Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (239)

Search Parameters:
Keywords = aminophenols

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 14491 KiB  
Article
Catalytically Active Oxidized PtOx Species on SnO2 Supports Synthesized via Anion Exchange Reaction for 4-Nitrophenol Reduction
by Izabela Ðurasović, Robert Peter, Goran Dražić, Fabio Faraguna, Rafael Anelić, Marijan Marciuš, Tanja Jurkin, Vlasta Mohaček Grošev, Maria Gracheva, Zoltán Klencsár, Mile Ivanda, Goran Štefanić and Marijan Gotić
Nanomaterials 2025, 15(15), 1159; https://doi.org/10.3390/nano15151159 - 28 Jul 2025
Viewed by 271
Abstract
An anion exchange-assisted technique was used for the synthesis of platinum-decorated SnO2 supports, providing nanocatalysts with enhanced activity for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). In this study, a series of SnO2 supports, namely SnA (synthesized almost at room [...] Read more.
An anion exchange-assisted technique was used for the synthesis of platinum-decorated SnO2 supports, providing nanocatalysts with enhanced activity for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). In this study, a series of SnO2 supports, namely SnA (synthesized almost at room temperature), SnB (hydrothermally treated at 180 °C), and SnC (annealed at 600 °C), are systematically investigated, all loaded with 1 mol% Pt from H2PtCl6 under identical mild conditions. The chloride ions from the SnCl4 precursors were efficiently removed via a strong-base anion exchange reaction, resulting in highly dispersed, crystalline ~5 nm cassiterite SnO2 particles. All Pt/SnO2 composites displayed mesoporous structures with type IVa isotherms and H2-type hysteresis, with SP1a (Pt on SnA) exhibiting the largest surface area (122.6 m2/g) and the smallest pores (~3.5 nm). STEM-HAADF imaging revealed well-dispersed PtOx domains (~0.85 nm), while XPS confirmed the dominant Pt4+ and Pt2+ species, with ~25% Pt0 likely resulting from photoreduction and/or interactions with Sn–OH surface groups. Raman spectroscopy revealed three new bands (260–360 cm−1) that were clearly visible in the sample with 10 mol% Pt and were due to the vibrational modes of the PtOx species and Pt-Cl bonds introduced due the addition and hydrolysis of H2PtCl6 precursor. TGA/DSC analysis revealed the highest mass loss for SP1a (~7.3%), confirming the strong hydration of the PtOx domains. Despite the predominance of oxidized PtOx species, SP1a exhibited the highest catalytic activity (kapp = 1.27 × 10−2 s−1) and retained 84.5% activity for the reduction of 4-NP to 4-AP after 10 cycles. This chloride-free low-temperature synthesis route offers a promising and generalizable strategy for the preparation of noble metal-based nanocatalysts on oxide supports with high catalytic activity and reusability. Full article
Show Figures

Figure 1

27 pages, 1269 KiB  
Review
Old and New Analgesic Acetaminophen: Pharmacological Mechanisms Compared with Non-Steroidal Anti-Inflammatory Drugs
by Hironori Tsuchiya and Maki Mizogami
Future Pharmacol. 2025, 5(3), 40; https://doi.org/10.3390/futurepharmacol5030040 - 22 Jul 2025
Viewed by 408
Abstract
Although it is more than a century since it was first marketed, acetaminophen remains one of the most popular analgesic agents. In addition, acetaminophen has recently been applied to multimodal analgesia in combination with non-steroidal anti-inflammatory drugs, and its consumption significantly increased during [...] Read more.
Although it is more than a century since it was first marketed, acetaminophen remains one of the most popular analgesic agents. In addition, acetaminophen has recently been applied to multimodal analgesia in combination with non-steroidal anti-inflammatory drugs, and its consumption significantly increased during the pandemic of coronavirus disease 2019 as well as diclofenac and ibuprofen. However, the detailed mode of analgesic action of acetaminophen is still unclear. In the present study, we comprehensively discuss conventional, recognized, and postulated mechanisms of analgesic acetaminophen and highlight the current mechanistic concepts while comparing with diclofenac and ibuprofen. Acetaminophen inhibits cyclooxygenase with selectivity for cyclooxygenase-2, which is higher than that of ibuprofen but lower than that of diclofenac. In contrast to diclofenac and ibuprofen, however, anti-inflammatory effects of acetaminophen depend on the extracellular conditions of inflamed tissues. Since the discovery of cyclooxygenase-3 in the canine brain, acetaminophen had been hypothesized to inhibit such a cyclooxygenase-1 variant selectively. However, this hypothesis was abandoned because cyclooxygenase-3 was revealed not to be physiologically and clinically relevant to humans. Recent studies suggest that acetaminophen is deacetylated to 4-aminophenol in the liver and after crossing the blood–brain barrier, it is metabolically converted into N-(4-hydroxyphenyl)arachidonoylamide. This metabolite exhibits bioactivities by targeting transient receptor potential vanilloid 1 channel, cannabinoid receptor 1, Cav3.2 calcium channel, anandamide, and cyclooxygenase, mediating acetaminophen analgesia. These targets may be partly associated with diclofenac and ibuprofen. The perspective of acetaminophen as a prodrug will be crucial for a future strategy to develop analgesics with higher tolerability and activity. Full article
Show Figures

