism reactions through which these natural polymers enhance drug performance. As a result, NP-ASDs exhibit improved physical stability and significantly enhance the dissolution rate of poorly soluble drugs. The structural features of natural polymers play a critical role in stabilizing the amorphous state and modulating drug release profiles. These findings support the growing potential of NP-ASDs as sustainable and biocompatible alternatives to synthetic carriers in pharmaceutical development. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

27 pages, 4348 KiB  
Article
Valorization of Riceberry Broken Rice and Soybean Meal for Optimized Production of Multifunctional Exopolysaccharide by Bacillus tequilensis PS21 with Potent Bioactivities Using Response Surface Methodology
by Thipphiya Karirat, Worachot Saengha, Nantaporn Sutthi, Pheeraya Chottanom, Sirirat Deeseenthum, Nyuk Ling Ma and Vijitra Luang-In
Polymers 2025, 17(15), 2029; https://doi.org/10.3390/polym17152029 - 25 Jul 2025
Viewed by 350
Abstract
This study explores the valorization of agro-industrial by-products—riceberry broken rice (RBR) and soybean meal (SBM)—as cost-effective substrates for enhancing exopolysaccharide (EPS) production by Bacillus tequilensis PS21. Eight Bacillus strains were screened, and B. tequilensis PS21 demonstrated the highest EPS yield (2.54 g/100 mL [...] Read more.
This study explores the valorization of agro-industrial by-products—riceberry broken rice (RBR) and soybean meal (SBM)—as cost-effective substrates for enhancing exopolysaccharide (EPS) production by Bacillus tequilensis PS21. Eight Bacillus strains were screened, and B. tequilensis PS21 demonstrated the highest EPS yield (2.54 g/100 mL DW). The EPS displayed a strong antioxidant capacity with 65.5% DPPH and 80.5% hydroxyl radical scavenging, and a FRAP value of 6.51 mg Fe2+/g DW. Antimicrobial testing showed inhibition zones up to 10.07 mm against Streptococcus agalactiae and 7.83 mm against Staphylococcus aureus. Optimization using central composite design (CCD) and the response surface methodology (RSM) revealed the best production at 5% (w/v) RBR, 3% (w/v) SBM, pH 6.66, and 39.51 °C, yielding 39.82 g/L EPS. This EPS is a moderate-molecular-weight (11,282 Da) homopolysaccharide with glucose monomers. X-ray diffraction (XRD) showed an amorphous pattern, favorable for solubility in biological applications. Thermogravimetric analysis (TGA) demonstrated thermal stability up to ~250 °C, supporting its suitability for high-temperature processing. EPS also exhibited anticancer activity with IC50 values of 226.60 µg/mL (MCF-7) and 224.30 µg/mL (HeLa) at 72 h, reduced colony formation, inhibited cell migration, and demonstrated anti-tyrosinase, anti-collagenase, and anti-elastase effects. This study demonstrates the successful valorization of agro-industrial by-products—RBR and SBM—for the high-yield production of multifunctional EPS with potent antioxidant, antimicrobial, and anticancer properties. The findings highlight the sustainable potential of these low-cost substrates in supporting the development of green and value-added bioproducts, with promising utilizations across the food, pharmaceutical, and cosmetic sectors. Full article
(This article belongs to the Topic Microbes and Their Products for Sustainable Human Life)
Show Figures

