Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = alumina-based Ni

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
671 KiB  
Proceeding Paper
The Role of Industrial Catalysts in Accelerating the Renewable Energy Transition
by Partha Protim Borthakur and Barbie Borthakur
Chem. Proc. 2025, 17(1), 6; https://doi.org/10.3390/chemproc2025017006 - 4 Aug 2025
Abstract
Industrial catalysts are accelerating the global transition toward renewable energy, serving as enablers for innovative technologies that enhance efficiency, lower costs, and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production, biofuel generation, and biomass conversion, highlighting [...] Read more.
Industrial catalysts are accelerating the global transition toward renewable energy, serving as enablers for innovative technologies that enhance efficiency, lower costs, and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production, biofuel generation, and biomass conversion, highlighting their transformative impact on renewable energy systems. Precious-metal-based electrocatalysts such as ruthenium (Ru), iridium (Ir), and platinum (Pt) demonstrate high efficiency but face challenges due to their cost and stability. Alternatives like nickel-cobalt oxide (NiCo2O4) and Ti3C2 MXene materials show promise in addressing these limitations, enabling cost-effective and scalable hydrogen production. Additionally, nickel-based catalysts supported on alumina optimize SMR, reducing coke formation and improving efficiency. In biofuel production, heterogeneous catalysts play a crucial role in converting biomass into valuable fuels. Co-based bimetallic catalysts enhance hydrodeoxygenation (HDO) processes, improving the yield of biofuels like dimethylfuran (DMF) and γ-valerolactone (GVL). Innovative materials such as biochar, red mud, and metal–organic frameworks (MOFs) facilitate sustainable waste-to-fuel conversion and biodiesel production, offering environmental and economic benefits. Power-to-X technologies, which convert renewable electricity into chemical energy carriers like hydrogen and synthetic fuels, rely on advanced catalysts to improve reaction rates, selectivity, and energy efficiency. Innovations in non-precious metal catalysts, nanostructured materials, and defect-engineered catalysts provide solutions for sustainable energy systems. These advancements promise to enhance efficiency, reduce environmental footprints, and ensure the viability of renewable energy technologies. Full article
Show Figures

Figure 1

17 pages, 4077 KiB  
Article
The Impact of Sm Promoter on the Catalytic Performance of Ni/Al2O3-SiO2 in Methane Partial Oxidation for Enhanced H2 Production
by Salwa B. Alreshaidan, Rasha S. A. Alanazi, Omalsad H. Odhah, Ahmed A. Ibrahim, Fekri Abdulraqeb Ahmed Ali, Naif Alarifi, Khaled M. Banabdwin, Sivalingam Ramesh and Ahmed S. Al-Fatesh
Catalysts 2025, 15(8), 721; https://doi.org/10.3390/catal15080721 (registering DOI) - 29 Jul 2025
Viewed by 319
Abstract
This study investigates the effects of samarium (Sm) promotion on the catalytic activity of 5 weight percent Ni catalysts for partial oxidation of methane (POM)-based hydrogen production supported on a Si-Al mixed oxide (10SiO2+90Al2O3) system. Several 5% [...] Read more.
This study investigates the effects of samarium (Sm) promotion on the catalytic activity of 5 weight percent Ni catalysts for partial oxidation of methane (POM)-based hydrogen production supported on a Si-Al mixed oxide (10SiO2+90Al2O3) system. Several 5% Ni-based catalysts supported on silica–alumina was used to test the POM at 600 °C. Sm additions ranged from 0 to 2 wt.%. Impregnation was used to create these catalysts, which were then calcined at 500 °C and examined using BET, H2-TPR, XRD, FTIR, TEM, Raman spectroscopy, and TGA methods. Methane conversion (57.85%) and hydrogen yield (56.89%) were greatly increased with an ideal Sm loading of 1 wt.%, indicating increased catalytic activity and stability. According to catalytic tests, 1 wt.% Sm produced high CH4 conversion and H2 production, as well as enhanced stability and resistance to carbon deposition. Nitrogen physisorption demonstrated a progressive decrease in pore volume and surface area with the addition of Sm, while maintaining mesoporosity. At moderate Sm loadings, H2-TPR and XRD analyses showed changes in crystallinity and increased NiO reducibility. Sm incorporation into the support and its impact on the ordering of carbon species were indicated by FTIR and Raman spectra. The optimal conditions to maximize H2 yield were successfully identified through optimization of the best catalyst, and there was good agreement between the theoretical predictions (87.563%) and actual results (88.39%). This displays how successfully the optimization approach achieves the intended outcome. Overall, this study demonstrates that the performance and durability of Ni-based catalysts for generating syngas through POM are greatly enhanced by the addition of a moderate amount of Sm, particularly 1 wt.%. Full article
(This article belongs to the Section Industrial Catalysis)
Show Figures

