Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = aminobenzimidazole

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8725 KiB  
Article
Schiff Base Compounds Derived from 5-Methyl Salicylaldehyde as Turn-On Fluorescent Probes for Al3+ Detection: Experimental and DFT Calculations
by Huan-Qing Li, Shi-Hang Yang, Yun Li, Wan-Xin Ye, Zi-Yu Liao, Jia-Qian Lu and Zhao-Yang Wang
Molecules 2025, 30(5), 1128; https://doi.org/10.3390/molecules30051128 - 28 Feb 2025
Cited by 2 | Viewed by 876
Abstract
Using 5-methyl salicylaldehyde (2) as a reactant to react with different amines, 2-aminobenzimidazole (1a), 2-aminobenzothiazole (1b), and 2-aminopyridine (1c), respectively, three types of Schiff base fluorescent probes 3a3c were designed and synthesized for [...] Read more.
Using 5-methyl salicylaldehyde (2) as a reactant to react with different amines, 2-aminobenzimidazole (1a), 2-aminobenzothiazole (1b), and 2-aminopyridine (1c), respectively, three types of Schiff base fluorescent probes 3a3c were designed and synthesized for selective detection of Al3+ in aqueous media. The structure of the compounds was acquired by 1H NMR, 13C NMR, and X-ray single-crystal diffraction. Furthermore, their photochromic and fluorescent behaviors have been investigated systematically by fluorescence spectra. Compounds 3a3c can exhibit high selectivity, sensitivity, and anti-interference properties towards Al3+ in aqueous media. Among them, the limit of detection (LOD) of probe 3b for Al3+ is 2.81 × 10−7 M. Notably, the response times of probes 3a3c for Al3+ are 90 s, 80 s, and 80 s, respectively, which are much faster than most previously reported probes. The coordination stoichiometry between compounds 3a3c and Al3+ has been verified to be 1:1 through the Job’s plot. After coordination with Al3+, the C=N isomerization of compounds 3a3c is inhibited, leading to the closure of the excited state intramolecular proton transfer (ESIPT) effect. At the same time, the fluorescence intensity is significantly increased through chelation-enhanced fluorescence mechanism (CHEF), which is confirmed by density functional theory (DFT) calculations. In addition, probes 3a3c can be potentially applied in the selective and high-precision detection of Al3+ in environmental systems. Full article
(This article belongs to the Special Issue Theoretical Study on Luminescent Properties of Organic Materials)
Show Figures

Figure 1

11 pages, 1691 KiB  
Article
Cooperation Between Rhodococcus qinshengii and Rhodococcus erythropolis for Carbendazim Degradation
by Roosivelt Solano-Rodríguez, Fortunata Santoyo-Tepole, Mario Figueroa, Voleta Larios-Serrato, Nora Ruiz-Ordaz, Abigail Pérez-Valdespino and Everardo Curiel-Quesada
Microorganisms 2025, 13(1), 40; https://doi.org/10.3390/microorganisms13010040 - 29 Dec 2024
Viewed by 1048
Abstract
Carbendazim (CBZ) is a fungicide widely used on different crops, including soybeans, cereals, cotton, tobacco, peanuts, and sugar beet. Excessive use of this xenobiotic causes environmental deterioration and affects human health. Microbial metabolism is one of the most efficient ways of carbendazim elimination. [...] Read more.
Carbendazim (CBZ) is a fungicide widely used on different crops, including soybeans, cereals, cotton, tobacco, peanuts, and sugar beet. Excessive use of this xenobiotic causes environmental deterioration and affects human health. Microbial metabolism is one of the most efficient ways of carbendazim elimination. In this work, Rhodococcus qingshengii RC1 and Rhodococcus erythropolis RC9 were isolated from a bacterial community growing in a biofilm reactor acclimated with microbiota from carbendazim-contaminated soil. Sequencing analysis of genomes of both strains revealed the presence of cbmA, the gene coding for the enzyme that hydrolyses carbendazim to produce 2-aminobenzimidazole (2-AB). The alternative gene for the first catabolic step (mheI) was detected by PCR in strain RC9 but not in RC1. Metabolomic analysis by HPLC and LC-MS showed that both strains have the ability to metabolize carbendazim. R. qingshengii RC1 converts carbendazim to 2-AB, the first degradation intermediary, while R. erythropolis RC9 metabolizes the fungicide to its mineralization, probably because R. qingshengii RC1 lacks the hdx gene coding for 2-AB hydroxylase. HRESIMS-MS/MS results indicate that R. erythropolis RC9 metabolizes carbendazim by cleavage of the benzene ring and subsequent formation of 5-formyl-2-hydroxy-4,5-dihydro-1H-imidazole-4-carboxylic acid (X2 C5H6N2O4). The presence of carbendazim metabolites in culture supernatants of strains RC9 and RC1 suggests that both strains contribute to the efficient degradation of carbendazim in nature. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Graphical abstract