Figure 1

22 pages, 1375 KiB  
Review
Polymorphic Transformations of Pharmaceutical Materials Induced by Mechanical Milling: A Review
by Mathieu Guerain and Jean-François Willart
Pharmaceutics 2025, 17(7), 946; https://doi.org/10.3390/pharmaceutics17070946 - 21 Jul 2025
Viewed by 382
Abstract
A review of the literature on polymorphic transformations by milling on pharmaceutical materials was carried out. The available information on 18 pharmaceutical materials was compiled. In particular, when data are available, the starting and final crystalline forms, their enantiotropic or monotropic relationship, the [...] Read more.
A review of the literature on polymorphic transformations by milling on pharmaceutical materials was carried out. The available information on 18 pharmaceutical materials was compiled. In particular, when data are available, the starting and final crystalline forms, their enantiotropic or monotropic relationship, the glass transition temperature of the compound and its melting temperature, the experimental observation of a transient or partial amorphization of compounds, and the transformation kinetics make it possible to suggest a two-step transformation mechanism. First, an amorphization occurs under milling of the starting polymorphic form. Secondly, a recrystallization of the amorphous form occurs towards the final form. The observed transformation kinetics are due to the fact that the recrystallization of the amorphous material towards the final form depends on the accidental formation of a cluster of this form during milling. Moreover, the observation of the transient amorphous form depends on the relative position of the glass transition temperature of the material with respect to the milling temperature. This mechanism seems to be independent of the enantiotropic or monotropic character of the polymorphic forms involved in the transformation. Full article
(This article belongs to the Collection Feature Papers in Pharmaceutical Technology)
Show Figures

Figure 1

10 pages, 2328 KiB  
Article
Vertical Hot-Melt Extrusion: The Next Challenge in Innovation
by Maël Gallas, Ghouti Medjahdi, Pascal Boulet and Victoire de Margerie
Pharmaceutics 2025, 17(7), 939; https://doi.org/10.3390/pharmaceutics17070939 - 21 Jul 2025
Viewed by 396
Abstract
Background/Objectives: Hot-melt extrusion (HME) has become a key technology in pharmaceutical formulation, particularly for enhancing the solubility of poorly soluble Active Pharmaceutical Ingredients (APIs). While horizontal HME is widely adopted, vertical HME remains underexplored despite its potential benefits in footprint reduction, feeding efficiency, [...] Read more.
Background/Objectives: Hot-melt extrusion (HME) has become a key technology in pharmaceutical formulation, particularly for enhancing the solubility of poorly soluble Active Pharmaceutical Ingredients (APIs). While horizontal HME is widely adopted, vertical HME remains underexplored despite its potential benefits in footprint reduction, feeding efficiency, temperature control, and integration into continuous manufacturing. This study investigates vertical HME as an innovative approach in order to optimize drug polymer interactions and generate stable amorphous dispersions with controlled release behavior. Methods: Extrusion trials were conducted using a vertical hot-melt extruder developed by Rondol Industrie (Nancy, France). Acetylsalicylic acid (ASA) supplied by Seqens (Écully, France) was used as a model API and processed with Soluplus® and Kollidon® 12 PF (BASF, Ludwigshafen, Germany). Various process parameters (temperature, screw speed, screw profile) were explored. The extrudates were characterized by powder X-ray diffraction (PXRD) and small-angle X-ray scattering (SAXS) to evaluate crystallinity and microstructure. In vitro dissolution tests were performed under sink conditions using USP Apparatus II to assess drug release profiles. Results: Vertical HME enabled the formation of homogeneous amorphous solid dispersions. PXRD confirmed the absence of residual crystallinity, and SAXS revealed nanostructural changes in the polymer matrix influenced by drug loading and thermal input. In vitro dissolution demonstrated enhanced drug release rates compared to crystalline ASA, with good reproducibility. Conclusions: Vertical HME provides a compact, cleanable, and modular platform that supports the development of stable amorphous dispersions with controlled release. It represents a robust and versatile solution for pharmaceutical innovation, with strong potential for cost-efficient continuous manufacturing and industrial-scale adoption. Full article
(This article belongs to the Special Issue Advances in Hot Melt Extrusion Technology)
Show Figures