Figure 1

15 pages, 15318 KiB  
Article
Breaking the Hardness-Wear Trade-Off: Quantitative Correlation in Nano-Al2O3-Reinforced Al10Cr17Fe20NiV4 High-Entropy Alloys
by Cong Feng, Huan Wang and Yaping Wang
Nanomaterials 2025, 15(10), 775; https://doi.org/10.3390/nano15100775 - 21 May 2025
Viewed by 408
Abstract
Multi-principal element alloys (MPEAs) exhibit distinct characteristics compared to conventional single-principal element-based metallic materials, primarily due to their unique design, resulting in intricate microstructural features. Currently, a comprehensive understanding of the fabrication processes, compositional design, and microstructural influence on the tribological and corrosion [...] Read more.
Multi-principal element alloys (MPEAs) exhibit distinct characteristics compared to conventional single-principal element-based metallic materials, primarily due to their unique design, resulting in intricate microstructural features. Currently, a comprehensive understanding of the fabrication processes, compositional design, and microstructural influence on the tribological and corrosion behavior of multi-component alloys remains limited. While the hardness of MPEAs generally correlates positively with wear resistance, with higher hardness typically associated with improved wear resistance and reduced wear rates, quantitative relationships between these properties are not well established. In this study, the Al10Cr17Fe20NiV4 alloy was selected as a model system. A homogeneous Al10Cr17Fe20NiV4 alloy was successfully synthesized via mechanical alloying followed by spark plasma sintering (SPS). To further investigate the correlation between hardness and wear rate, varying concentrations of alumina nanoparticles were incorporated into the alloy matrix as a reinforcing phase. The results revealed that the Al10Cr17Fe20NiV4 alloy exhibited a single-phase face-centered cubic (FCC) structure, which was maintained with the addition of alumina nanoparticles. The hardness of the Al10Cr17Fe20NiV4 alloy without nano-alumina was 727 HV, with a corresponding wear rate of 2.9 × 10−4 mm3·N−1·m−1. The incorporation of nano-alumina increased the hardness to 823 HV, and significantly reduced the wear rate to 1.6 × 10−4 mm3·N−1·m−1, representing a 45% reduction. The Al2O3 nanoparticles effectively mitigated alloy wear through crack passivation and matrix strengthening; however, excessive addition reversed this effect due to the agglomeration-induced brittleness and thermal mismatch. The quantitative relationship between hardness (HV) and wear rate (W) was determined as W = 2348 e(−0.006HV). Such carefully bounded empirical relationships, as demonstrated in studies of cold-formed materials and dental enamel, remain valuable tools in applied research when accompanied by explicit scope limitations. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