Figure 1

13 pages, 2832 KiB  
Article
Eco-Friendly Synthesis of Silver Nanoparticles from Ligustrum ovalifolium Flower and Their Catalytic Applications
by Thangamani Kaliraja, Reddi Mohan Naidu Kalla, Fatimah Ali M. Al-Zahrani, Surya Veerendra Prabhakar Vattikuti and Jaewoong Lee
Nanomaterials 2025, 15(14), 1087; https://doi.org/10.3390/nano15141087 - 14 Jul 2025
Viewed by 363
Abstract
The green-chemical preparation of silver nanoparticles (AgNPs) offers a sustainable and environmentally friendly alternative to conventional synthesis methods, thereby representing a paradigm shift in the field of nanotechnology. The biological synthesis process, which involves the synthesis, characterization, and management of materials, as well [...] Read more.
The green-chemical preparation of silver nanoparticles (AgNPs) offers a sustainable and environmentally friendly alternative to conventional synthesis methods, thereby representing a paradigm shift in the field of nanotechnology. The biological synthesis process, which involves the synthesis, characterization, and management of materials, as well as their further development at the nanoscale, is the most economical, environmentally friendly, and rapid synthesis process compared to physical and chemical processes. Ligustrum ovalifolium flower extract was used for the preparation of AgNPs. The synthesized AgNPs were examined by using UV–visible spectroscopy, XRD, SEM, and TEM analysis. It indicates that AgNPs were formed in good size. AgNPs were applied as a catalyst for the degradation of pollutants, such as methyl orange, Congo red, and methylene blue, which were degraded within 8–16 min. Additionally, the reduction of para-nitrophenol (PNP) to para-aminophenol (PAP) was achieved within 2 min. This work demonstrates a practical, reproducible, and efficient method for synthesizing cost-effective and stable AgNPs, which serve as active catalysts for the rapid degradation of hazardous organic dyes in an aqueous environment. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

25 pages, 899 KiB  
Review
A Scoping Review of Vitamins Detection Using Electrochemically Polymerised, Molecularly Imprinted Polymers
by Mohd Azerulazree Jamilan, Balqis Kamarudin, Zainiharyati Mohd Zain, Kavirajaa Pandian Sambasevam, Faizatul Shimal Mehamod and Mohd Fairulnizal Md Noh
Polymers 2025, 17(10), 1415; https://doi.org/10.3390/polym17101415 - 21 May 2025
Viewed by 683
Abstract
Vitamins are crucial micro-nutrients for overall well-being, making continuous monitoring essential. There are demands to provide an alternative detection, especially using a portable detection or a point-of-care-testing (POCT) device. One promising approach is employing an in situ electro-polymerised MIP (eMIP), which offers a [...] Read more.
Vitamins are crucial micro-nutrients for overall well-being, making continuous monitoring essential. There are demands to provide an alternative detection, especially using a portable detection or a point-of-care-testing (POCT) device. One promising approach is employing an in situ electro-polymerised MIP (eMIP), which offers a straightforward polymerisation technique on screen-printed electrodes (SPEs). Here, we report a review based on three databases (PubMed, Scopus, and Web of Science) from 2014 to 2024 using medical subject heading (MeSH) terms “electrochemical polymerisation” OR “electropolymerisation” crossed with the terms “molecularly imprinted polymer” AND “vitamin A” OR “vitamin D” OR “vitamin E” OR “vitamin K” OR “fat soluble vitamin” OR “vitamin B” OR “vitamin C” OR “water soluble vitamin”. The resulting 12 articles covered the detection of vitamins in ascorbic acid, riboflavin, cholecalciferol, calcifediol, and menadione using monomers of catechol (CAT), 3,4-ethylenedioxythiophene (EDOT), o-aminophenol (oAP), o-phenylenediamine (oPD), pyrrole, p-aminophenol (pAP), p-phenylenediamine (pPD), or resorcinol (RES), using common bare electrodes including graphite rod electrode (GRE), glassy carbon electrode (GCE), gold electrode (GE), and screen-printed carbon electrode (SPCE). The most common electrochemical detections were differential pulse voltammetry (DPV) and linear sweep voltammetry (LSV). The imprinting factor (IF) of the eMIP-modified electrodes were from 1.6 to 21.0, whereas the cross-reactivity was from 0.0% to 29.9%. Several types of food and biological samples were tested, such as supplement tablets, poultry and pharmaceutical drugs, soft drinks, beverages, milk, infant formula, human and calf serum, and human plasma. However, more discoveries and development of detection methods needs to be performed, especially for the vitamins that have not been studied yet. This will allow the improvement in the application of eMIPs on portable-based detection and POCT devices. Full article
(This article belongs to the Special Issue Molecularly Imprinted Polymers: Latest Advances and Applications)
Show Figures

