Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = alphaH-crystallin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 3094 KiB  
Article
Formation of Alpha-Al2O3 Coatings on Tungsten Substrate by Plasma Electrolytic Oxidation
by Stevan Stojadinović and Pedro Nelson
Ceramics 2025, 8(2), 29; https://doi.org/10.3390/ceramics8020029 - 22 Mar 2025
Cited by 1 | Viewed by 533
Abstract
Oxide coatings formed by plasma electrolytic oxidation (PEO) of tungsten substrate for 10 min in a phosphate alkaline electrolyte (PAE, 2 g/L Na3PO4·12H2O) with an addition of 2 g/L, 3 g/L, and 4 g/L NaAlO2 were [...] Read more.
Oxide coatings formed by plasma electrolytic oxidation (PEO) of tungsten substrate for 10 min in a phosphate alkaline electrolyte (PAE, 2 g/L Na3PO4·12H2O) with an addition of 2 g/L, 3 g/L, and 4 g/L NaAlO2 were investigated by SEM/EDS and XRD. In PAE + 2 g/L NaAlO2, a weakly crystalline coating is formed, consisting of amorphous Al2O3, the triclinic phase of WO3, the cristobalite phase of AlPO4 and the gamma and alpha phases of Al2O3. Strong micro-discharges during PEO in PAE with the addition of 3 g/L and 4 g/L NaAlO2 lead to the crystallization of amorphous Al2O3 into gamma-Al2O3 and alpha-Al2O3 phases. The coating formed in PAE + 4 g/L NaAlO2 is well crystallized and rich in alpha-Al2O3, which makes it suitable for high-temperature applications. To explain the composition of the formed coatings and the transformation of the amorphous Al2O3 into gamma and alpha phases, we followed the change in morphology, thickness, chemical and phase composition of the coatings during PEO in PAE + 4 g/L NaAlO2. Full article
Show Figures

Figure 1

24 pages, 8284 KiB  
Article
Hypertrophic Cardiomyopathy-Associated CRYABR123W Activates Calcineurin, Reduces Calcium Sequestration, and Alters the CRYAB Interactome and the Proteomic Response to Pathological Hypertrophy
by Andres Thorkelsson, Chun Chou, Audrey Tripp, Samia A. Ali, Jonas Galper and Michael T. Chin
Int. J. Mol. Sci. 2025, 26(6), 2383; https://doi.org/10.3390/ijms26062383 - 7 Mar 2025
Viewed by 1098
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular condition in the world, affecting around 1 in 500 people. HCM is characterized by ventricular wall thickening, decreased ventricular chamber volume, and diastolic dysfunction. Inherited HCM is most commonly caused by sarcomere gene mutations; [...] Read more.
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular condition in the world, affecting around 1 in 500 people. HCM is characterized by ventricular wall thickening, decreased ventricular chamber volume, and diastolic dysfunction. Inherited HCM is most commonly caused by sarcomere gene mutations; however, approximately 50% of patients do not present with a known mutation, highlighting the need for further research into additional pathological mutations. The alpha-B crystallin (CRYAB) mutation CRYABR123W was previously identified as a novel sarcomere-independent mutation causing HCM associated with pathological NFAT signaling in the setting of pressure overload. We generated stable H9C2 cell lines expressing FLAG-tagged wild-type and mutant CRYAB, which demonstrated that CRYABR123W increases calcineurin activity. Using AlphaFold to predict structural and interaction changes, we generated a model where CRYABR123W uniquely binds to the autoinhibitory domain of calcineurin. Co-immunoprecipitation using the CRYAB FLAG tag followed by mass spectrometry showed novel and distinct changes in the protein interaction patterns of CRYABR123W. Finally, mouse heart extracts from our wild-type CRYAB and CRYABR123W models with and without pressure overload caused by transverse aortic constriction (TAC) were used in global proteomic and phosphoproteomic mass spectrometry analysis, which showed dysregulation in cytoskeletal, metabolomic, cardiac, and immune function. Our data illustrate how CRYABR123W drives calcineurin activation and exhibits distinct changes in protein interaction and cellular pathways during the development of HCM and pathological cardiac hypertrophy. Full article
Show Figures