Figure 1

18 pages, 1790 KiB  
Article
Development of Co-Amorphous Systems for Inhalation Therapy—Part 1: From Model Prediction to Clinical Success
by Eleonore Fröhlich, Aurora Bordoni, Nila Mohsenzada, Stefan Mitsche, Hartmuth Schröttner and Sarah Zellnitz-Neugebauer
Pharmaceutics 2025, 17(7), 922; https://doi.org/10.3390/pharmaceutics17070922 - 16 Jul 2025
Viewed by 418
Abstract
Background/Objectives: The integration of machine learning (ML) and artificial intelligence (AI) has revolutionized the pharmaceutical industry by improving drug discovery, development and manufacturing processes. Based on literature data, an ML model was developed by our group to predict the formation of binary [...] Read more.
Background/Objectives: The integration of machine learning (ML) and artificial intelligence (AI) has revolutionized the pharmaceutical industry by improving drug discovery, development and manufacturing processes. Based on literature data, an ML model was developed by our group to predict the formation of binary co-amorphous systems (COAMSs) for inhalation therapy. The model’s ability to develop a dry powder formulation with the necessary properties for a predicted co-amorphous combination was evaluated. Methods: An extended experimental validation of the ML model by co-milling and X-ray diffraction analysis for 18 API-API (active pharmaceutical ingredient) combinations is presented. Additionally, one COAMS of rifampicin (RIF) and ethambutol (ETH), two first-line tuberculosis (TB) drugs are developed further for inhalation therapy. Results: The ML model has shown an accuracy of 79% in predicting suitable combinations for 35 APIs used in inhalation therapy; experimental accuracy was demonstrated to be 72%. The study confirmed the successful development of stable COAMSs of RIF-ETH either via spray-drying or co-milling. In particular, the milled COAMSs showed better aerosolization properties (higher ED and FPF with lower standard deviation). Further, RIF-ETH COAMSs show much more reproducible results in terms of drug quantity dissolved over time. Conclusions: ML has been shown to be a suitable tool to predict COAMSs that can be developed for TB treatment by inhalation to save time and cost during the experimental screening phase. Full article
(This article belongs to the Special Issue New Platform for Tuberculosis Treatment)
Show Figures

Graphical abstract

23 pages, 1856 KiB  
Article
Comparative Evaluation of Gelatin and HPMC Inhalation Capsule Shells Exposed to Simulated Humidity Conditions
by Sabrina Magramane, Nikolett Kállai-Szabó, Dóra Farkas, Károly Süvegh, Romána Zelkó and István Antal
Pharmaceutics 2025, 17(7), 877; https://doi.org/10.3390/pharmaceutics17070877 - 3 Jul 2025
Viewed by 641
Abstract
Background/Objectives: This study investigates the impact of high humidity (25 °C, 75% relative humidity) on gelatin and hydroxypropyl methylcellulose (HPMC) capsules used in dry powder inhalers (DPIs), focusing on moisture dynamics, structural responses, and mechanical performance, with an emphasis on understanding how [...] Read more.
Background/Objectives: This study investigates the impact of high humidity (25 °C, 75% relative humidity) on gelatin and hydroxypropyl methylcellulose (HPMC) capsules used in dry powder inhalers (DPIs), focusing on moisture dynamics, structural responses, and mechanical performance, with an emphasis on understanding how different capsule types respond to prolonged exposure to humid conditions. Methods: Capsules were exposed to controlled humidity conditions, and moisture uptake was measured via thermal analysis. Visual observations of silica bead color changes were performed to assess moisture absorption, while surface wettability was measured using the sessile drop method. Hardness testing, mechanical deformation, and puncture tests were performed to evaluate structural and mechanical changes. Positron annihilation lifetime spectroscopy (PALS) was used to analyze free volume expansion. Results: HPMC capsules exhibited rapid moisture uptake, attributed to their lower equilibrium moisture content and ability to rearrange dynamically, preventing brittleness. In contrast, gelatin capsules showed slower moisture absorption but reached higher equilibrium levels, resulting in plasticization and softening. Mechanical testing showed that HPMC capsules retained structural integrity with minimal deformation, while gelatin capsules became softer and exhibited reduced puncture resistance. Structural analysis revealed greater free volume expansion in HPMC capsules, consistent with their amorphous nature, compared with gelatin’s semi-crystalline matrix. Conclusions: HPMC capsules demonstrated superior humidity resilience, making them more suitable for protecting moisture-sensitive active pharmaceutical ingredients (APIs) in DPI formulations. These findings underline the importance of appropriate storage conditions, as outlined in the Summary of Product Characteristics, to ensure optimal capsule performance throughout patient use. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