27 pages, 7012 KiB  
Article
Molten Salt Electrolyte for Na-ZnCl2 All-Liquid Battery for Grid Storage
by Wenjin Ding, Ralf Hoffmann, Akshata Barge, Ole S. Kjos, Norbert Weber, Tom Weier and Thomas Bauer
Batteries 2025, 11(5), 177; https://doi.org/10.3390/batteries11050177 - 1 May 2025
Viewed by 713
Abstract
Zeolite Battery Research Africa (ZEBRA) batteries (Na-NiCl2 solid electrolyte batteries, SEBs) have commercial applications in energy storage due to their low costs and recyclability, long lifetime, and high safety. In commercial ZEBRA batteries, Ni electrode and beta’’-alumina solid electrolyte (BASE) have a [...] Read more.
Zeolite Battery Research Africa (ZEBRA) batteries (Na-NiCl2 solid electrolyte batteries, SEBs) have commercial applications in energy storage due to their low costs and recyclability, long lifetime, and high safety. In commercial ZEBRA batteries, Ni electrode and beta’’-alumina solid electrolyte (BASE) have a more than 70% share of the overall cell material costs. Na-ZnCl2 all-liquid batteries (ALBs), which replace Ni with abundant and low-cost Zn and BASE electrolyte with molten salt electrolyte, could reduce costs and provide a longer lifetime and higher safety, making their application in grid storage promising. However, compared to SEBs, ALBs are in an early development stage, particularly for their molten salt electrolytes, which have a significant effect on the battery performance. Physical and chemical properties of the salt electrolyte like melting temperatures and solubilities of electrode materials (i.e., Na and Zn metal) are vital for the molten salt electrolyte selection and battery cell design and optimization. In this work, the binary and ternary phase diagrams of salt mixtures containing NaCl, CaCl2, BaCl2, SrCl2, and KCl, obtained via FactSage simulation and DSC measurements, as well as the solubilities of electrode materials (Na and Zn metals), are presented and used for the selection of the molten salt electrolyte. Moreover, various criteria, considered for the selection of the molten salt electrolyte, include high electromotive force (EMF) for suitable electrochemical properties, low melting temperature for large charge/discharge range, low solubilities of electrode materials for low self-discharge, low material costs, and high material abundance for easy scale-up. Based on these criteria, the NaCl-CaCl2-BaCl2 and NaCl-SrCl2-KCl salt mixtures are selected as the two most promising ALB molten salt electrolytes and suggested to be tested in the ALB demonstrators currently under development. Full article
(This article belongs to the Special Issue Electrode Materials and Electrolyte for Rechargeable Batteries)
Show Figures

Graphical abstract

23 pages, 8410 KiB  
Article
Experimental Investigation and Optimization of the Electrodeposition Parameters of Ni-Al2O3 Composite Coating Using the Taguchi Method
by Ilias Reddah, Laala Ghelani, Sofiane Touati, Farid Lekmine, Pavol Hvizdoš, Susana Devesa and Haithem Boumediri
Coatings 2025, 15(4), 482; https://doi.org/10.3390/coatings15040482 - 18 Apr 2025
Cited by 1 | Viewed by 741
Abstract
In this work, an experimental investigation is conducted with the aim of optimizing the electrodeposition parameters for Ni-Al2O3 composite coatings using the Taguchi method. The presented research is structured into two complementary sections. The first segment investigates the characteristics of [...] Read more.
In this work, an experimental investigation is conducted with the aim of optimizing the electrodeposition parameters for Ni-Al2O3 composite coatings using the Taguchi method. The presented research is structured into two complementary sections. The first segment investigates the characteristics of Ni and Ni-Al2O3 coatings, specifically Al2O3 particle incorporation and crystallinity variations, using X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and hardness evaluation through micro-indentation testing. The second section uses statistical techniques, specifically Analysis of Variance (ANOVA) and signal-to-noise (S/N) ratio analysis, to determine which parameters have the most impact on the experimental results. ANOVA and the Response Surface Methodology (RSM) were used in a modeling technique to forecast and optimize the technical responses. Based on an L16 orthogonal design, sixteen tests were carried out to investigate the effects of several important variables, including agitation rate (200–350 rpm), deposition period (15–60 min), alumina concentration (10–25 g.L−1), and current density (2–5 A.dm−2). The conditions for optimizing microhardness (HV) and Al2O3 integration while limiting average crystallite size (ACS) were identified using the most suitable function. The obtained results reveal significant improvements in the composite coating’s properties, including a 164% increase in microhardness, a 400% rise in alumina incorporation, and a notable reduction in crystallite size, demonstrating the efficacy of the electrodeposition process and optimization strategy adopted. Full article
(This article belongs to the Special Issue Advances of Ceramic and Alloy Coatings, 2nd Edition)
Show Figures