Figure 1

12 pages, 895 KiB  
Article
Changes in Protein Expression in Warmed Human Lens Epithelium Cells Using Shotgun Proteomics
by Hiroko Otake, Tetsushi Yamamoto, Naoki Yamamoto, Yosuke Nakazawa, Yoshiki Miyata, Atsushi Taga, Hiroshi Sasaki and Noriaki Nagai
Medicina 2025, 61(2), 286; https://doi.org/10.3390/medicina61020286 - 7 Feb 2025
Viewed by 797
Abstract
Background and Objectives: In previous studies, we reported that the assessment of the cumulative thermal dose in the crystalline lens, conducted through computational modeling utilizing a supercomputer and the biothermal transport equation, exhibited a significant association with the incidence of nuclear cataracts. [...] Read more.
Background and Objectives: In previous studies, we reported that the assessment of the cumulative thermal dose in the crystalline lens, conducted through computational modeling utilizing a supercomputer and the biothermal transport equation, exhibited a significant association with the incidence of nuclear cataracts. In this study, we have investigated the types of proteins that expressed underlying 35.0 °C (normal-temp) and 37.5 °C (warming-temp) by using the shotgun liquid chromatography (LC) with tandem mass spectrometry (MS/MS)-based global proteomic approach. Materials and Methods: We have discussed the changes in protein expression in warmed iHLEC-NY2 cells using Gene Ontology analysis and a label-free semiquantitative method based on spectral counting. Results: In iHLEC-NY2, 615 proteins were detected, including 307 (49.9%) present in both lenses cultured at normal-temp and warming-temp, 130 (21.1%) unique to the lens cultured at normal-temp, and 178 (29.0%) unique to the lens cultured at warming-temp. Furthermore, LC–MS/MS analysis showed that warming decreased the expression of actin, alpha cardiac muscle 1, actin-related protein 2, putative tubulin-like protein alpha-4B, ubiquitin carboxyl-terminal hydrolase 17-like protein 1, ubiquitin-ribosomal protein eL40 fusion protein, ribosome biogenesis protein BMS1 homolog, histone H2B type 1-M, and histone H2A.J. in iHLEC-NY2. Conclusions: The decreases in the specific protein levels of actin, tubulin, ubiquitin, ribosomes, and histones may be related to cataract development under warming conditions. This investigation could provide a critical framework for understanding the correlation between temperature dynamics and the development of nuclear cataracts. Full article
(This article belongs to the Special Issue Ophthalmology: New Diagnostic and Treatment Approaches)
Show Figures

Figure 1

29 pages, 6044 KiB  
Article
Green Fabrication of Silver Nanoparticles, Statistical Process Optimization, Characterization, and Molecular Docking Analysis of Their Antimicrobial Activities onto Cotton Fabrics
by Nada S. Shweqa, Noura El-Ahmady El-Naggar, Hala M. Abdelmigid, Amal A. Alyamani, Naglaa Elshafey, Hadeel El-Shall, Yasmin M. Heikal and Hoda M. Soliman
J. Funct. Biomater. 2024, 15(12), 354; https://doi.org/10.3390/jfb15120354 - 21 Nov 2024
Cited by 1 | Viewed by 1815
Abstract
Nanotechnological methods for creating multifunctional fabrics are attracting global interest. The incorporation of nanoparticles in the field of textiles enables the creation of multifunctional textiles exhibiting UV irradiation protection, antimicrobial properties, self-cleaning properties and photocatalytic. Nanomaterials-loaded textiles have many innovative applications in pharmaceuticals, [...] Read more.
Nanotechnological methods for creating multifunctional fabrics are attracting global interest. The incorporation of nanoparticles in the field of textiles enables the creation of multifunctional textiles exhibiting UV irradiation protection, antimicrobial properties, self-cleaning properties and photocatalytic. Nanomaterials-loaded textiles have many innovative applications in pharmaceuticals, sports, military the textile industry etc. This study details the biosynthesis and characterization of silver nanoparticles (AgNPs) using the aqueous mycelial-free filtrate of Aspergillus flavus. The formation of AgNPs was indicated by a brown color in the extracellular filtrate and confirmed by UV-Vis spectroscopy with a peak at 426 nm. The Box-Behnken design (BBD) is used to optimize the physicochemical parameters affecting AgNPs biosynthesis. The desirability function was employed to theoretically predict the optimal conditions for the biosynthesis of AgNPs, which were subsequently experimentally validated. Through the desirability function, the optimal conditions for the maximum predicted value for the biosynthesized AgNPs (235.72 µg/mL) have been identified as follows: incubation time (58.12 h), initial pH (7.99), AgNO3 concentration (4.84 mM/mL), and temperature (34.84 °C). Under these conditions, the highest experimental value of AgNPs biosynthesis was 247.53 µg/mL. Model validation confirmed the great accuracy of the model predictions. Scanning electron microscopy (SEM) revealed spherical AgNPs measuring 8.93–19.11 nm, which was confirmed by transmission electron microscopy (TEM). Zeta potential analysis indicated a positive surface charge (+1.69 mV), implying good stability. X-ray diffraction (XRD) confirmed the crystalline nature, while energy-dispersive X-ray spectroscopy (EDX) verified elemental silver (49.61%). FTIR findings indicate the presence of phenols, proteins, alkanes, alkenes, aliphatic and aromatic amines, and alkyl groups which play significant roles in the reduction, capping, and stabilization of AgNPs. Cotton fabrics embedded with AgNPs biosynthesized using the aqueous mycelial-free filtrate of Aspergillus flavus showed strong antimicrobial activity. The disc diffusion method revealed inhibition zones of 15, 12, and 17 mm against E. coli (Gram-negative), S. aureus (Gram-positive), and C. albicans (yeast), respectively. These fabrics have potential applications in protective clothing, packaging, and medical care. In silico modeling suggested that the predicted compound derived from AgNPs on cotton fabric could inhibit Penicillin-binding proteins (PBPs) and Lanosterol 14-alpha-demethylase (L-14α-DM), with binding energies of −4.7 and −5.2 Kcal/mol, respectively. Pharmacokinetic analysis and sensitizer prediction indicated that this compound merits further investigation. Full article
Show Figures