23 pages, 4426 KiB  
Article
Laser Microinterferometry for API Solubility and Phase Equilibria: Darunavir as a Case Example
by Veronika Makarova, Mark Mandrik and Sergey Antonov
Pharmaceutics 2025, 17(7), 875; https://doi.org/10.3390/pharmaceutics17070875 - 3 Jul 2025
Viewed by 420
Abstract
Background: The solubility and phase behavior of APIs are crucial for the development of medicines and ensuring their stability. However, conventional experimental approaches often do not allow for the precise determination of phase transitions and solubility limits, especially for poorly soluble compounds. Purpose: [...] Read more.
Background: The solubility and phase behavior of APIs are crucial for the development of medicines and ensuring their stability. However, conventional experimental approaches often do not allow for the precise determination of phase transitions and solubility limits, especially for poorly soluble compounds. Purpose: The aim of this study was to demonstrate the possibility of using the laser microinterferometry method, traditionally used to define the phase equilibria of polymer systems, to determine the thermodynamic solubility of the APIs. Methods: Using laser microinterferometry, the thermodynamic solubility and phase behavior of amorphous darunavir were determined in various pharmaceutical solvents, including vaseline and olive oils, water, glycerol, alcohols (methanol, ethanol, isopropanol), glycols (propylene glycol, polyethylene glycol 400, polypropylene glycol 425, polyethylene glycol 4000), and ethoxylated polyethylene glycol ether obtained from castor oil in the temperature range of 25–130 °C. Dissolution kinetics was estimated at 25 °C. Hansen solubility parameter calculations were also performed for comparison. Results: Darunavir is practically insoluble in olive and vaseline oils. In water and glycerol, an amorphous equilibrium with an upper critical solution temperature was observed, and phase diagrams were constructed for the first time. In alcohols, glycols, and ethoxylated polyethylene glycol ether obtained from castor oil, darunavir showed high solubility, accompanied by the formation of crystalline solvates. Kinetic evaluation showed that the dissolution rate of darunavir in methanol is four times faster than in ethanol and thirty times faster than in isopropanol. Comparison of the obtained data with previously published and calculated values of solubility parameters demonstrates a good correlation. Conclusions: Laser microinterferometry has been demonstrated as a potential tool for determining the thermodynamic solubility of APIs. This method allows for directly observing the dissolution process, determining the solubility limits, and detecting phase transitions. These studies are necessary for selecting appropriate excipients, preventing the formation of undesirable solvates and predicting formulation stability, which are all critical factors in early-stage drug development and pharmaceutical formulation design. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