15 pages, 1610 KiB  
Article
Linear and Angular Heteroannulated Pyridines Tethered 6-Hydroxy-4,7-Dimethoxybenzofuran: Synthesis and Antimicrobial Activity
by Najla A. Alshaye, Al-Shimaa Badran and Magdy A. Ibrahim
Molecules 2024, 29(18), 4496; https://doi.org/10.3390/molecules29184496 - 22 Sep 2024
Cited by 1 | Viewed by 1082
Abstract
2-Chloropyridine-3-carbonitrile derivative 1 was utilized as a key precursor to build a series of linear and angular annulated pyridines linked to a 6-hydroxy-4,7-dimethoxybenzofuran moiety. Reaction of substrate 1 with various hydrazines afforded pyrazolo[3,4-b]pyridines. Treatment of substrate 1 with 1,3-N, [...] Read more.
2-Chloropyridine-3-carbonitrile derivative 1 was utilized as a key precursor to build a series of linear and angular annulated pyridines linked to a 6-hydroxy-4,7-dimethoxybenzofuran moiety. Reaction of substrate 1 with various hydrazines afforded pyrazolo[3,4-b]pyridines. Treatment of substrate 1 with 1,3-N,N-binucleophiles including 3-amino-1,2,4-triazole, 5-amino-1H-tetrazole, 3-amino-6-methyl-1,2,4-triazin-5(4H)-one and 2-aminobenzimidazole produced the novel angular pyrido[3,2-e][1,2,4]triazolo[4,3-a]pyrimidine, pyrido[3,2-e][1,2,4]tetrazolo[1,5-a]pyrimidine, pyrido[3′,2′:5,6] pyrimido[2,1-c][1,2,4]triazine and benzo[4,5]imidazo[1,2-a]pyrido[3,2-e]pyrimidine, respectively. Reaction of substrate 1 with 1,3-C,N-binucleophiles including cyanoacetamides and 1H-benzimidazol-2-ylacetonitrile furnished 1,8-naphthyridines and benzoimidazonaphthyridine. Moreover, reacting substrate 1 with 5-aminopyrazoles gave pyrazolo[3,4-b][1,8]naphthyridines. Finally, reaction of compound 1 with 6-aminouracils as cyclic enamines yielded pyrimido[4,5-b][1,8]naphthyridines. Some of the synthesized products showed noteworthy antimicrobial efficiency against all types of microbial strains. Structures of the produced compounds were established using analytical and spectroscopic tools. Full article
(This article belongs to the Special Issue Synthetic Studies Aimed at Heterocyclic Organic Compounds)
Show Figures