Figure 1

38 pages, 14828 KiB  
Article
Novel Recycling, Defibrillation, and Delignification Methods for Isolating α-Cellulose from Different Lignocellulosic Precursors for the Eco-Friendly Fiber Industry
by Sherif S. Hindi
Polymers 2024, 16(17), 2430; https://doi.org/10.3390/polym16172430 - 27 Aug 2024
Cited by 3 | Viewed by 1741
Abstract
Alpha-cellulose, a unique, natural, and essential polymer for the fiber industry, was isolated in an ecofriendly manner using eleven novel systems comprising recycling, defibrillation, and delignification of prosenchyma cells (vessels and fibers) of ten lignocellulosic resources. Seven hardwood species were selected, namely Conocorpus [...] Read more.
Alpha-cellulose, a unique, natural, and essential polymer for the fiber industry, was isolated in an ecofriendly manner using eleven novel systems comprising recycling, defibrillation, and delignification of prosenchyma cells (vessels and fibers) of ten lignocellulosic resources. Seven hardwood species were selected, namely Conocorpus erectus, Leucaena leucocephala, Simmondsia chinensis, Azadirachta indica, Moringa perigrina, Calotropis procera, and Ceiba pentandra. Moreover, three recycled cellulosic wastes were chosen due to their high levels of accumulation annually in the fibrous wastes of Saudi Arabia, namely recycled writing papers (RWPs), recycled newspapers (RNPs), and recycled cardboard (RC). Each of the parent samples and the resultant alpha-cellulose was characterized physically, chemically, and anatomically. The properties examined differed significantly among the ten resources studied, and their mean values lies within the cited ranges. Among the seven tree species, L. leucocephala was the best cellulosic precursor due to its higher fiber yield (55.46%) and holocellulose content (70.82%) with the lowest content of Klasson lignin (18.86%). Moreover, RWP was the best α-cellulose precursor, exhibiting the highest holocellulose (87%) and the lowest lignin (2%) content. Despite the high content of ash and other additives accompanied with the three lignocellulosic wastes that were added upon fabrication to enhance their quality (10%, 11%, and 14.52% for RWP, RNP, and RC, respectively), they can be considered as an inexhaustible treasure source for cellulose production due to the ease and efficiency of discarding their ash minerals using the novel CaCO3-elimination process along with the other innovative techniques. Besides its main role for adjusting the pH of the delignification process, citric acid serves as an effective and environmentally friendly additive enhancing lignin breakdown while preserving cellulose integrity. Comparing the thermal behavior of the ten cellulosic resources, C. procera and C. pentandra exhibited the highest moisture content and void volume as well as having the lowest specific gravity, crystallinity index, and holocellulose content and were found to yield the highest mass loss during their thermal degradation based on thermogravimetric and differential thermal analysis in an inert atmosphere. However, the other resources used were found to yield lower mass losses. The obtained results indicate that using the innovative procedures of recycling, defibrillation, and delignification did not alter or distort either the yield or structure of the isolated α-cellulose. This is a clear indicator of their high efficiency for isolating cellulose from lignocellulosic precursors. Full article
Show Figures