Figure 1

18 pages, 1322 KiB  
Article
Reaction Behavior and Kinetic Model of Hydroisomerization and Hydroaromatization of Fluid Catalytic Cracking Gasoline
by Haijun Zhong, Xiwen Song, Shuai He, Xuerui Zhang, Qingxun Li, Haicheng Xiao, Xiaowei Hu, Yue Wang, Boyan Chen and Wangliang Li
Molecules 2025, 30(4), 783; https://doi.org/10.3390/molecules30040783 - 8 Feb 2025
Viewed by 855
Abstract
The hydro-upgrading reaction behavior of model compound 1-hexene and FCC middle gasoline was investigated using a fixed-bed hydrogenation microreactor with a prepared La-Ni-Zn/H-ZSM-5 catalyst. The catalyst was prepared by wetness impregnation method, using hydrothermal treated H-ZSM-5 zeolite blended with alumina as the support, [...] Read more.
The hydro-upgrading reaction behavior of model compound 1-hexene and FCC middle gasoline was investigated using a fixed-bed hydrogenation microreactor with a prepared La-Ni-Zn/H-ZSM-5 catalyst. The catalyst was prepared by wetness impregnation method, using hydrothermal treated H-ZSM-5 zeolite blended with alumina as the support, and La, Ni, Zn as the active metals. The reaction tests were carried out at 300–380 °C, 1.0 MPa, 1.5–3.0 h−1 (LSHV), and 300:1 v/v (H2/oil). Analyzing the changes in hydrocarbon components before and after hydro-upgrading elucidated the mechanistic pathways of olefin hydroisomerization and hydroaromatization. Based on these findings, a seven-lump kinetic model was established for the FCC middle gasoline hydro-upgrading process. Given the diversity and complexity of reaction products, they were grouped into seven lumps: normal paraffins, isoparaffins, linear olefins, branched olefins, cycloolefins, naphthenes, and aromatics. Kinetic parameters were estimated using the Levenberg–Marquardt algorithm and validated against experimental data. The results showed that the conversion of naphthenes to aromatics exhibited the highest activation energy and pre-exponential factor, resulting in the largest reaction rate increase within the 320–380 °C range. The model accurately predicted the product yields of FCC gasoline hydro-upgrading, with a relative error of less than 5%. These findings provide valuable guidance for the optimization, design, and operation of FCC gasoline hydro-upgrading units, as well as for catalyst development, with the aim of improving process efficiency and fuel quality. Full article
Show Figures

Figure 1

29 pages, 11136 KiB  
Article
Oxidative Steam Reforming of Methanol over Cu-Based Catalysts
by Matteo Tommasi, Davide Ceriotti, Alice Gramegna, Simge Naz Degerli, Gianguido Ramis and Ilenia Rossetti
Catalysts 2024, 14(11), 759; https://doi.org/10.3390/catal14110759 - 28 Oct 2024
Cited by 3 | Viewed by 1656
Abstract
Several Cu and Ni-based catalysts were synthetized over Ce-based supports, either pure or mixed with different amounts of alumina (1:2 and 1:3 mol/mol). Different metal loadings (10–40 wt%) and preparation methods (wet impregnation, co-precipitation, and flame-spray pyrolysis—FSP) were compared for the oxidative steam [...] Read more.
Several Cu and Ni-based catalysts were synthetized over Ce-based supports, either pure or mixed with different amounts of alumina (1:2 and 1:3 mol/mol). Different metal loadings (10–40 wt%) and preparation methods (wet impregnation, co-precipitation, and flame-spray pyrolysis—FSP) were compared for the oxidative steam reforming of methanol. Characterization of the catalysts has been performed, e.g., through XRD, BET, XPS, TPR, SEM, and EDX analyses. All the catalysts have been tested in a bench-scale continuous setup. The hydrogen yield and methanol conversion obtained have been correlated with the operating conditions, metal content, crystallinity of the catalyst particles, total surface area, and with the interaction of the metal with the support. A Cu loading of 20% wt/wt was optimal, while the presence of alumina was not beneficial, decreasing catalyst activity at low temperatures compared with catalysts supported on pure CeO2. Ni-based catalysts were a possible alternative, but the activity towards the methanation reaction at relatively high temperatures decreased inevitably the hydrogen yield. Durability and deactivation tests showed that the best-performing catalyst, 20% wt. Cu/CeO2 prepared through coprecipitation was stable for a long period of time. Full methanol conversion was achieved at 280 °C, and the highest yield of H2 was ca. 80% at 340 °C, higher than the literature data. Full article
(This article belongs to the Section Catalytic Reaction Engineering)
Show Figures