Graphical abstract

19 pages, 4546 KiB  
Review
Acetylcysteine Treatment of Acetaminophen Overdose: Foundational and Clinical Development
by Barry H. Rumack
Livers 2025, 5(2), 20; https://doi.org/10.3390/livers5020020 - 25 Apr 2025
Viewed by 1901
Abstract
N-acetyl para-aminophenol was suggested as a safer alternative to other drugs on the market for pain and fever in 1948. It was given the generic name “acetaminophen” in 1951 and the trade name “Tylenol” when it was put on the market in the [...] Read more.
N-acetyl para-aminophenol was suggested as a safer alternative to other drugs on the market for pain and fever in 1948. It was given the generic name “acetaminophen” in 1951 and the trade name “Tylenol” when it was put on the market in the USA in 1955 as a prescription drug to treat pediatric fever. It also received the generic name “paracetamol” in the UK where it was initially marketed in 1956 under the name “Panadol.” Toxicity from overdose of acetaminophen was reported in 1966. Research at the US National Institutes of Health uncovered the mechanisms of toxicity and proposed a treatment in a foundational series of papers in 1973 and 1974. A nomogram was developed in 1973 and published in 1975 to guide estimation of patient risk of hepatic toxicity. Rapid development followed utilizing acetylcysteine given both orally and intravenously. Various protocols and methods of administration have been employed over time with the primary use today of acetylcysteine intravenously as the therapeutic method. The nomogram has been revised over time to the current version, published in 2023, which allows stratification of patients to a high-risk group over 300 mg/L at 4 h and standard risk above 150 mg/L at 4 h, except in the UK where the standard risk is defined very conservatively with a line above 100 mg/L at 4 h. Adjunct therapy with fomepizole in patients with massive ingestions, delay until arrival in a health care facility or renal injury has been proposed. The mortality rate with treatment has been substantially reduced and recovery from hepatic injury is achieved in almost all patients. Full article
(This article belongs to the Special Issue Recent Advances in Acetaminophen Hepatotoxicity)
Show Figures