Figure 1

15 pages, 2537 KiB  
Article
Anti-Cataract Effect of the Traditional Aqueous Extract of Yerba Mate (Ilex paraguariensis A. St.-Hil.): An In Ovo Perspective
by Seyma Oncu, Merve Becit-Kizilkaya, Abdulkadir Bilir, Alperen Saritas, Evrim Suna Arikan-Soylemez, Halit Bugra Koca, Fatma Firat, Afife Busra Ugur-Kaplan and Mustafa Abdullah Yilmaz
Life 2024, 14(8), 994; https://doi.org/10.3390/life14080994 - 10 Aug 2024
Viewed by 1529
Abstract
Introduction: The therapeutic effect of different doses of the traditional aqueous extract of dried leaves of yerba mate (Ilex paraguariensis A. St.-Hil.) was investigated in an experimental cataract model in chicken embryos. Methods and Results: LC-MS/MS analysis allowed the identification and quantification [...] Read more.
Introduction: The therapeutic effect of different doses of the traditional aqueous extract of dried leaves of yerba mate (Ilex paraguariensis A. St.-Hil.) was investigated in an experimental cataract model in chicken embryos. Methods and Results: LC-MS/MS analysis allowed the identification and quantification of 53 metabolites. In the hydrocortisone-induced cataract model, lenses were examined morphologically after treatment and parameters related to oxidative stress (total antioxidant/oxidant status (TAS/TOS), glutathione (GSH), and malondialdehyde (MDA)) were evaluated. Antiproliferative cell nuclear antigen (PCNA) and caspase-3 H-scores were determined and crystallin alpha A (CRYAA) gene expression in the lenses was measured by RT-PCR. The degree of cataract decreased in all treatment groups. While there was no significant difference in TAS levels compared to the negative control, TOS, GSH, and MDA levels were dose-dependently regulated. Treatment groups other than the high-dose group regulated the decrease in PCNA and the increase in caspase-3. CRYAA gene expression increased significantly only at the lowest dose. Conclusion: YM, which is becoming increasingly popular as a traditional tea, showed a therapeutic effect on hydrocortisone-induced cataracts in chicken embryos at relatively low doses. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

16 pages, 1994 KiB  
Article
Chemical Composition and FTIR Analysis of Acetylated Turkey Oak and Pannonia Poplar Wood
by Fanni Fodor and Tamás Hofmann
Forests 2024, 15(1), 207; https://doi.org/10.3390/f15010207 - 19 Jan 2024
Cited by 4 | Viewed by 1615
Abstract
In this research, acetylation was applied under industrial conditions to improve the properties of Turkey oak and Pannonia poplar wood. Both species are potential “climate winners” in Hungary, yet they are currently underused due their low durability and poor dimensional stability. The acetylation [...] Read more.
In this research, acetylation was applied under industrial conditions to improve the properties of Turkey oak and Pannonia poplar wood. Both species are potential “climate winners” in Hungary, yet they are currently underused due their low durability and poor dimensional stability. The acetylation modification process may be a suitable method to improve their properties. In order to verify the effectiveness of the process, comparative chemical analyses (cellulose, hemicelluloses, lignin, extractives, ash, buffering capacity, and pH) of the untreated and acetylated heartwood and sapwood were carried out for both species for the first time. Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy was also used to support the evaluation of the chemical analyses. The weight percent gain was 11.54% for poplar and 0.94% for Turkey oak, indicating poor treatment efficiency for the latter. The cellulose, hemicelluloses, and lignin contents changed significantly in poplar, with the highest change (+81%) induced by acetylating the hemicelluloses. Only the alpha-cellulose content decreased significantly in Turkey oak, presumably due to the degradation of the non-crystalline part of the cellulose. Acetylation may improve the resistance of Pannonia poplar against moisture, weather, decay, and wood-boring insects, but the process parameters need to be optimized in order to prevent degradation and discoloration in poplar. Turkey oak was found to be less suitable for acetylation due to its low permeability and tendency to crack. Full article
(This article belongs to the Special Issue Wood Chemistry in a Changing Global Environment)
Show Figures