Graphical abstract

12 pages, 1975 KiB  
Article
Hydroprocessing of Gasoline on Modified Alumina Catalysts
by Balga Tuktin, Galymzhan Saidilda, Saule Nurzhanova and Yerdos Ongarbayev
Catalysts 2024, 14(7), 404; https://doi.org/10.3390/catal14070404 - 26 Jun 2024
Cited by 2 | Viewed by 1675
Abstract
The hydroprocessing of gasoline on modified alumina catalysts makes it possible to obtain high-octane products. The implementation and development of the process have largely become possible due to the development of modified alumina catalysts that do not contain noble metals and exhibit special [...] Read more.
The hydroprocessing of gasoline on modified alumina catalysts makes it possible to obtain high-octane products. The implementation and development of the process have largely become possible due to the development of modified alumina catalysts that do not contain noble metals and exhibit special catalytic properties. This article discusses topical issues of petrochemistry, namely the creation of catalysts with improved characteristics for the production of high-octane gasoline with low sulfur content. New catalytic systems based on alumina and other carriers modified with transition metals, lanthanum and phosphorus were synthesized. By physico-chemical methods of analysis TPD of ammonia, TEM and XRD, we studied the acid–base and structural characteristics of the developed catalysts. The activity of the developed catalysts in the studied process of hydrotreating gasoline fractions depends on the structure and condition of the active centers. The process of hydrotreating straight-run gasoline in the presence of synthesized catalysts was carried out on a laboratory flow unit. It was shown that, during the hydrotreating of straight-run gasoline on the NiO-MoO3-La-P-HZSM-HY-Al2O3 catalyst, the octane number in the final product increased to 88.6, and the sulfur content decreased from 0.0088 to 0.001%. It was found that the minimum sulfur content in the gasoline hydrotreating product of 0.0005% was achieved on the catalyst CoO-WO3-La-P-HZSM-HY-Al2O3, which is significantly lower than for other studied catalytic systems. The obtained results of the sulfur content in the hydrotreating products fully comply with the Euro-5 standard. Thus, the efficiency of hydrotreating the gasoline fractions studied in this work was mainly determined by the nature of the carriers and modifiers used for the synthesis of catalysts and the technological parameters of the process. The synthesized catalysts showed high activity and selectivity, resulting in high-octane gasoline with a low sulfur content that meets international quality standards. Full article
(This article belongs to the Special Issue Catalysis for Bitumen/Heavy Oil Upgrading and Petroleum Refining)
Show Figures

Figure 1

27 pages, 19798 KiB  
Article
Discrimination of Fe-Ni-Laterites from Bauxites Using a Novel Support Vector Machines-Based Methodology on Sentinel-2 Data
by Alexandra Anifadi, Olga Sykioti, Konstantinos Koutroumbas, Emmanuel Vassilakis, Charalampos Vasilatos and Emil Georgiou
Remote Sens. 2024, 16(13), 2295; https://doi.org/10.3390/rs16132295 - 23 Jun 2024
Cited by 1 | Viewed by 3057
Abstract
Currently, the global shift towards green energy is at the forefront of efforts introducing a new era, thus rendering exploration for critical raw materials essential. To this purpose, the utilization of advanced machine learning methods in remote sensing has emerged as a rapid [...] Read more.
Currently, the global shift towards green energy is at the forefront of efforts introducing a new era, thus rendering exploration for critical raw materials essential. To this purpose, the utilization of advanced machine learning methods in remote sensing has emerged as a rapid and cost-effective approach. This study proposes a new methodology, utilizing Sentinel-2 satellite data, to distinguish ferronickel (Fe-Ni-) laterite from bauxite across pre-mining, mining, and post-mining occurrences worldwide. Both ores contain mineral raw materials such as nickel, iron, cobalt, and alumina and their discrimination is generally macroscopically challenging, especially when their locations are often in geographical proximity. The proposed method is based on Support Vector Machines (SVM) classification using spectral signatures of known Fe-Ni-laterite and bauxite-bearing pixels in Greece, Cuba, and Jamaica. The highest classification accuracies are obtained by combining b12 with b6 or b7 spectral bands. Comparisons with specific ore mineralogies show that b6 and b7 are strongly linked to the ferric phase, while b12 is mainly associated with the argillic mineralogies, the latter probably being the key discriminating factor between the two ores. From laboratory chemical analyses, we also establish that b12 and b6 or b7 are strongly associated with Al2O3 and Fe2O3 content correspondingly. The proposed method is accurate, it has reduced prospection costs, and it can facilitate the initial screening of broad areas by automatically characterizing whether an ore is bauxite or Fe-Ni-laterite. This underscores the methodology’s significance in ore differentiation and exploration within the context of green energy endeavors. Full article
(This article belongs to the Special Issue New Trends on Remote Sensing Applications to Mineral Deposits-II)
Show Figures