Graphical abstract

16 pages, 6072 KiB  
Article
Synthesis, the Reversible Isostructural Phase Transition, and the Dielectric Properties of a Functional Material Based on an Aminobenzimidazole–Iron Thiocyanate Complex
by Yang Liu, Adila Abuduheni, Fang Yang, Hongzhi Hu and Zunqi Liu
Int. J. Mol. Sci. 2024, 25(16), 9064; https://doi.org/10.3390/ijms25169064 - 21 Aug 2024
Viewed by 1090
Abstract
By introducing disordered molecules into a crystal structure, the motion of the disordered molecules easily induces the formation of multidimensional frameworks in functional crystal materials, allowing for structural phase transitions and the realization of various dielectric properties within a certain temperature range. Here, [...] Read more.
By introducing disordered molecules into a crystal structure, the motion of the disordered molecules easily induces the formation of multidimensional frameworks in functional crystal materials, allowing for structural phase transitions and the realization of various dielectric properties within a certain temperature range. Here, we prepared a novel ionic complex [C7H8N3]3[Fe(NCS)6]·H2O (1) between 2-aminobenzimidazole and ferric isothiocyanate from ferric chloride hexahydrate, ammonium thiocyanate, and 2-aminobenzimidazole using the evaporation of the solvent method. The main components, the single-crystal structure, and the thermal and dielectric properties of the complex were characterized using infrared spectroscopy, elemental analysis, single-crystal X-ray diffraction, powder XRD, thermogravimetric analysis, differential scanning calorimetry, variable-temperature and variable-frequency dielectric constant tests, etc. The analysis results indicated that compound 1 belongs to the P21/n space group. Within the crystal structure, the [Fe(NCS)6]3− anion formed a two-dimensional hydrogen-bonded network with the organic cation through S···S interactions and hydrogen bonding. The disorder–order motion of the anions and cations within the crystal and the deformation of the crystal frameworks lead to a significant reversible isostructural phase transition and multiaxial dielectric anomalies of compound 1 at approximately 240 K. Full article
Show Figures

Figure 1

14 pages, 604 KiB  
Review
Research Progress on Benzimidazole Fungicides: A Review
by Song Bai, Miaohe Zhang, Shouying Tang, Miao Li, Rong Wu, Suran Wan, Lijun Chen, Xian Wei and Feifei Li
Molecules 2024, 29(6), 1218; https://doi.org/10.3390/molecules29061218 - 8 Mar 2024
Cited by 22 | Viewed by 5064
Abstract
Benzimidazole fungicides are a class of highly effective, low-toxicity, systemic broad-spectrum fungicides developed in the 1960s and 1970s, based on the fungicidal activity of the benzimidazole ring structure. They exhibit biological activities including anticancer, antibacterial, and antiparasitic effects. Due to their particularly outstanding [...] Read more.
Benzimidazole fungicides are a class of highly effective, low-toxicity, systemic broad-spectrum fungicides developed in the 1960s and 1970s, based on the fungicidal activity of the benzimidazole ring structure. They exhibit biological activities including anticancer, antibacterial, and antiparasitic effects. Due to their particularly outstanding antibacterial properties, they are widely used in agriculture to prevent and control various plant diseases caused by fungi. The main products of benzimidazole fungicides include benomyl, carbendazim, thiabendazole, albendazole, thiophanate, thiophanate-methyl, fuberidazole, methyl (1-{[(5-cyanopentyl)amino]carbonyl}-1H-benzimidazol-2-yl) carbamate, and carbendazim salicylate. This article mainly reviews the physicochemical properties, toxicological properties, disease control efficacy, and pesticide residue and detection technologies of the aforementioned nine benzimidazole fungicides and their main metabolite (2-aminobenzimidazole). On this basis, a brief outlook on the future research directions of benzimidazole fungicides is presented. Full article
Show Figures