Figure 1

20 pages, 4456 KiB  
Article
Molecular Cloning, In Silico Analysis, and Characterization of a Novel Cellulose Microfibril Swelling Gene Isolated from Bacillus sp. Strain AY8
by Md. Azizul Haque, Dhirendra Nath Barman, Aminur Rahman, Md. Shohorab Hossain, Sibdas Ghosh, Most. Aynun Nahar, Mst. Nur-E-Nazmun Nahar, Joyanta K. Saha, Kye Man Cho and Han Dae Yun
Microorganisms 2023, 11(12), 2857; https://doi.org/10.3390/microorganisms11122857 - 24 Nov 2023
Cited by 1 | Viewed by 2065
Abstract
A novel cellulose microfibril swelling (Cms) gene of Bacillus sp. AY8 was successfully cloned and sequenced using a set of primers designed based on the conserved region of the gene from the genomic database. The molecular cloning of the Cms gene revealed that [...] Read more.
A novel cellulose microfibril swelling (Cms) gene of Bacillus sp. AY8 was successfully cloned and sequenced using a set of primers designed based on the conserved region of the gene from the genomic database. The molecular cloning of the Cms gene revealed that the gene consisted of 679 bp sequences encoding 225 amino acids. Further in silico analysis unveiled that the Cms gene contained the NlpC/P60 conserved region that exhibited a homology of 98% with the NlpC/P60 family proteins found in both the strains, Burkholderialata sp. and Burkholderia vietnamiensis. The recombinant Cms enzyme had a significant impact on the reduction of crystallinity indices (CrI) of various substrates including a 3%, a 3.97%, a 4.66%, and a substantial 14.07% for filter paper, defatted cotton fiber, avicel, and alpha cellulose, respectively. Additionally, notable changes in the spectral features were observed among the substrates treated with recombinant Cms enzymes compared to the untreated control. Specifically, there was a decrease in band intensities within the spectral regions of 3000–3450 cm−1, 2900 cm−1, 1429 cm−1, and 1371 cm−1 for the treated filter paper, cotton fiber, avicel, and alpha cellulose, respectively. Furthermore, the recombinant Cms enzyme exhibited a maximum cellulose swelling activity at a pH of 7.0 along with a temperature of 40 °C. The molecular docking data revealed that ligand molecules, such as cellobiose, dextrin, maltose 1-phosphate, and feruloyated xyloglucan, effectively bonded to the active site of the Cms enzyme. The molecular dynamics simulations of the Cms enzyme displayed stable interactions with cellobiose and dextrin molecules up to 100 ns. It is noteworthy to mention that the conserved region of the Cms enzyme did not match with those of the bioadditives like expansins and swollenin proteins. This study is the initial report of a bacterial cellulose microfibril swellase enzyme, which could potentially serve as an additive to enhance biofuel production by releasing fermentable sugars from cellulose. Full article
(This article belongs to the Special Issue Metabolism in the Bacillus subtilis)
Show Figures

Figure 1

17 pages, 2733 KiB  
Article
Refolding Increases the Chaperone-like Activity of αH-Crystallin and Reduces Its Hydrodynamic Diameter to That of α-Crystallin
by Konstantin O. Muranov, Nicolay B. Poliansky, Vera A. Borzova and Sergey Y. Kleimenov
Int. J. Mol. Sci. 2023, 24(17), 13473; https://doi.org/10.3390/ijms241713473 - 30 Aug 2023
Cited by 3 | Viewed by 1778
Abstract
αH-Crystallin, a high molecular weight form of α-crystallin, is one of the major proteins in the lens nucleus. This high molecular weight aggregate (HMWA) plays an important role in the pathogenesis of cataracts. We have shown that the chaperone-like activity of [...] Read more.
αH-Crystallin, a high molecular weight form of α-crystallin, is one of the major proteins in the lens nucleus. This high molecular weight aggregate (HMWA) plays an important role in the pathogenesis of cataracts. We have shown that the chaperone-like activity of HMWA is 40% of that of α-crystallin from the lens cortex. Refolding with urea significantly increased—up to 260%—the chaperone-like activity of α-crystallin and slightly reduced its hydrodynamic diameter (Dh). HMWA refolding resulted in an increase in chaperone-like activity up to 120% and a significant reduction of Dh of protein particles compared with that of α-crystallin. It was shown that the chaperone-like activity of HMWA, α-crystallin, and refolded α-crystallin but not refolded HMWA was strongly correlated with the denaturation enthalpy measured with differential scanning calorimetry (DSC). The DSC data demonstrated a significant increase in the native protein portion of refolded α-crystallin in comparison with authentic α-crystallin; however, the denaturation enthalpy of refolded HMWA was significantly decreased in comparison with authentic HMWA. The authors suggested that the increase in the chaperone-like activity of both α-crystallin and HMWA could be the result of the correction of misfolded proteins during renaturation and the rearrangement of protein supramolecular structures. Full article
Show Figures