Figure 1

12 pages, 4996 KiB  
Article
Fabrication of Poly(s-triazine-co-o-aminophenol) Conducting Polymer via Electropolymerization and Its Application in Aqueous Charge Storage
by Xueting Bai, Bo Lan, Xinyang Li, Xinlan Yi, Shaotong Pei and Chao Wang
Polymers 2025, 17(9), 1160; https://doi.org/10.3390/polym17091160 - 24 Apr 2025
Viewed by 391
Abstract
Designing conducting polymers with novel structures is essential for electrochemical energy storage devices. Here, copolymers of s-triazine and o-aminophenol are electropolymerized from an aqueous solution onto a carbon cloth substrate using the galvanostatic method. The poly(s-triazine-co-o-aminophenol) (PT-co-oAP) [...] Read more.
Designing conducting polymers with novel structures is essential for electrochemical energy storage devices. Here, copolymers of s-triazine and o-aminophenol are electropolymerized from an aqueous solution onto a carbon cloth substrate using the galvanostatic method. The poly(s-triazine-co-o-aminophenol) (PT-co-oAP) is characterized, and its charge storage properties are investigated in 1 M H2SO4 and in 1 M ZnSO4. At 1 A g−1, the specific capacities of PT-co-oAP reach 101.3 mAh g−1 and 84.4 mAh g−1 in 1 M H2SO4 and in 1 M ZnSO4, respectively. The specific capacity of PT-co-oAP maintains 90.3% of its initial value after cycling at 10 A g−1 for 2000 cycles in 1 M H2SO4. The high specific capacity achieved originates from abundant surface active sites, facile ion diffusion, with optimized active site structure achieved by forming copolymer. The charge storage mechanism involves the redox processes of amino/imino groups and hydroxyl/carbonyl groups in the copolymer, together with the insertion of cations. Two electrode devices using two PT-co-oAP and aqueous 1 M H2SO4 are assembled, and the maximum energy density reaches 63 Wh kg−1 at 0.5 A g−1 with a power density of 540 W kg−1. The capacity retention of the device after 3000 cycles at 10 A g−1 reaches 81.2%. Full article
(This article belongs to the Special Issue Polymer-Based Flexible Materials, 3rd Edition)
Show Figures

Figure 1

16 pages, 1934 KiB  
Article
Kinetic Modeling of Sulfamethoxazole Degradation by Photo-Fenton: Tracking Color Development and Iron Complex Formation for Enhanced Bioremediation
by Unai Duoandicoechea, Elisabeth Bilbao-García and Natalia Villota
Appl. Sci. 2025, 15(8), 4531; https://doi.org/10.3390/app15084531 - 19 Apr 2025
Viewed by 499
Abstract
This study presents a comprehensive kinetic analysis of sulfamethoxazole (SMX) degradation by the photo-Fenton process, highlighting its potential for removing emerging micropollutants in water treatment. The degradation of SMX followed pseudo-first-order kinetics, with increasing Fe(II) concentrations significantly accelerating the oxidation rate. A kinetic [...] Read more.
This study presents a comprehensive kinetic analysis of sulfamethoxazole (SMX) degradation by the photo-Fenton process, highlighting its potential for removing emerging micropollutants in water treatment. The degradation of SMX followed pseudo-first-order kinetics, with increasing Fe(II) concentrations significantly accelerating the oxidation rate. A kinetic model was developed to describe SMX removal, aromaticity loss, and color changes during treatment. Although SMX was rapidly eliminated, intermediate aromatic and chromophoric compounds persisted, requiring extended reaction times for complete mineralization. The kinetic modeling of aromaticity and color revealed distinct degradation pathways and rate constants, showing a strong dependence on iron dosage. The formation of nitrate and sulfate was used to monitor nitrogen and sulfur mineralization, respectively. Optimal nitrate formation was achieved at 22 mol SMX: 1 mol Fe(II), beyond which excessive iron promoted radical scavenging and the formation of stable Fe–aminophenol complexes, inhibiting complete nitrogen oxidation and aromatic degradation. Moreover, excessive Fe(II) led to increased water coloration due to complexation with partially oxidized aromatic byproducts. These findings emphasize the need for optimized catalyst dosing to balance degradation efficiency and minimize secondary effects. The proposed kinetic models offer a predictive tool for improving photo-Fenton-based treatments and integrating them with biological processes to enhance micropollutant bioremediation. Full article
(This article belongs to the Special Issue Advancing Bioremediation Technologies for Emerging Micropollutants)
Show Figures