25 pages, 7095 KiB  
Article
Kinetics of Phase Transitions in Amorphous Carbamazepine: From Sub-Tg Structural Relaxation to High-Temperature Decomposition
by Roman Svoboda and Adéla Pospíšilová
Int. J. Mol. Sci. 2025, 26(13), 6136; https://doi.org/10.3390/ijms26136136 - 26 Jun 2025
Viewed by 334
Abstract
Thermokinetic characterization of amorphous carbamazepine was performed utilizing non-isothermal differential scanning calorimetry (DSC) and thermogravimetry (TGA). Structural relaxation of the amorphous matrix was described in terms of the Tool–Narayanaswamy–Moynihan model with the following parameters: Δh* ≈ 200–300 kJ·mol−1, β = [...] Read more.
Thermokinetic characterization of amorphous carbamazepine was performed utilizing non-isothermal differential scanning calorimetry (DSC) and thermogravimetry (TGA). Structural relaxation of the amorphous matrix was described in terms of the Tool–Narayanaswamy–Moynihan model with the following parameters: Δh* ≈ 200–300 kJ·mol−1, β = 0.57, x = 0.44. The crystallization of the amorphous phase was modeled using complex Šesták–Berggren kinetics, which incorporates temperature-dependent activation energy and degree of autocatalysis. The activation energy of the crystal growth was determined to be >320 kJ·mol−1 at the glass transition temperature (Tg). Owing to such a high value, the amorphous carbamazepine is stable at Tg, allowing for extensive processing of the amorphous phase (e.g., self-healing of the quench-induced mechanical defects or internal stress). A discussion was conducted regarding the converse relation between the activation energies of relaxation and crystal growth, which is possibly responsible for the absence of sub-Tg crystal growth modes. The high-temperature thermal decomposition of carbamazepine proceeds via multistep kinetics, identically in both an inert and an oxidizing atmosphere. A complex reaction mechanism, consisting of a series of consecutive and competing reactions, was proposed to explain the second decomposition step, which exhibited a temporary mass increase. Whereas a negligible degree of carbamazepine degradation was predicted for the temperature characteristic of the pharmaceutical hot-melt extrusion (~150 °C), the degradation risk during the pharmaceutical 3D printing was calculated to be considerably higher (1–2% mass loss at temperatures 190–200 °C). Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

15 pages, 3222 KiB  
Article
Gamma Irradiation-Induced Changes in Microstructure of Cyclic Olefin Copolymer (COC) Revealed by NMR and SAXS Characterization
by Fan Zhang, Heng Lei, Feng Guo, Jiangtao Hu, Haiming Liu, Qing Wang, Weihua Liu, Zhe Xing and Guozhong Wu
Polymers 2025, 17(13), 1751; https://doi.org/10.3390/polym17131751 - 24 Jun 2025
Viewed by 343
Abstract
Cyclic Olefin Copolymer (COC) is an amorphous thermoplastic polymer synthesized through the catalytic copolymerization of α-olefin and cyclic olefin. When used in pre-filled syringes and pharmaceutical packaging, COCs require radiation sterilization. The radiation sterilization alters the microstructure of COC, which ultimately affects its [...] Read more.
Cyclic Olefin Copolymer (COC) is an amorphous thermoplastic polymer synthesized through the catalytic copolymerization of α-olefin and cyclic olefin. When used in pre-filled syringes and pharmaceutical packaging, COCs require radiation sterilization. The radiation sterilization alters the microstructure of COC, which ultimately affects its performance and biosafety. In this study, to investigate the effects of γ-radiation on COC microstructures, ethylene-norbornene copolymers with various compositions, representative of COC, are studied by nuclear magnetic resonance (NMR) and small angle X-ray scattering (SAXS) techniques. During irradiation, the COC containing 35 mol% norbornene produced free radicals that triggered migration and reaction processes, leading to the formation of entanglements within flexible chain segments. This, in turn, affected nearby ring structures with high steric hindrance, resulting in a 9.2% decrease in internal particle size and an increase in particle spacing. Conversely, when the norbornene content in COC was increased to 57 mol%, the internal particle size increased by 17.9%, while the particle spacing decreased. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