Figure 1

15 pages, 4587 KiB  
Article
Self-Assembled Molecular Complexes of 1,10-Phenanthroline and 2-Aminobenzimidazoles: Synthesis, Structure Investigations, and Cytotoxic Properties
by Kameliya Anichina, Nikolay Kaloyanov, Diana Zasheva, Rusi Rusew, Rositsa Nikolova, Denitsa Yancheva, Ventsislav Bakov and Nikolai Georgiev
Molecules 2024, 29(3), 583; https://doi.org/10.3390/molecules29030583 - 24 Jan 2024
Cited by 1 | Viewed by 2216
Abstract
Three new molecular complexes (phen)3(2-amino-Bz)2(H+)(BF4)·3H2O 5, (phen)3(2-amino-5(6)-methyl-Bz)2(H+)(BF4)·H2O 6, and (phen)(1-methyl-2-amino-Bz)(H+)(BF4) 7, were prepared [...] Read more.
Three new molecular complexes (phen)3(2-amino-Bz)2(H+)(BF4)·3H2O 5, (phen)3(2-amino-5(6)-methyl-Bz)2(H+)(BF4)·H2O 6, and (phen)(1-methyl-2-amino-Bz)(H+)(BF4) 7, were prepared by self-assembly of 1,10-phenanthroline (phen) and various substituted 2-aminobenzimidazoles. Confirmation of their structures was established through spectroscopic methods and elemental analysis. The X-ray diffraction analysis revealed that the crystal structure of 7 is stabilized by the formation of hydrogen bonds and short contacts. In addition, the molecular geometry and electron structure of molecules 5 and 6 were theoretically evaluated using density functional theory (DFT) methods. According to the DFT B3LYP/6-311+G* calculations, the protonated benzimidazole (Bz) units act as NH hydrogen bond donors, binding two phenanthrolines and a BF4 ion. Non-protonated Bz unit form hydrogen bonds with the N-atoms of a third molecule phen. The molecular assembly is held together by π-π stacking between benzimidazole and phenanthroline rings, allowing for N-atoms to associate with water molecules. The complexes were tested in vitro for their tumor cell growth inhibitory effects on prostate (PC3), breast (MDA-MB-231 and MCF-7), and cervical (HeLa) cancer cell lines using MTT-dye reduction assay. The in vitro cytotoxicity analysis and spectrophotometric investigation in the presence of ct-DNA, showed that self-assembled molecules 57 are promising DNA-binding anticancer agents warranting further in-depth exploration. Full article
Show Figures

Figure 1

19 pages, 3395 KiB  
Article
Novel Sulfone 2-Aminobenzimidazole Derivatives and Their Coordination Compounds: Contribution of the Ethyl and Phenyl Substituents on Non-Covalent Molecular Interactions; Biological Antiproliferative Activity
by David Colorado-Solís, Rodrigo Castro-Ramírez, Francisco Sánchez-Bartéz, Isabel Gracia-Mora and Norah Barba-Behrens
Inorganics 2023, 11(10), 392; https://doi.org/10.3390/inorganics11100392 - 3 Oct 2023
Cited by 2 | Viewed by 1846
Abstract
New sulfone 2-aminobenzimidazole derivatives were designed and synthesized. Their nickel(II), copper(II), zinc(II), cadmium(II) and mercury(II) compounds were obtained and fully characterized by spectroscopic and analytical techniques. Single crystal X-ray structural analysis was performed in order to study the relevant intra and inter non-covalent [...] Read more.
New sulfone 2-aminobenzimidazole derivatives were designed and synthesized. Their nickel(II), copper(II), zinc(II), cadmium(II) and mercury(II) compounds were obtained and fully characterized by spectroscopic and analytical techniques. Single crystal X-ray structural analysis was performed in order to study the relevant intra and inter non-covalent interactions, mainly H···π, lone pair···π, and π···π, highlighting the difference between the terminal ethyl and phenyl groups in such interactions. Dimeric and trimeric supramolecular syntons were found for some of these compounds. Additionally, their antiproliferative activity was investigated, finding that the copper(II) compounds with the sulfone phenyl derivative were the most active. Full article
Show Figures