Figure 1

21 pages, 4523 KiB  
Article
ZIF-67-Derived Co−N−C Supported Ni Nanoparticles as Efficient Recyclable Catalyst for Hydrogenation of 4-Nitrophenol
by Juti Rani Deka, Diganta Saikia, Jia-Cheng Lin, Wan-Yu Chen, Hsien-Ming Kao and Yung-Chin Yang
Catalysts 2025, 15(4), 343; https://doi.org/10.3390/catal15040343 - 1 Apr 2025
Viewed by 822
Abstract
In this study, a novel, highly efficient, environment friendly, and low-cost nanocatalyst, denoted as Ni(x)@Co−N−C, was successfully developed by encapsulating Ni nanoparticles into N-doped porous carbon derived from ZIF-67. A variety of techniques including powder X-ray diffraction (XRD), nitrogen adsorption/desorption, scanning electron microscopy [...] Read more.
In this study, a novel, highly efficient, environment friendly, and low-cost nanocatalyst, denoted as Ni(x)@Co−N−C, was successfully developed by encapsulating Ni nanoparticles into N-doped porous carbon derived from ZIF-67. A variety of techniques including powder X-ray diffraction (XRD), nitrogen adsorption/desorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectrometer (XPS) were used to characterize the prepared materials. The TEM images reveal that the nanoparticles were distributed homogeneously in the carbon support. The N atoms in the carbon support serve as the sites for the nucleation and uniform growth of Ni nanoparticles. The catalyst was used for the degradation of environmentally harmful 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). Among all the catalysts investigated, Ni(10)@Co-N-C exhibited the highest catalytic activity for the hydrogenation of 4-NP, with a specific reaction rate of 6.1 × 10−3 s−1, activity parameter of 31 s−1g−1, and turn over frequency (TOF) of 1.78 × 1019 molecules gmetal−1s−1. On the other hand, the specific reaction rate and TOF value were 1.7 × 10−3 s−1 and 6.96 × 1018 molecules gmetal−1s−1, respectively, for Co−N−C. This suggests that Ni(10)@Co−N−C is about three times more catalytically active than the Co−N−C catalyst. The superb activity of Ni(10)@Co−N−C in comparison to Co−N−C can be ascribed to the homogeneous dispersion of small-sized Ni nanoparticles, the interconnected three-dimensional porous arrangement of the support Co−N−C, the presence of N atoms in the carbon framework that stabilize metal nanoparticles, and the synergistic electronic effect between Ni and Co. The Ni(10)@Co−N−C catalyst maintained consistent catalytic activity over multiple cycles, which suggests that porous N-containing carbon support can effectively prevent aggregation and leaching of metal nanoparticles. The ICP-AES analysis of the recycled Ni(10)@Co−N−C revealed a slight reduction in metal content compared to the fresh sample, suggesting almost negligible leaching of metal nanoparticles. Full article
Show Figures

Graphical abstract

12 pages, 1502 KiB  
Article
General Synthesis of 2-Substituted Benzoxazoles Based on Tf2O-Promoted Electrophilic Activation of Tertiary Amides
by Hongchen Li, Xingyong Wang, Fujun Zhao, Lu Wang and Songbao Fu
Molecules 2025, 30(7), 1510; https://doi.org/10.3390/molecules30071510 - 28 Mar 2025
Viewed by 1111
Abstract
We report a method for the synthesis of 2-substituted benzoxazoles from tertiary amides and 2-aminophenols in the presence of triflic anhydride (Tf2O) and 2-Fluoropyridine (2-F-Pyr). The cascade reaction involves the activation of the amide carbonyl group by Tf2O, nucleophilic [...] Read more.
We report a method for the synthesis of 2-substituted benzoxazoles from tertiary amides and 2-aminophenols in the presence of triflic anhydride (Tf2O) and 2-Fluoropyridine (2-F-Pyr). The cascade reaction involves the activation of the amide carbonyl group by Tf2O, nucleophilic addition, intramolecular cyclization, and elimination. Furthermore, we explore the scope of this method by varying both the amide and 2-aminophenol substrates, highlighting its versatility in the synthesis of a wide range of functionalized benzoxazole derivatives. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Organic Chemistry)
Show Figures