26 pages, 8375 KiB  
Article
Water-Soluble Formulations of Curcumin and Eugenol Produced by Spray Drying
by Iskra Z. Koleva, Katya Kamenova, Petar D. Petrov and Christo T. Tzachev
Pharmaceuticals 2025, 18(7), 944; https://doi.org/10.3390/ph18070944 - 23 Jun 2025
Viewed by 600
Abstract
Background/Objectives: In this study, we present a green, scalable platform for the production of water-dispersible powders co-encapsulating the lipophilic bioactives curcumin (Cur) and eugenol (Eug) within the amphiphilic polymer Soluplus® (SP) via low-temperature spray drying. Methods: The amount of Cur [...] Read more.
Background/Objectives: In this study, we present a green, scalable platform for the production of water-dispersible powders co-encapsulating the lipophilic bioactives curcumin (Cur) and eugenol (Eug) within the amphiphilic polymer Soluplus® (SP) via low-temperature spray drying. Methods: The amount of Cur (1%, 5%, and 10%) and Eug (5%, 10%, 15%, and 20%) was varied to achieve single- and double-loaded water-soluble powders with the maximum amount of active substances. The powders containing a higher loading of Cur, 5% and 10% (and Eug), were obtained from water/ethanol mixtures (2:1 and 5:1 v/v ratio), while the formulation with 1% of Cur was spray-dried by using water as a solvent. Results: By leveraging aqueous or aqueous–ethanolic feed systems, we achieved high loading of the bioactive substances—up to 10% Cur and 20% Eug (w/w)—while minimizing organic solvent use. Myo-inositol was incorporated as a stabilizing excipient to modulate particle morphology, improve powder flowability, and enhance redispersibility. Physicochemical characterization revealed nanoscale micellization (53–127 nm), amorphization of both actives as confirmed by XRD and DSC, and the absence of crystalline residue. Encapsulation efficiencies exceeded 95% for Cur and 93% for Eug. Dissolution tests demonstrated a rapid release from the 5% Cur/5% Eug formulation (>85% in 5 min), while higher-loaded single-formulations showed progressively slower release (up to 45 min). Conclusions: This work demonstrates a robust and environmentally responsible encapsulation strategy, suitable for delivering poorly water-soluble phytochemicals with potential applications in oral nutraceuticals and pharmaceutical dosage forms. Full article
Show Figures

Figure 1

18 pages, 11324 KiB  
Article
Cultivation Optimization and Structural Characterization of Stephanocyclus meneghinianus for Sustainable High-Quality Biosilica Production
by Daeryul Kwon, Yoseph Seo, Chaehong Park, Sang Deuk Lee and Taek Lee
Nanomaterials 2025, 15(13), 971; https://doi.org/10.3390/nano15130971 - 22 Jun 2025
Viewed by 410
Abstract
This study investigates the potential use of the freshwater centric diatom Stephanocyclus meneghinianus as a sustainable source of high-purity biosilica. We analyzed its morphology, microstructure, and optimal culture conditions, and developed a pretreatment method to recover intact biosilica frustules. The isolated diatoms exhibited small [...] Read more.
This study investigates the potential use of the freshwater centric diatom Stephanocyclus meneghinianus as a sustainable source of high-purity biosilica. We analyzed its morphology, microstructure, and optimal culture conditions, and developed a pretreatment method to recover intact biosilica frustules. The isolated diatoms exhibited small and uniform cell sizes (8–10 μm) with distinctive features such as regularly arranged spines, striae, and fultoportulae. Electron microscopy revealed around 4000 nanoscale pores per valve, mostly along the costae. The pretreatment process using ethanol and hydrogen peroxide effectively removed organic materials and mucilage, preserving the structural integrity of the biosilica. Crystallinity analysis confirmed the amorphous nature of the biosilica, indicating good biodegradability, while elemental analysis showed its composition as being primarily of silicon and oxygen. Growth optimization experiments revealed the highest specific growth rate in DM medium at 20–25 °C under light intensities of 60–120 μmol m−2 s−1. These results demonstrate that S. meneghinianus can be cultured efficiently to produce biodegradable biosilica with well-defined nanostructures. This biosilica shows promise for applications in biomaterials, nanotechnology, pharmaceuticals, and environmental remediation. Full article
(This article belongs to the Special Issue Development and Evaluation of Nanomaterials for Agriculture)
Show Figures

