Chemical Composition and FTIR Analysis of Acetylated Turkey Oak and Pannonia Poplar Wood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wood Material
2.2. Acetylation
2.3. Preparation of Particles for Chemical Analysis
2.4. Measurement of Wood Polymers, Total Extractive, and Ash Content
2.5. Determination of pH and Buffering Capacity
2.6. Equillibrium Moisture Content
2.7. FTIR Analysis
2.8. Statistical Analysis
3. Results and Discussion
Band Number | Wavenumber (cm−1) Pannonia Poplar | Wavenumber (cm−1) Turkey Oak | Functional Group | Assignment |
---|---|---|---|---|
1 | 3534 3351 3201 | 3567 3348 3135 | OH stretching (bonded) | |
2 | 1761 | 1765 | C=O (carbonyl) stretching in unconjugated acetyl groups | Xylan (hemicelluloses) |
3 | 1378 | 1382 | Symmetric C-H deformation in CH3 | Cellulose and hemicelluloses |
4 | 1260 | 1267 | Syringyl ring and C-O stretching in the ester bond | Lignin and xylan (hemicelluloses) |
5 | 1174 | 1177 | Asymmetric C-O-C stretching | Cellulose and hemicelluloses |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rowell, R.M. Chemical Modification of Wood. Commonw. For. Bur. 1983, 6, 363–382. [Google Scholar]
- Boonstra, M.G.; Pizzi, A.; Tekely, P.; Pendlebury, J. Chemical Modification of Norway Spruce and Scots Pine. A 13 C NMR CP-MAS Study of the Reactivity and Reactions of Polymeric Wood Components with Acetic Anhydride. Holzforsch.-Int. J. Biol. Chem. Phys. Technol. Wood 1996, 50, 215–220. [Google Scholar] [CrossRef]
- Brelid, P.L.; Simonson, R. Acetylation of Solid Wood Using Microwave heating Part 2. Experiments in Laboratory Scale. Holz Als. Roh-Und. Werkst. 1999, 57, 383–389. [Google Scholar] [CrossRef]
- Beckers, E.P.J.; Militz, H. Acetylation of Solid Wood. Initial Trials on Lab and Semi Industrial Scale. In Proceedings of Second Pacific Rim Bio-Based Composites Symposium; University of British Columbia: Vancouver, BC, Canada, 1994; pp. 125–133. [Google Scholar]
- Hill, C.; Jones, D. The Dimensional Stabilization of Corsican Pine Sapwood by Reaction with Carboxylic Acid Anhydrides. Eff. Chain. Length 1996, 50, 457–462. [Google Scholar]
- Popescu, C.-M.; Hill, C.A.S.; Curling, S.; Ormondroyd, G.; Xie, Y. The Water Vapour Sorption Behaviour of Acetylated Birch Wood: How Acetylation Affects the Sorption Isotherm and Accessible Hydroxyl Content. J. Mater. Sci. 2014, 49, 2362–2371. [Google Scholar] [CrossRef]
- Fuchs, W. Genuine Lignin. I. Acetylation of Pine Wood. Berichte Der Dtsch. Chem. Ges. 1928, 61, 61B948-51. [Google Scholar]
- Niemz, P.; Teischinger, A.; Sandberg, D. Springer Handbook of Wood Science and Technology; Springer International Publishing: Berlin/Heidelberg, Germany, 2023; ISBN 978-3-030-81314-7. [Google Scholar]
- HCSO. Fakitermelés Az Erdőgazdálkodási Célú Erdőterületeken Fafajcsoportok Szerint [Ezer M3]. 2021. Available online: https://www.ksh.hu/stadat_files/kor/hu/kor0006.html (accessed on 17 December 2023).