Figure 1

27 pages, 6014 KiB  
Article
Utilizing Nanoparticles of Hesperidin Loaded on Layered Double Hydroxide to Reduce Hepatotoxicity Caused by Paracetamol in Rats: Controlling of Biotransformation, Oxidative Stress, Inflammation, and Apoptosis
by Deyaa A. Shaban, Ahmed A. G. El-Shahawy, Mohamed I. Zanaty, Zienab E. Eldin, Mohamed Abd-Elbaset, Anwar Shams, Shadi Tamur and Osama M. Ahmed
Pharmaceutics 2025, 17(4), 429; https://doi.org/10.3390/pharmaceutics17040429 - 27 Mar 2025
Viewed by 792
Abstract
Background/Objectives: The most used antipyretic and pain relief treatment is paracetamol (acetaminophen), also known as N-acetyl-para-aminophenol (APAP). However, it is considered potentially hazardous if consumed repeatedly in large doses or over prolonged periods. This investigation explores the effectiveness of hesperidin (Hesp) and [...] Read more.
Background/Objectives: The most used antipyretic and pain relief treatment is paracetamol (acetaminophen), also known as N-acetyl-para-aminophenol (APAP). However, it is considered potentially hazardous if consumed repeatedly in large doses or over prolonged periods. This investigation explores the effectiveness of hesperidin (Hesp) and Hesp loaded on layered double hydroxide nanoparticles (Hesp-NPs) in inhibiting the progression of acute hepatotoxicity in rats induced by APAP. Methods: LDH-Hesp-NPs were prepared and characterized. Male Wistar rats were orally treated with Hesp and Hesp-NPs at the same adjusted dose (100 mg/kg) every other day for six weeks. After 2 h of the first doses of Hesp and Hesp-NPs, the rats received one oral dose of APAP (750 mg/kg). Results: Administering of Hesp and Hesp-NPs to APAP-treated rats significantly reduced oxidant parameter (malondialdehyde) and serum enzymes (ALT, AST, LDH, and ALP) associated with liver function. Antioxidant markers in the liver, such as catalase and glutathione, also increased notably. Moreover, Hesp and Hesp-NPs enhanced the mRNA expression of liver UGT1A6, IL-10, and HO-1. Conversely, the mRNA expressions of liver CYP1A1, KEAP1, TGF-β, P53, and BAX decreased. These improvements in biochemical and molecular markers were corroborated by liver histopathology. Conclusions: Hesp and Hesp-NPs protect significantly against APAP-induced hepatotoxicity in male Wistar rats. Hesp-NPs treatment was more potent. The protective effects may be mediated via modulation of APAP biotransformation, oxidative stress, inflammation and apoptosis. Full article
Show Figures

Graphical abstract

13 pages, 1893 KiB  
Article
Catalytic Activity of Water-Soluble Palladium Nanoparticles with Anionic and Cationic Capping Ligands for Reduction, Oxidation, and C-C Coupling Reactions in Water
by Jan W. Farag, Ragaa Khalil, Edwin Avila and Young-Seok Shon
Nanomaterials 2025, 15(5), 405; https://doi.org/10.3390/nano15050405 - 6 Mar 2025
Viewed by 731
Abstract
The availability of water-soluble nanoparticles allows catalytic reactions to occur in highly desirable green environments. The catalytic activity and selectivity of water-soluble palladium nanoparticles capped with 6-(carboxylate)hexanethiolate (C6-PdNP) and 5-(trimethylammonio)pentanethiolate (C5-PdNP) were investigated for the reduction of 4-nitrophenol, the oxidation of α,β-conjugated aldehydes, [...] Read more.
The availability of water-soluble nanoparticles allows catalytic reactions to occur in highly desirable green environments. The catalytic activity and selectivity of water-soluble palladium nanoparticles capped with 6-(carboxylate)hexanethiolate (C6-PdNP) and 5-(trimethylammonio)pentanethiolate (C5-PdNP) were investigated for the reduction of 4-nitrophenol, the oxidation of α,β-conjugated aldehydes, and the C-C coupling of phenylboronic acid. The study showed that between the two PdNPs, C6-PdNP exhibits better catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride and the selective oxidation of conjugated aldehydes to conjugated carboxylic acids. For the latter reaction, molecular hydrogen (H2) and H2O act as oxidants for the surface palladium atoms on PdNPs and conjugated aldehyde substrates, respectively. The results indicated that the competing addition activities of Pd-H and H2O toward the π-bond of different unsaturated substrates promote either reduction or oxidation reactions under mild conditions in organic solvent-free environments. In comparison, C5-PdNP exhibited higher catalytic activity for the C-C coupling of phenylboronic acid. Gas chromatography–mass spectrometry (GC-MS) was mainly used as an analytical technique to examine the products of catalytic reactions. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