Figure 1

19 pages, 7032 KiB  
Article
Synergistic Effect of Co and Ni Co-Existence on Catalytic Decomposition of Ammonia to Hydrogen—Effect of Catalytic Support and Mg-Al Oxide Matrix
by Andrzej Kowalczyk, Małgorzata Rutkowska, Sylwia Gnyla, Michał Pacia and Lucjan Chmielarz
ChemEngineering 2024, 8(3), 55; https://doi.org/10.3390/chemengineering8030055 - 24 May 2024
Cited by 3 | Viewed by 2626
Abstract
Hydrotalcite-derived mixed metal oxides containing Co and Ni and containing these metals supported on MgO and Al2O3 were prepared and tested as catalysts for the decomposition of ammonia to hydrogen and nitrogen. The obtained samples were characterised in terms of [...] Read more.
Hydrotalcite-derived mixed metal oxides containing Co and Ni and containing these metals supported on MgO and Al2O3 were prepared and tested as catalysts for the decomposition of ammonia to hydrogen and nitrogen. The obtained samples were characterised in terms of chemical composition (ICP-OES), structure (XRD), textural parameters (low-temperature N2 adsorption–desorption, SEM), form and aggregation of transition-metal species (UV-Vis DRS), reducibility (H2-TPR) and surface acidity (NH3-TPD). The catalytic efficiency of the tested systems strongly depends on the support used. Generally, the alumina-based catalyst operated at lower temperatures compared to transition metals deposited on MgO. For both series of catalysts, a synergistic effect of the co-existence of cobalt and nickel on the catalytic efficiency was observed. The best catalytic results were obtained for hydrotalcite-derived catalysts; however, in the case of these catalysts, an increase in the Al/Mg ratio resulted in a further increase in catalytic activity in the decomposition of ammonia. Full article
Show Figures

Figure 1

29 pages, 9793 KiB  
Article
Conversion of Biomass-Derived Tars in a Fluidized Catalytic Post-Gasification Process
by Floria Rojas Chaves, Nicolas Torres Brauer, Cindy Torres and Hugo de Lasa
Catalysts 2024, 14(3), 202; https://doi.org/10.3390/catal14030202 - 19 Mar 2024
Cited by 3 | Viewed by 1779
Abstract
The present study deals with the development, characterization, and performance of a Ni-based catalyst over a ceria-doped alumina support as a post-gasification step, in the conversion of biomass-derived tars. The catalysts were prepared using the incipient wetness technique and characterized chemically and physically [...] Read more.
The present study deals with the development, characterization, and performance of a Ni-based catalyst over a ceria-doped alumina support as a post-gasification step, in the conversion of biomass-derived tars. The catalysts were prepared using the incipient wetness technique and characterized chemically and physically using NH3-TPD, CO2-TPD, H2-TPR, XRD, Pyridine-FTIR, N2 physisorption, and H2-Pulse Chemisorption. It was observed that the 5 wt% CeO2 reduced the strong and very strong acid sites of the alumina support and helped with the dispersion of nickel. It was noticed that the nickel crystallite sizes and metal dispersion remained unchanged as the nickel loading increased. The performance of the catalysts was studied in a mini-fluidized CREC Riser Simulator at different temperatures and reaction times. The selected tar surrogate was 2-methoxy-4-methylphenol, given its functional group similarities with lignin-derived tars. A H2/CO2 gas blend was used to emulate the syngas at post-gasification conditions. The obtained tar surrogate conversion was higher than 75%, regardless of the reaction conditions. Furthermore, the catalysts used in this research provided an enhancement in the syngas product composition when compared to that observed in the thermal experiments. The presence of hydrocarbons greater than CH4 (C1+) was reduced at 525 °C, from 96 ± 3% with no catalyst, to 85 ± 2% with catalyst and steam, to 68 ± 4% with catalyst and steam-H2/CO2. Thus, the catalyst that we developed promoted tar cracking, tar reforming, and water-gas shift reactions, with a H2/CO ratio higher than 3.8, providing a syngas suitable for alcohol synthesis. Full article
(This article belongs to the Special Issue Fluidizable Catalysts for Novel Chemical Processes)
Show Figures