- de Rigo, D.; Enescu, C.M.; Durrant, T.H.; Caudullo, G. Quercus Cerris in Europe: Distribution, Habitat, Usage and Threats. In European Atlas of Forest Tree Species; Publication Office of the European Union: Luxembourg, 2016; pp. 148–149. [Google Scholar]
- Komán, S.; Németh, R.; Báder, M. An Overview of the Current Situation of European Poplar Cultures with a Main Focus on Hungary. Appl. Sci. 2023, 13, 12922. [Google Scholar] [CrossRef]
- Najib, R.; Houri, T.; Khairallah, Y.; Khalil, M. Quercus cerris L.: An Overview. For. Stud. 2021, 74, 1–9. [Google Scholar] [CrossRef]
- Németh, R.; Horváth, N.; Fodor, F.; Báder, M.; Bak, M. Wood Modification for Under-Utilised Hardwood Species. IOP Conf. Ser. Earth Environ. Sci. 2020, 505, 012017. [Google Scholar] [CrossRef]
- Mai, C.; Militz, H. Wood Modification. In Springer Handbook of Wood Science and Technology; Niemz, P., Teischinger, A., Sandberg, D., Eds.; Springer Handbooks; Springer International Publishing: Cham, Switzerland, 2023; pp. 873–910. ISBN 978-3-030-81315-4. [Google Scholar]
- Komán, S. Nemesnyár-Fajták Korszerű Ipari És Energetikai Hasznosítását Befolyásoló Faanatómiai És Fizikai Jellemzők. Doctoral Thesis, University of West Hungary, Sopron, Hungary, 2012. [Google Scholar]
- Németh, R.; Ott, Á.; Takáts, P.; Bak, M. The Effect of Moisture Content and Drying Temperature on the Colour of Two Poplars and Robinia Wood. BioResources 2013, 8, 2074–2083. [Google Scholar] [CrossRef]
- Horváth, N.; Schantl, I. Hazai Ültetvényes Pannonia Nyár Fatestének Anyagtudományi Vizsgálata. In Alföldi Erdőkért Egyesület Kutatói Nap: Tudományos Eredmények a Gyakorlatban; Alföldi Erdőkért Egyesület: Kecskemét, Hungary, 2017; pp. 149–154. [Google Scholar]
- Molnár, S.; Németh, R.; Paukó, A.; Göbölös, P. A Fehérnyár Hibridek Faanyagminőségének Javítási Lehetőségei. Faipar 2002, 50, 24–26. [Google Scholar]
- Molnár, S.; Bariska, M. Magyarország Ipari Fái; Szaktudás Kiadó Ház Zrt: Budapest, Hungary, 2002. [Google Scholar]
- Mirzaei, G.; Mohebby, B.; Ebrahimi, G. Glulam Beam Made from Hydrothermally Treated Poplar Wood with Reduced Moisture Induced Stresses. Constr. Build. Mater. 2017, 135, 386–393. [Google Scholar] [CrossRef]
- Banadics, E.A.; Tolvaj, L. Colour Modification of Poplar Wood by Steaming for Brown Colour. Eur. J. Wood Prod. 2019, 77, 717–719. [Google Scholar] [CrossRef]
- Banadics, E.A.; Tolvaj, L.; Varga, D. Steaming of Poplar, Black Locust and Beech Timbers Simultaneously to Investigate Colour Modification Effect of Extractive Transport. Drewno Pr. Nauk. Doniesienia Komun. 2022, 65, 209. [Google Scholar] [CrossRef]
- Molnár, S.; Csupor, K.; Horváth, N. The Effect of Thermal Modification on the Durability of Wood against Fungal Decay. In Proceedings of the 5th International Symposium Wood Structure and Properties ’06, Valiug, Romania, 19–23 September 2006; Technical University in Zvolen: Zvolen, Slovakia, 2006; p. 517. [Google Scholar]
- Bak, M.; Németh, R. Changes in Swelling Properties and Moisture Uptake Rate of Oil-Heat-Treated Poplar (Populus x Euramericana Cv. Pannónia) Wood. Bioresources 2012, 7, 5128–5137. [Google Scholar] [CrossRef]
- Bak, M.; Németh, R.; Tolvaj, L. The Colour Change of Oil-Heat-Treated Timber During Weathering. Óbuda Univ. e-Bull. 2012, 3, 339–345. [Google Scholar]