22 pages, 4072 KiB  
Article
Dinuclear Copper(II) Complexes of 2,6-Bis[(N-Methylpiperazine-1-yl)methyl]-4-Formyl Phenol Ligand: Promising Biomimetic Catalysts for Dye Residue Degradation and Drug Synthesis
by Michaela Bártová, Alan Liška, Vendula Studená, Pavel Vojtíšek, Michal Kašpar, Tomáš Mikysek, Lenka Česlová, Ivan Švancara and Milan Sýs
Int. J. Mol. Sci. 2025, 26(4), 1603; https://doi.org/10.3390/ijms26041603 - 13 Feb 2025
Viewed by 963
Abstract
In this study, three dinuclear copper(II) complexes of ligand 2,6-bis[(N-methyl-piperazine-1-yl)methyl]-4-formyl phenol (L1) and one of 2,6-bis[(N-methylpiperazine-1-yl)methyl]-4-formyl phenol dimethylacetal (L2) with copper(II) ions have been investigated as new types of biomimetic catalysts for the oxidative transformation of different aminophenols and [...] Read more.
In this study, three dinuclear copper(II) complexes of ligand 2,6-bis[(N-methyl-piperazine-1-yl)methyl]-4-formyl phenol (L1) and one of 2,6-bis[(N-methylpiperazine-1-yl)methyl]-4-formyl phenol dimethylacetal (L2) with copper(II) ions have been investigated as new types of biomimetic catalysts for the oxidative transformation of different aminophenols and phenyldiamines. All the complexes of interest were newly synthesized and further characterized by IR spectroscopy, UV-Vis and mass spectrometry, X-ray diffraction, and selected electrochemical measurements. Crystal structures of these dinuclear copper(II) complexes have revealed that the coordination-shell geometry of copper atoms is close to a tetragonal pyramid. Catecholase, phenoxazinone synthase, and horseradish peroxidase-like activities were observed in pure methanol and water–methanol mixtures in the presence of molecular oxygen. The potential applicability of the complexes under study is discussed with respect to their possibilities and limitations in the replacement of natural copper-containing oxidoreductases in the oxidative degradation of water-insoluble chlorinated aminophenols in the dye industry or in the production of phenoxazine-based drugs. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

19 pages, 5042 KiB  
Article
Reduction of 4-Nitrophenol to 4-Aminophenol by Reusable CuFe5O8-Based Catalysts Synthesized by Co-Precipitation Method
by Patompong Siri-apai, Sila Yaemphutchong, Natapol Suetrong, Arunthip Suesuwan, Nicha Choophun, Suttipong Wannapaiboon, Aphichart Rodchanarowan, Kantapat Chansaenpak, Nidcha Aroonrote, Yuranan Hanlumyuang and Worawat Wattanathana
Molecules 2025, 30(4), 777; https://doi.org/10.3390/molecules30040777 - 7 Feb 2025
Viewed by 1558
Abstract
The reduction of unfriendly 4-nitrophenol to make it unimpactful with the environment (4-aminophenol) was carried out using the metastable form of copper ferrite (CuFe5O8) synthesized by the co-precipitation of metal nitrate salts, an efficient method with inexpensive and abundant [...] Read more.
The reduction of unfriendly 4-nitrophenol to make it unimpactful with the environment (4-aminophenol) was carried out using the metastable form of copper ferrite (CuFe5O8) synthesized by the co-precipitation of metal nitrate salts, an efficient method with inexpensive and abundant starting materials. The samples were obtained by calcination at various temperatures ranging from 600 °C to 900 °C. The material characterizations, including X-ray diffraction, N2 adsorption/desorption, scanning electron microscope, X-ray absorption spectroscopy, and ultraviolet–visible spectrometry, were employed to identify the detailed structures and describe their correlations with catalytic activities. The X-ray diffraction and X-ray absorption spectroscopy analyses revealed the presence of mixed CuFe5O8 and copper oxide phases, where the formers are rich in Cu2+, Fe2+, and Fe3+ ions. The electron transfer between Cu2+, Fe2+, and Fe3+ led to the high efficiency of the catalytic reaction of the synthesized copper ferrites. Especially for the sample calcined at 600 °C, the apparent kinetic constant (k) for a reduction of 4-nitrophenol was equal to 0.25 min−1, illustrating nearly 100% conversion of 4-nitrophenol to 4-aminophenol within less than 9 min. Regarding the N2 adsorption/desorption isotherms, the samples calcined at 600 °C have the highest specific Brunauer–Emmett–Teller (BET) surface area (15.93 m2 g−1) among the others in the series, which may imply the most effective catalytic performance investigated herein. The post-catalytic X-ray diffraction investigation indicated the stability of the prepared catalysts. Furthermore, the chemical stability of the prepared catalysts was confirmed by its reusability in five consecutive cycles. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Graphical abstract