Graphical abstract

18 pages, 2665 KiB  
Article
New Die-Compaction Equations for Powders as a Result of Known Equations Correction: Part 2—Modernization of M Yu Balshin’s Equations
by Anatolii V. Laptiev
Powders 2024, 3(1), 136-153; https://doi.org/10.3390/powders3010009 - 19 Mar 2024
Cited by 1 | Viewed by 1599
Abstract
Based on the generalization of M. Yu. Balshin’s well-known equations in the framework of a discrete model of powder compaction process (PCP), two new die-compaction equations for powders have been derived that show the dependence of the compaction pressure p on the relative [...] Read more.
Based on the generalization of M. Yu. Balshin’s well-known equations in the framework of a discrete model of powder compaction process (PCP), two new die-compaction equations for powders have been derived that show the dependence of the compaction pressure p on the relative density ρ of the powder sample. The first equation, p=w(1ρ0)(nm)·(ρρ0)n(1ρ)m, contains, in addition to the initial density ρ0 of the powder in die, three constant parameters—w, n and m. The second equation in the form p=H1ρ0bc·ρρ0b1ρ0caρρ0c also takes into account the initial density of the powder and contains four constant parameters H, a, b, and c. The values of the constant parameters in both equations are determined by fitting the theoretical curve according to these equations to the experimental powder compaction curve. The adequacy of the PCP description with these equations has been verified by approximating experimental data on the compaction of various powders, including usual metal powders such as iron, copper, and nickel, highly plastic powders such as tin and lead, a mixture of plastic powder (Ni) with non-plastic powder (Al2O3), nickel-plated alumina powder, as well as powder of a brittle compound, in particular titanium carbide TiC. The proposed equations make it possible to describe PCP with high accuracy, at which the coefficient of determination R2 reaches values from 0.9900 to 0.9999. The four-constant equation provides a very accurate description of PCP from start to finish when the density of the samples stops increasing once the pressure increases to an extremely high level, despite the presence of porosity. Full article
(This article belongs to the Special Issue Feature Papers in Powders 2023)
Show Figures

Figure 1

12 pages, 5285 KiB  
Article
The Insignificant Improvement of Corrosion and Corrosion Fatigue Behavior in Geothermal Environment Applying Boehmit Coatings on High Alloyed Steels
by Anja Pfennig, Wencke Mohring and Marcus Wolf
Appl. Sci. 2024, 14(4), 1575; https://doi.org/10.3390/app14041575 - 16 Feb 2024
Viewed by 1211
Abstract
The efficacy of alumina-sol based coatings in a water-free atmosphere at high temperatures suggests a potential solution for enhancing the corrosion resistance of high-alloyed steels in Carbon Capture and Storage (CCS) environments. In this study, coupons of X20Cr13, designed for use as injection [...] Read more.
The efficacy of alumina-sol based coatings in a water-free atmosphere at high temperatures suggests a potential solution for enhancing the corrosion resistance of high-alloyed steels in Carbon Capture and Storage (CCS) environments. In this study, coupons of X20Cr13, designed for use as injection pipes with 13% Chromium and 0.20% Carbon (1.4021, AISI 420), were sol-gel coated with water and ethanol-based alumina. These coated coupons were then exposed to CO2-saturated saline aquifer water, simulating conditions in the Northern German Basin, for 1000 h at ambient pressure and 60 °C. Corrosion fatigue experiments were also conducted using specimens of X5CrNiMoCuNb16-4 (1.4542, AISI 630), a suitable candidate for geothermal applications, to assess the impact of the ethanol-based coating on the number of cycles to failure at different stress amplitudes. Unfortunately, the coating exhibited early spallation, resulting in corrosion kinetics and corrosion fatigue data identical to those of uncoated specimens. Consequently, the initially promising Boehmit coating is deemed unsuitable for CCS applications and further research therefore not advisable. Full article
(This article belongs to the Topic Advances in Oil and Gas Wellbore Integrity)
Show Figures