Graphical abstract

20 pages, 5851 KiB  
Article
Biogenic Fabrication of Iron Oxide Nanoparticles from Leptolyngbya sp. L-2 and Multiple In Vitro Pharmacogenetic Properties
by Lubna Anjum Minhas, Muhammad Kaleem, Malik Abrar Hassan Minhas, Rooma Waqar, Dunia A. Al Farraj, Mona Abdullah Alsaigh, Hussain Badshah, Muhammad Haris and Abdul Samad Mumtaz
Toxics 2023, 11(7), 561; https://doi.org/10.3390/toxics11070561 - 27 Jun 2023
Cited by 19 | Viewed by 2892
Abstract
Metallic nanoparticles have received a significant amount of reflection over a period of time, attributed to their electronic, specific surface area, and surface atom properties. The biogenic synthesis of iron oxide nanoparticles (FeONPs) is demonstrated in this study. The green synthesis of metallic [...] Read more.
Metallic nanoparticles have received a significant amount of reflection over a period of time, attributed to their electronic, specific surface area, and surface atom properties. The biogenic synthesis of iron oxide nanoparticles (FeONPs) is demonstrated in this study. The green synthesis of metallic nanoparticles (NPs) is acquiring considerable attention due to its environmental and economic superiorities over other methods. Leptolyngbya sp. L-2 extract was employed as a reducing agent, and iron chloride hexahydrate (FeCl3·6H2O) was used as a substrate for the biogenic synthesis of FeONPs. Different spectral methods were used for the characterization of the biosynthesized FeONPs, ultraviolet-visible (UV-Vis) spectroscopy gave a surface plasmon resonance (SPR) peak of FeONPs at 300 nm; Fourier transform infrared (FTIR) spectral analysis was conducted to identify the functional groups responsible for both the stability and synthesis of FeONPs. The morphology of the FeONPs was investigated using scanning electron microscopy (SEM), which shows a nearly spherical shape, and an X-ray diffraction (XRD) study demonstrated their crystalline nature with a calculated crystallinity size of 23 nm. The zeta potential (ZP) and dynamic light scattering (DLS) measurements of FeONPs revealed values of −8.50 mV, suggesting appropriate physical stability. Comprehensive in-vitro pharmacogenetic properties revealed that FeONPs have significant therapeutic potential. FeONPs have been reported to have potential antibacterial and antifungal properties. Dose-dependent cytotoxic activity was shown against Leishmania tropica promastigotes (IC50: 10.73 µg/mL) and amastigotes (IC50: 16.98 µg/mL) using various concentrations of FeONPs. The cytotoxic potential was also investigated using brine shrimps, and their IC50 value was determined to be 34.19 µg/mL. FeONPs showed significant antioxidant results (DPPH: 54.7%, TRP: 49.2%, TAC: 44.5%), protein kinase (IC50: 96.23 µg/mL), and alpha amylase (IC50: 3745 µg/mL). The biosafety of FeONPs was validated by biocompatibility tests using macrophages (IC50: 918.1 µg/mL) and red blood cells (IC50: 2921 µg/mL). In conclusion, biogenic FeONPs have shown potential biomedical properties and should be the focus of more studies to increase their nano-pharmacological significance for biological applications. Full article
(This article belongs to the Section Novel Methods in Toxicology Research)
Show Figures