Graphical abstract

13 pages, 2990 KiB  
Article
Schiff Base Derivatives in Zinc(II) and Cadmium(II) Complexation with the closo-Dodecaborate Anion
by Svetlana E. Nikiforova, Nadezhda A. Khan, Alexey S. Kubasov, Yurii V. Koshchienko, Anatolii S. Burlov, Lyudmila N. Divaeva, Lyudmila V. Goeva, Varvara V. Avdeeva, Elena A. Malinina and Nikolay T. Kuznetsov
Crystals 2023, 13(10), 1449; https://doi.org/10.3390/cryst13101449 - 29 Sep 2023
Cited by 2 | Viewed by 1193
Abstract
A series of Schiff base derivatives, namely N-(4-methoxyphenyl)-1-(1-methylbenzimidazol-2-yl)methanimine (L1), 4-methoxy-N-[(1-methylbenzimidazol-2-yl)methyl]aniline (L2), and 2-[(E)-(1-propylbenzimidazol-2-yl)iminomethyl]phenol (L3), were synthesized. These compounds feature different linker groups, including –CH=N–, –CH2–NH–, and –N=CH–, respectively. During the [...] Read more.
A series of Schiff base derivatives, namely N-(4-methoxyphenyl)-1-(1-methylbenzimidazol-2-yl)methanimine (L1), 4-methoxy-N-[(1-methylbenzimidazol-2-yl)methyl]aniline (L2), and 2-[(E)-(1-propylbenzimidazol-2-yl)iminomethyl]phenol (L3), were synthesized. These compounds feature different linker groups, including –CH=N–, –CH2–NH–, and –N=CH–, respectively. During the process of zinc(II) and cadmium(II) complexation in the presence of the closo-dodecaborate [B12H12]2– anion, it was observed that ligand L3 underwent degradation. Consequently, two compounds were isolated, [Zn(Bz-NH2)2(CH3COO)2] and (HBz-NH2)2[B12H12]∙2CH3CN, both containing 1-propyl-2-aminobenzimidazole (Bz-NH2), which is a degraded fragment of the ligand. Several new zinc(II) and cadmium(II) coordination compounds were synthesized and characterized using various physicochemical analysis methods, including elemental analysis, IR, and UV spectroscopy. Additionally, X-ray diffraction and Hirshfeld surface analysis were performed for compounds [Cd(L2)2(CH3CN)(H2O)][B12H12], [Zn(Bz-NH2)2(CH3COO)2], and (HBz-NH2)2[B12H12]∙2CH3CN, as well as for ligand L2. Full article
Show Figures

Figure 1

14 pages, 4974 KiB  
Article
Synthesis and Characterization of Novel Triphenylamine—Containing Electrochromic Polyimides with Benzimidazole Substituents
by Kuangguo Yan, Haiquan Chen, Chenjie Zhu, Zhao Ke, Dongwu Li, Mengxia Wang, Fengna Dai and Youhai Yu
Molecules 2023, 28(5), 2029; https://doi.org/10.3390/molecules28052029 - 21 Feb 2023
Cited by 5 | Viewed by 2531
Abstract
Two novel electrochromic aromatic polyimides (named as TPA-BIA-PI and TPA-BIB-PI, respectively) with pendent benzimidazole group were synthesized from 1,2-Diphenyl-N,N′-di-4-aminophenyl-5-amino-benzimidazole and 4-Amino-4′-aminophenyl-4″-1-phenyl-benzimidazolyl-phenyl-aniline with 4,4′-(hexafluoroisopropane) phthalic anhydride (6FDA) via two-step polymerization process, respectively. Then, polyimide films were prepared on ITO-conductive glass by electrostatic spraying, and [...] Read more.
Two novel electrochromic aromatic polyimides (named as TPA-BIA-PI and TPA-BIB-PI, respectively) with pendent benzimidazole group were synthesized from 1,2-Diphenyl-N,N′-di-4-aminophenyl-5-amino-benzimidazole and 4-Amino-4′-aminophenyl-4″-1-phenyl-benzimidazolyl-phenyl-aniline with 4,4′-(hexafluoroisopropane) phthalic anhydride (6FDA) via two-step polymerization process, respectively. Then, polyimide films were prepared on ITO-conductive glass by electrostatic spraying, and their electrochromic properties were studied. The results showed that due to the π-π* transitions, the maximum UV–Vis absorption bands of TPA-BIA-PI and TPA-BIB-PI films were located at about 314 nm and 346 nm, respectively. A pair of reversible redox peaks of TPA-BIA-PI and TPA-BIB-PI films that were associated with noticeable color changed from original yellow to dark blue and green were observed in the cyclic voltammetry (CV) test. With increasing voltage, new absorption peaks of TPA-BIA-PI and TPA-BIB-PI films emerged at 755 nm and 762 nm, respectively. The switching/bleaching times of TPA-BIA-PI and TPA-BIB-PI films were 13 s/16 s and 13.9 s/9.5 s, respectively, showing that these polyimides can be used as novel electrochromic materials. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