Graphical abstract

20 pages, 2727 KiB  
Article
Mechanochemical Effects of High-Intensity Ultrasound on Dual Starch Modification of Mango Cotyledons
by Ramiro Torres-Gallo, Ricardo Andrade-Pizarro, Diego F. Tirado, Andrés Chávez-Salazar and Francisco J. Castellanos-Galeano
AgriEngineering 2025, 7(6), 190; https://doi.org/10.3390/agriengineering7060190 - 13 Jun 2025
Viewed by 544
Abstract
The starch modification of mango cotyledons with both single ultrasound (US) and dual (US followed by octenyl succinic anhydride, OSA) was optimized by response surface methodology (RSM). The mechanochemical effects of ultrasound on amylose content, particle size, and dual modification efficiency were assessed. [...] Read more.
The starch modification of mango cotyledons with both single ultrasound (US) and dual (US followed by octenyl succinic anhydride, OSA) was optimized by response surface methodology (RSM). The mechanochemical effects of ultrasound on amylose content, particle size, and dual modification efficiency were assessed. In addition, the structural, thermal, morphological, and functional properties were evaluated. After optimization with single US (41 min and 91% sonication intensity), sonication induced starch granule fragmentation, altering amorphous and partially crystalline regions, which increased amylose content (34%), reduced particle size (Dx50 = 12 μm), and modified granule surface morphology. The dual modification (the subsequent OSA reaction lasted 4.6 h under the same conditions) reached a degree of substitution of 0.02 and 81% efficiency, imparting amphiphilic properties to the starch. OSA groups were mainly incorporated into amorphous and surface regions, which decreased crystallinity, gelatinization temperature, and enthalpy. The synergistic effect of the modification with US and OSA in the dual modification significantly improved the solubility and swelling power of starch, resulting in better dispersion, functionality in aqueous systems, and chemical reactivity. These findings highlight the potential of dual modification to transform mango cotyledon starch into a versatile ingredient in the food industry as a thickener, a stabilizer in soups and sauces, an emulsifier, a carrier of bioactive and edible films; in the cosmetic industry as a gelling and absorbent agent; and in the pharmaceutical industry for the controlled release of drugs. Furthermore, valorizing mango cotyledons supports circular economy principles, promoting sustainable and value-added food product development. Full article
(This article belongs to the Special Issue Latest Research on Post-Harvest Technology to Reduce Food Loss)
Show Figures

Figure 1

2 pages, 139 KiB  
Reply
Reply to Miller et al. Comment on “Hermeling et al. Nano-Dry-Melting: A Novel Technology for Manufacturing of Pharmaceutical Amorphous Solid Dispersions. Pharmaceutics 2022, 14, 2145”
by Malin Hermeling, Christoph Nueboldt, Roman Heumann, Werner Hoheisel and Joerg Breitkreutz
Pharmaceutics 2025, 17(6), 715; https://doi.org/10.3390/pharmaceutics17060715 - 29 May 2025
Viewed by 365
Abstract
My fellow authors and I would like to respond to the comment made by Miller et al [...] Full article
5 pages, 178 KiB  
Comment
Comment on Hermeling et al. Nano-Dry-Melting: A Novel Technology for Manufacturing of Pharmaceutical Amorphous Solid Dispersions. Pharmaceutics 2022, 14, 2145
by Dave A. Miller, Sandra U. Kucera, Daniel Ellenberger, Daniel Davis and Robert O. Williams
Pharmaceutics 2025, 17(6), 714; https://doi.org/10.3390/pharmaceutics17060714 - 29 May 2025
Cited by 1 | Viewed by 430
Abstract
My colleagues and I are writing in response to an article published in the October 2022 issue of Pharmaceutics titled “Nano-Dry-Melting: A Novel Technology for Manufacturing of Pharmaceutical Amorphous Solid Dispersions” [...] Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Back to TopTop