Figure 1

14 pages, 4391 KiB  
Article
The Effectiveness of Ni-Based Bimetallic Catalysts Supported by MgO-Modified Alumina in Dry Methane Reforming
by Ahmed A. Ibrahim, Anis H. Fakeeha, Ahmed E. Abasaeed, Irfan Wazeer, Abdulaziz Bentalib, Nadavala Siva Kumar, Jehad K. Abu-Dahrieh and Ahmed S. Al-Fatesh
Catalysts 2023, 13(11), 1420; https://doi.org/10.3390/catal13111420 - 7 Nov 2023
Cited by 5 | Viewed by 2138
Abstract
Syngas is produced through the carbon dioxide reforming of methane. The traditional nickel-based catalysts are substantially destroyed by carbon deposition. The reforming reaction was conducted in a tubular microreactor at 700 °C using bimetallic Ni catalysts supported over 37% Al2O3 [...] Read more.
Syngas is produced through the carbon dioxide reforming of methane. The traditional nickel-based catalysts are substantially destroyed by carbon deposition. The reforming reaction was conducted in a tubular microreactor at 700 °C using bimetallic Ni catalysts supported over 37% Al2O3 and 63% MgO mixtures. The impregnation process formed the catalysts, which were subsequently examined by N2-physisorption, XRD, H2-TPR, TGA, and Raman spectroscopy. The 2.5Ni+2.5Co/37%Al2O3+63%MgO bimetallic catalyst, which displayed 72% and 76% conversions of CH4 and CO2 over the course of a seven-hour procedure, was discovered to be the most active in DRM. The bimetallic catalyst with the largest weight loss in TGA, 2.5Ni+2.5Fe-MG63, had a loss of 61.3%, a difference of 26% and 21% in the activity performance of CH4 and CO2, respectively, of the tested bimetallic Ni catalysts was recorded. The long-time of 30 h on-stream CH4 and CO2 conversion reactions for 2.5Ni+2.5Co-MG63 and 2.5Ni+2.5Ce-MG63 catalysts showed the catalysts’ high stability. The TPO analysis for the 2.5Ni+2.5Cs-MG63 catalyst showed a peak at 650 °C, attributed to the oxidation of the filamentous carbon, whereas the TPO analysis for the 2.5Ni+2.5Co-MG63 catalyst depicted a peak at 540 °C, ascribed to the presence of amorphous/graphite carbon. Full article
(This article belongs to the Special Issue Feature Papers in Catalytic Materials)
Show Figures

Figure 1

15 pages, 2474 KiB  
Article
Tailoring NiMo-Based Catalysts for Production of Low-Viscosity Sustainable Hydrocarbon Bases for Drilling Muds from Secondary Gas Oils
by Aleksei Iusovskii, Roman Boldushevskii, Aleksandr Mozhaev, Olga Shmelkova, Elizaveta Pavlycheva, Aleksandr Koklyukhin and Pavel Nikulshin
Energies 2023, 16(16), 5859; https://doi.org/10.3390/en16165859 - 8 Aug 2023
Cited by 2 | Viewed by 1593
Abstract
This article presents the prospect of using the process of deep hydrodesulfurization and hydrodearomatization of secondary gas oils using highly active NiMo catalysts to obtain hydrocarbon bases for drilling fluids. Catalysts were synthesized using PMo heteropolyanions, citric acid, and diethylene glycol on alumina [...] Read more.
This article presents the prospect of using the process of deep hydrodesulfurization and hydrodearomatization of secondary gas oils using highly active NiMo catalysts to obtain hydrocarbon bases for drilling fluids. Catalysts were synthesized using PMo heteropolyanions, citric acid, and diethylene glycol on alumina carriers with different pore volumes. This study showed that the concentration of the impregnating solution affects the composition and morphology of the active phase particles of the prepared catalyst, while the textural characteristics of the carrier influence the physicochemical properties and catalytic activity of the NiMo/Al2O3 catalysts. The catalyst that was synthesized using a carrier with the largest pore volume and an effective diameter of more than 7 nm exhibited the highest activity. It was demonstrated that the use of such a catalyst allows for the procurement of hydrocarbon bases for drilling fluids from mixtures of secondary gas oils at a hydrogen pressure of 15–20 MPa. This study has practical significance for the development of sustainable and economically efficient methods for the utilization of low-quality petroleum gas oils to produce high-margin environmentally friendly non-fuel petroleum products, as well as contributes to the development of economically efficient technologies for the utilization of petroleum raw materials. Full article
(This article belongs to the Special Issue High Value-Added Utilization of Fossil Fuels)
Show Figures

Figure 1

Back to TopTop