Figure 1

15 pages, 2679 KiB  
Article
Preparation and Characterisation of a Cyclodextrin-Complexed Mānuka Honey Microemulsion for Eyelid Application
by Ilva D. Rupenthal, Priyanka Agarwal, Benedict Uy, Jaeun Kim, Angela A. Cunningham, Ali Seyfoddin, Simon Swift and Jennifer P. Craig
Pharmaceutics 2022, 14(7), 1493; https://doi.org/10.3390/pharmaceutics14071493 - 19 Jul 2022
Cited by 3 | Viewed by 2528
Abstract
Honey has been widely purported as a natural remedy due to its antimicrobial and anti-inflammatory effects. In recent years, several studies have suggested that the considerably high methylglyoxal (MGO) concentration in Mānuka honey (MH) makes it particularly effective to manage bacterial overload, such [...] Read more.
Honey has been widely purported as a natural remedy due to its antimicrobial and anti-inflammatory effects. In recent years, several studies have suggested that the considerably high methylglyoxal (MGO) concentration in Mānuka honey (MH) makes it particularly effective to manage bacterial overload, such as that observed in blepharitis. However, the poor solubility, high viscosity, and osmolarity of aqueous honey solutions, especially at the high MGO concentrations studied in the literature, render the formulation of an acceptable dosage form for topical application to the eyelids challenging. Here, the antibacterial properties of raw MH and alpha-cyclodextrin (α-CD)-complexed MH were evaluated at relatively low MGO concentrations, and a liquid crystalline-forming microemulsion containing α-CD-complexed MH was formulated. After determining pH and osmolarity, ocular tolerability was assessed using human primary corneal epithelial cells and chorioallantoic membranes, while the antibacterial efficacy was further evaluated in vitro. The α-CD–MH complex had significantly greater antibacterial activity against Staphylococcus aureus than either constituent alone, which was evident even when formulated as a microemulsion. Moreover, the final formulation had a physiologically acceptable pH and osmolarity for eyelid application and was well-tolerated when diluted 1:10 with artificial tear fluid, as expected to be the case after accidental exposure to the ocular surface in the clinical setting. Thus, a safe and efficient MH dosage form was developed for topical application to the eyelids, which can potentially be used to support optimal eyelid health in the management of blepharitis. Full article
(This article belongs to the Special Issue Cyclodextrins and Their Inclusion Complexes for Pharmaceutical Uses)
Show Figures

Figure 1

15 pages, 3655 KiB  
Article
Modulation of the Structure and Stability of Novel Camel Lens Alpha-Crystallin by pH and Thermal Stress
by Ajamaluddin Malik, Javed Masood Khan, Abdullah S. Alhomida and Mohammad Shamsul Ola
Gels 2022, 8(5), 273; https://doi.org/10.3390/gels8050273 - 27 Apr 2022
Cited by 3 | Viewed by 2460
Abstract
Alpha-crystallin protein performs structural and chaperone functions in the lens and comprises alphaA and alphaB subunits at a molar ratio of 3:1. The highly complex alpha-crystallin structure challenges structural biologists because of its large dynamic quaternary structure (300–1000 kDa). Camel lens alpha-crystallin is [...] Read more.
Alpha-crystallin protein performs structural and chaperone functions in the lens and comprises alphaA and alphaB subunits at a molar ratio of 3:1. The highly complex alpha-crystallin structure challenges structural biologists because of its large dynamic quaternary structure (300–1000 kDa). Camel lens alpha-crystallin is a poorly characterized molecular chaperone, and the alphaB subunit possesses a novel extension at the N-terminal domain. We purified camel lens alpha-crystallin using size exclusion chromatography, and the purity was analyzed by gradient (4–12%) sodium dodecyl sulfate–polyacrylamide gel electrophoresis. Alpha-crystallin was equilibrated in the pH range of 1.0 to 7.5. Subsequently, thermal stress (20–94 °C) was applied to the alpha-crystallin samples, and changes in the conformation and stability were recorded by dynamic multimode spectroscopy and intrinsic and extrinsic fluorescence spectroscopic methods. Camel lens alpha-crystallin formed a random coil-like structure without losing its native-like beta-sheeted structure under two conditions: >50 °C at pH 7.5 and all temperatures at pH 2.0. The calculated enthalpy of denaturation, as determined by dynamic multimode spectroscopy at pH 7.5, 4.0, 2.0, and 1.0 revealed that alpha-crystallin never completely denatures under acidic conditions or thermal denaturation. Alpha-crystallin undergoes a single, reversible thermal transition at pH 7.5. The thermodynamic data (unfolding enthalpy and heat capacity change) and chaperone activities indicated that alpha-crystallin does not completely unfold above the thermal transition. Camels adapted to live in hot desert climates naturally exhibit the abovementioned unique features. Full article
(This article belongs to the Special Issue Advance in Composite Gels)
Show Figures