14 pages, 2066 KiB  
Article
Synthesis and Antimicrobial Activity Evaluation of Homodrimane Sesquiterpenoids with a Benzimidazole Unit
by Lidia Lungu, Svetlana Blaja, Caleria Cucicova, Alexandru Ciocarlan, Alic Barba, Veaceslav Kulcițki, Sergiu Shova, Nicoleta Vornicu, Elisabeta-Irina Geana, Ionel I. Mangalagiu and Aculina Aricu
Molecules 2023, 28(3), 933; https://doi.org/10.3390/molecules28030933 - 17 Jan 2023
Cited by 8 | Viewed by 1931
Abstract
Herein we report a feasible study concerning the synthesis and the in vitro antimicrobial activity of some new homodrimane sesquiterpenoids with a benzimidazole unit. Based on some homodrimane carboxylic acids, on their acyl chlorides and intermediate monoamides, a series of seven N-homodrimenoyl-2-amino-1,3-benzimidazoles [...] Read more.
Herein we report a feasible study concerning the synthesis and the in vitro antimicrobial activity of some new homodrimane sesquiterpenoids with a benzimidazole unit. Based on some homodrimane carboxylic acids, on their acyl chlorides and intermediate monoamides, a series of seven N-homodrimenoyl-2-amino-1,3-benzimidazoles and 2-homodrimenyl-1,3-benzimidazoles was synthesized. The syntheses involved the decarboxylative cyclization and condensation of the said acids or acyl chlorides with o-phenylendiamine and 2-aminobenzimidazole, as well as the p-TsOH-mediated cyclodehydration of the said monoacylamides. The structures of the synthesized compounds have been fully confirmed, including by the X-ray diffraction. Their biological activities were evaluated on five species of fungi (Aspergillus niger, Fusarium solani, Penicillium chrysogenum, P. frequentans, and Alternaria alternata) and two strains of bacteria (Bacillus sp. and Pseudomonas aeruginosa). Compounds 7 and 20 showed higher antifungal (MIC = 0.064 and 0.05 μg/mL) and antibacterial (MIC = 0.05 and 0.032 μg/mL) activities compared to those of the standards: caspofungin (MIC = 0.32 μg/mL) and kanamycin (MIC = 2.0 μg/mL), and compounds 4, 10, 14, and 19 had moderate activities. Full article
(This article belongs to the Special Issue Research Progress and Applications of Natural Products)
Show Figures

Figure 1

13 pages, 2511 KiB  
Article
A Simple Method for Preparation of Highly Conductive Nitrogen/Phosphorus-Doped Carbon Nanofiber Films
by Tongzhou Chen, Yongbo Chi, Xingyao Liu, Xiwen Xia, Yousi Chen, Jian Xu and Yujie Song
Materials 2022, 15(17), 5955; https://doi.org/10.3390/ma15175955 - 29 Aug 2022
Cited by 3 | Viewed by 2195
Abstract
Heteroatom-doped conductive carbon nanomaterials are promising for energy and catalysis applications, but there are few reports on increasing their heteroatom doping content and conductivity simultaneously. In this manuscript, we use 2-(4-aminophenyl)-5-aminobenzimidazole as the diamine monomer to prepare polyamic acid with asymmetric structural units [...] Read more.
Heteroatom-doped conductive carbon nanomaterials are promising for energy and catalysis applications, but there are few reports on increasing their heteroatom doping content and conductivity simultaneously. In this manuscript, we use 2-(4-aminophenyl)-5-aminobenzimidazole as the diamine monomer to prepare polyamic acid with asymmetric structural units doped with phosphoric acid (PA) and polyacrylonitrile (PAN) as innovative composite precursors, which are then electrospun into nanofiber films. After stabilization and carbonization, the electrospun fibers are converted into N/P co-doped electrospun carbon nanofiber films (ECNFs) with high heteroatom content, including 4.33% N and 0.98% P. The morphology, structure, and conductivity of ECNFs were systematically characterized. The ECNFs doped with 15 wt.% PA exhibited conductivity that was 47.3% higher than that of the ECNFs undoped with PA, but the BET surface area decreased by 23%. The doped PA in the precursor nanofibers participated in the cyclization of PAN during thermal stabilization, as indicated by infrared spectroscopy and thermogravimetric analysis results. X-ray diffraction and Raman results indicate that a moderate amount of PA doping facilitated the formation of ordered graphitic crystallite structures during carbonization and improved the conductivity of ECNFs. Full article
(This article belongs to the Special Issue Advances in High-Performance Polymers and Composites)
Show Figures