17 pages, 4675 KiB  
Article
Piezoelectric-Driven Fenton System Based on Bismuth Ferrite Nanosheets for Removal of N-Acetyl-para-aminophenol in Aqueous Environments
by Chi Zhou, Shenglong Jing, Teng Miao, Nianlai Zhou, Hang Zhang, Yi Zhang, Lin Ge, Wencheng Liu and Zixin Yang
Catalysts 2025, 15(2), 126; https://doi.org/10.3390/catal15020126 - 27 Jan 2025
Viewed by 1059
Abstract
Emerging pollutants, such as N-acetyl-para-aminophenol, pose significant challenges to environmental sustainability, and Bi2Fe2O2 (BFO) nanomaterials are an emerging class of piezoelectric materials. This study presents a novel piezoelectric-driven Fenton system based on Bi2Fe4O [...] Read more.
Emerging pollutants, such as N-acetyl-para-aminophenol, pose significant challenges to environmental sustainability, and Bi2Fe2O2 (BFO) nanomaterials are an emerging class of piezoelectric materials. This study presents a novel piezoelectric-driven Fenton system based on Bi2Fe4O9 nanosheets for the efficient degradation of organic pollutants. BFO nanosheets with varying thicknesses were synthesized, and their piezoelectric properties were confirmed through piezoresponse force microscopy and heavy metal ion reduction experiments. The piezoelectric electrons generated within the BFO nanosheets facilitate the in situ production of hydrogen peroxide, which in turn drives the Fenton-like reaction. Furthermore, the piezoelectric electrons enhance the redox cycling of iron in the Fenton process, boosting the overall catalytic efficiency. The energy band structure of BFO nanosheets is well-suited for this process, enabling efficient hydrogen peroxide generation and promoting Fe3+ reduction. The findings demonstrate that thinner BFO nanosheets exhibit superior piezoelectric activity, leading to enhanced catalytic performance. Additionally, the incorporation of gold nanodots onto BFO nanosheets further boosts their piezocatalytic efficiency, particularly in the reduction of Cr (VI). The system exhibited robust oxidative capacity, stability, and recyclability, with reactive oxygen species (ROS) verified via electron paramagnetic resonance spectroscopy. Overall, BFO nanosheets, with their optimal energy band structure, self-supplied hydrogen peroxide, and enhanced Fe3+ reduction, represent a promising, sustainable solution for advanced oxidation processes in wastewater treatment and other applications. Full article
(This article belongs to the Special Issue Sustainable Catalysis for Green Chemistry and Energy Transition)
Show Figures

Graphical abstract

21 pages, 10225 KiB  
Article
Realization of Intermolecular Interactions as a Basis for Controlling Pervaporation Properties of Membranes Made of Aromatic Polyamide-Imides
by Svetlana V. Kononova, Galina N. Gubanova, Galina K. Lebedeva, Elena V. Kruchinina, Elena N. Vlasova, Elena N. Popova, Natalya V. Zakharova, Milana E. Vylegzhanina, Elena A. Novozhilova and Ksenia V. Danilova
Membranes 2025, 15(1), 23; https://doi.org/10.3390/membranes15010023 - 13 Jan 2025
Viewed by 983
Abstract
New aromatic co-polyamide-imides (coPAIs) containing both carboxyl and hydroxyl groups in the repeating units were synthesized for the first time. Transport, thermal and morphological properties of dense nonporous membranes from PAIs obtained using the diacid chloride of 2-(4-carboxyphenyl)-1,3-dioxoisoindoline-5-carboxylic acid and diamines 5,5′-methylene-bis (2-aminophenol)) [...] Read more.
New aromatic co-polyamide-imides (coPAIs) containing both carboxyl and hydroxyl groups in the repeating units were synthesized for the first time. Transport, thermal and morphological properties of dense nonporous membranes from PAIs obtained using the diacid chloride of 2-(4-carboxyphenyl)-1,3-dioxoisoindoline-5-carboxylic acid and diamines 5,5′-methylene-bis (2-aminophenol)) and 3,5-Diaminobenzoic acid, taken in molar ratios of 7:3, 1:1, and 3:7, have been studied. High levels of membrane permeability accompanied by high selectivity for mixtures of liquids with significantly different polarities were determined by realization of intra- and intermolecular interactions in polymer, which was proved by thermal analyses and hydrodynamic characteristics of coPAIs. This effect is discussed in the context of the effectiveness of intermolecular interactions between polymer chains containing carboxyl and hydroxyl functional groups. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

Back to TopTop