Figure 1

12 pages, 2377 KiB  
Article
Effects of Buffer Concentration on the Sensitivity of Silicon Nanobelt Field-Effect Transistor Sensors
by Chi-Chang Wu and Min-Rong Wang
Sensors 2021, 21(14), 4904; https://doi.org/10.3390/s21144904 - 19 Jul 2021
Cited by 6 | Viewed by 2836
Abstract
In this work, a single-crystalline silicon nanobelt field-effect transistor (SiNB FET) device was developed and applied to pH and biomolecule sensing. The nanobelt was formed using a local oxidation of silicon technique, which is a self-aligned, self-shrinking process that reduces the cost of [...] Read more.
In this work, a single-crystalline silicon nanobelt field-effect transistor (SiNB FET) device was developed and applied to pH and biomolecule sensing. The nanobelt was formed using a local oxidation of silicon technique, which is a self-aligned, self-shrinking process that reduces the cost of production. We demonstrated the effect of buffer concentration on the sensitivity and stability of the SiNB FET sensor by varying the buffer concentrations to detect solution pH and alpha fetoprotein (AFP). The SiNB FET sensor was used to detect a solution pH ranging from 6.4 to 7.4; the response current decreased stepwise as the pH value increased. The stability of the sensor was examined through cyclical detection under solutions with different pH; the results were stable and reliable. A buffer solution of varying concentrations was employed to inspect the sensing capability of the SiNB FET sensor device, with the results indicating that the sensitivity of the sensor was negatively dependent on the buffer concentration. For biomolecule sensing, AFP was sensed to test the sensitivity of the SiNB FET sensor. The effectiveness of surface functionalization affected the AFP sensing result, and the current shift was strongly dependent on the buffer concentration. The obtained results demonstrated that buffer concentration plays a crucial role in terms of the sensitivity and stability of the SiNB FET device in chemical and biomolecular sensing. Full article
(This article belongs to the Collection Medical Applications of Sensor Systems and Devices)
Show Figures

Figure 1

18 pages, 2112 KiB  
Article
Phase Transitions and Structural Changes in DPPC Liposomes Induced by a 1-Carba-Alpha-Tocopherol Analogue
by Grażyna Neunert, Jolanta Tomaszewska-Gras, Aneta Baj, Marlena Gauza-Włodarczyk, Stanislaw Witkowski and Krzysztof Polewski
Molecules 2021, 26(10), 2851; https://doi.org/10.3390/molecules26102851 - 11 May 2021
Cited by 23 | Viewed by 3506
Abstract
Steady-state emission spectroscopy of 1-anilino-8- naphthalene sulfonate (ANS) and 1,6-diphenyl-1,3,5-hexatriene (DPH), fluorescence anisotropy, and DSC methods were used to characterize the interactions of the newly synthesized 1-carba-alpha-tocopherol (CT) with a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) membrane. The DSC results showed significant perturbations in the [...] Read more.
Steady-state emission spectroscopy of 1-anilino-8- naphthalene sulfonate (ANS) and 1,6-diphenyl-1,3,5-hexatriene (DPH), fluorescence anisotropy, and DSC methods were used to characterize the interactions of the newly synthesized 1-carba-alpha-tocopherol (CT) with a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) membrane. The DSC results showed significant perturbations in the DPPC structure for CT concentrations as low as 2 mol%. The main phase transition peak was broadened and shifted to lower temperatures in a concentration-dependent manner, and pretransition was abolished. Increasing CT concentrations induced the formation of new phases in the DPPC structure, leading to melting at lower temperatures and, finally, disruption of the ordered DPPC structure. Hydration and structural changes of the DPPC liposomes using ANS and DPH fluorescent probes, which are selectively located at different places in the bilayer, were studied. With the increased concentration of CT molecules in the DPPC liposomes, structural changes with the simultaneous formation of different phases of such mixture were observed. Temperature studies of such mixtures revealed a decrease in the temperature of the main phase transition and fluidization at decreasing temperatures related to increasing hydration in the bilayer. Contour plots obtained from concentration–temperature data with fluorescent probes allowed for identification of different phases, such as gel, ordered liquid, disordered liquid, and liquid crystalline phases. The CT molecule with a modified chromanol ring embedded in the bilayer led to H-bonding interactions, expelling water molecules from the interphase, thus introducing disorder and structural changes to the highly ordered gel phase. Full article
(This article belongs to the Special Issue Analysis of Foods and Food Components on Molecular Level)
Show Figures

Figure 1

Back to TopTop