Graphical abstract

15 pages, 4896 KiB  
Article
Closed-Cell Rigid Polyimide Foams for High-Temperature Applications: The Effect of Structure on Combined Properties
by Yawei Shi, Aijun Hu, Zhiyuan Wang, Kedi Li and Shiyong Yang
Polymers 2021, 13(24), 4434; https://doi.org/10.3390/polym13244434 - 17 Dec 2021
Cited by 26 | Viewed by 5166
Abstract
Closed-cell rigid polyimide foams with excellent thermal stability and combined properties were prepared by thermal foaming of a reactive end-capped polyimide precursor powder in a closed mold. The precursor powder was obtained by thermal treatment of a polyester-amine salt (PEAS) solution derived from [...] Read more.
Closed-cell rigid polyimide foams with excellent thermal stability and combined properties were prepared by thermal foaming of a reactive end-capped polyimide precursor powder in a closed mold. The precursor powder was obtained by thermal treatment of a polyester-amine salt (PEAS) solution derived from the reaction of the diethyl ester of 2,3,3′,4′-biphenyl tetracarboxylic dianhydride (α-BPDE) with an aromatic diamine mixture of p-phenylenediamine (PDA) and 2-(4-aminophenyl)-5-aminobenzimidazole (BIA) in the presence of an end-capping agent (mono-ethyl ester of nadic acid anhydride, NE) in an aliphatic alcohol. The effect of polymer mainchain structures on the foaming processability and combined properties of the closed-cell rigid polyimide foams were systematically investigated. The polyimide foams (100–300 kg/m3) with closed-cell rates of 91–95% show an outstanding thermal stability with an initial thermal decomposition temperature of ≥490 °C and a glass transition temperature of 395 °C. Polyimide foams with density of 250 kg/m3 exhibited compression creep deformation as low as 1.6% after thermal aging at 320 °C/0.4 MPa for 2 h. Full article
(This article belongs to the Special Issue Advanced Thermoplastic Polymers and Composites)
Show Figures

Figure 1

17 pages, 3371 KiB  
Article
N-Arylation of Protected and Unprotected 5-Bromo-2-aminobenzimidazole as Organic Material: Non-Linear Optical (NLO) Properties and Structural Feature Determination through Computational Approach
by Mubeen Mumtaz, Nasir Rasool, Gulraiz Ahmad, Naveen Kosar and Umer Rashid
Molecules 2021, 26(22), 6920; https://doi.org/10.3390/molecules26226920 - 17 Nov 2021
Cited by 9 | Viewed by 3284
Abstract
The interest in the NLO response of organic compounds is growing rapidly, due to the ease of synthesis, availability, and low loss. Here, in this study, Cu(II)-catalyzed selective N-arylation of 2-aminobenzimidazoles derivatives were achieved in the presence of different bases Et3N/TMEDA, [...] Read more.
The interest in the NLO response of organic compounds is growing rapidly, due to the ease of synthesis, availability, and low loss. Here, in this study, Cu(II)-catalyzed selective N-arylation of 2-aminobenzimidazoles derivatives were achieved in the presence of different bases Et3N/TMEDA, solvents DCM/MeOH/H2O, and various aryl boronic acids under open atmospheric conditions. Two different copper-catalyzed pathways were selected for N-arylation in the presence of active nucleophilic sites, providing a unique tool for the preparation of NLO materials, C-NH (aryl) derivatives of 2-aminobenzimidazoles with protection and without protection of NH2 group. In addition to NMR analysis, all synthesized derivatives (1a1f and 2a2f) of 5-bromo-2-aminobenzimidazole (1) were computed for their non-linear optical (NLO) properties and reactivity descriptor parameters. Frontier molecular orbital (FMO) analysis was performed to get information about the electronic properties and reactivity of synthesized compounds. Full article
(This article belongs to the Special Issue The Chemistry of Nitrocompounds)
Show Figures

Figure 1

28 pages, 11978 KiB  
Article
Reactional Processes on Osmium–Polymeric Membranes for 5–Nitrobenzimidazole Reduction
by Aurelia Cristina Nechifor, Alexandru Goran, Vlad-Alexandru Grosu, Andreia Pîrțac, Paul Constantin Albu, Ovidiu Oprea, Alexandra Raluca Grosu, Dumitru Pașcu, Florentina Mihaela Păncescu, Gheorghe Nechifor, Szidonia-Katalin Tanczos and Simona Gabriela Bungău
Membranes 2021, 11(8), 633; https://doi.org/10.3390/membranes11080633 - 17 Aug 2021
Cited by 8 | Viewed by 3682
Abstract
Membranes are associated with the efficient processes of separation, concentration and purification, but a very important aspect of them is the realization of a reaction process simultaneously with the separation process. From a practical point of view, chemical reactions have been introduced in [...] Read more.
Membranes are associated with the efficient processes of separation, concentration and purification, but a very important aspect of them is the realization of a reaction process simultaneously with the separation process. From a practical point of view, chemical reactions have been introduced in most membrane systems: with on-liquid membranes, with inorganic membranes or with polymeric and/or composite membranes. This paper presents the obtaining of polymeric membranes containing metallic osmium obtained in situ. Cellulose acetate (CA), polysulfone (PSf) and polypropylene hollow fiber membranes (PPM) were used as support polymer membranes. The metallic osmium is obtained directly onto the considered membranes using a solution of osmium tetroxide (OsO4), dissolved in tert–butyl alcohol (t–Bu–OH) by reduction with molecular hydrogen. The composite osmium–polymer (Os–P)-obtained membranes were characterized in terms of the morphological and structural points of view: scanning electron microscopy (SEM), high-resolution SEM (HR–SEM), energy-dispersive spectroscopy analysis (EDAX), Fourier Transform Infra-Red (FTIR) spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The process performance was tested for reduction of 5–nitrobenzimidazole to 5–aminobenzimidazole with molecular hydrogen. The paper presents the main aspects of the possible mechanism of transformation of 5–nitrobenzimidazole to 5–aminobenzimidazole with hydrogen gas in the reaction system with osmium–polymer membrane (Os–P). Full article
(This article belongs to the Collection Polymeric Membranes: Science, Materials and Applications)
Show Figures

Figure 1

5 pages, 689 KiB  
Short Note
1-Tosyl-6-vinyl-4,5,6,7-tetrahydro-1H-benzo [d] imidazole-2-amine
by Fiach B. Meany, Sarah O’Rourke and Paul V. Murphy
Molbank 2021, 2021(3), M1262; https://doi.org/10.3390/M1262 - 31 Jul 2021
Viewed by 2849
Abstract
The alkene functionalised 2-aminobenzimidazole ring found in terrazoanthine natural products was synthesized in 3 steps from 1,2-epoxy-4-vinylcyclohexane via epoxide ring opening with toluenesulphonamide yielding 2 regioisomeric, separable amino alcohols. One isomer was oxidized to the corresponding ketone and subsequently condensed with cyanamide to [...] Read more.
The alkene functionalised 2-aminobenzimidazole ring found in terrazoanthine natural products was synthesized in 3 steps from 1,2-epoxy-4-vinylcyclohexane via epoxide ring opening with toluenesulphonamide yielding 2 regioisomeric, separable amino alcohols. One isomer was oxidized to the corresponding ketone and subsequently condensed with cyanamide to furnish the title compound, which was characterized by 1H-NMR and 13C-NMR spectroscopy. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

Back to TopTop