- Horváth, N. A Termikus Kezelés Hatása a Faanyag Tulajdonságaira, Különös Tekintettel a Gombaállóságra. Doctoral Thesis, University of West Hungary, Sopron, 2008. [Google Scholar]
- Csizmadia, P. Hőkezelt és KEZELETLEN faanyagok Kültéri Kitettségi Vizsgálatai. Bachelor Thesis, University of West Hungary, Sopron, Hungary, 2015. [Google Scholar]
- Ábrahám, J.; Németh, R.; Molnár, S. Thermo-Mechanical Densification of Pannonia Poplar. In Proceedings of the Final Conference of COST Action E53: ‘Quality Control for Wood & Wood Products’, Edinburgh, Scotland, 4–7 May 2010; pp. 282–292. [Google Scholar]
- Bytner, O.; Drożdżek, M.; Laskowska, A.; Zawadzki, J. Influence of Thermal Modification in Nitrogen Atmosphere on the Selected Mechanical Properties of Black Poplar Wood (Populus nigra L.). Materials 2022, 15, 7949. [Google Scholar] [CrossRef]
- Cheng, A.; Tu, D.; Zhu, Z.; Zhou, Q.; Wei, W.; Hu, C.; Liu, X. Study on Machining Properties and Surface Coating Properties of Heat Treated Densified Poplar Wood. Wood Res. 2022, 67, 1032–1045. [Google Scholar] [CrossRef]
- Bongers, F.; Beckers, E.P.J. Mechanical Properties of Acetylated Solid Wood Treated on Pilot Plant Scale. In Proceedings of the First European Conference on Wood Modification; Ghent University: Ghent, Belgium, 2003; pp. 341–350. [Google Scholar]
- Ozmen, N. Dimensional Stabilisation of Fast Growing Forest Species by Acetylation. J. Appl. Sci. 2007, 7, 710–714. [Google Scholar] [CrossRef]
- Yuan, J.; Hu, Y.; Li, L.; Cheng, F. The Mechanical Strength Change of Wood Modified with DMDHEU. BioResources 2013, 8, 1076–1088. [Google Scholar] [CrossRef]
- Dong, Y.; Qin, Y.; Wang, K.; Yan, Y.; Zhang, S.; Li, J.; Zhang, S. Assessment of the Performance of Furfurylated Wood and Acetylated Wood: Comparison among Four Fast-Growing Wood Species. BioResources 2016, 11, 3679–3690. [Google Scholar] [CrossRef]
- Yang, T.; Ma, E.; Cao, J. Synergistic Effects of Partial Hemicellulose Removal and Furfurylation on Improving the Dimensional Stability of Poplar Wood Tested under Dynamic Condition. Ind. Crops Prod. 2019, 139, 111550. [Google Scholar] [CrossRef]
- Gan, W.; Xiao, S.; Gao, L.; Gao, R.; Li, J.; Zhan, X. Luminescent and Transparent Wood Composites Fabricated by Poly(Methyl Methacrylate) and γ-Fe2O3@YVO4:Eu3+ Nanoparticle Impregnation. ACS Sustain. Chem. Eng. 2017, 5, 3855–3862. [Google Scholar] [CrossRef]
- Cao, S.; Cai, J.; Wu, M.; Zhou, N.; Huang, Z.; Cai, L.; Zhang, Y. Surface Properties of Poplar Wood after Heat Treatment, Resin Impregnation, or Both Modifications. BioResources 2021, 16, 7562–7577. [Google Scholar] [CrossRef]
- Xue, J.; Xu, W.; Zhou, J.; Mao, W.; Wu, S. Effects of High-Temperature Heat Treatment Modification by Impregnation on Physical and Mechanical Properties of Poplar. Materials 2022, 15, 7334. [Google Scholar] [CrossRef]
- Yang, H.; Wang, D.; Han, Y.; Tian, P.; Gao, C.; Yang, X.; Mu, H.; Zhang, M. Preparation and Properties of Modified Poplar Impregnated with PVA-Nano Silica Sol Composite Dispersion System. J. Wood Chem. Technol. 2022, 42, 211–221. [Google Scholar] [CrossRef]
- Bajraktari, A.; Nunes, L.; Knapic, S.; Pimenta, R.; Pinto, T.; Duarte, S.; Miranda, I.; Pereira, H. Chemical Characterization, Hardness and Termite Resistance of Quercus Cerris Heartwood from Kosovo. Maderas. Cienc. Y Tecnol. 2018, 20, 305–314. [Google Scholar] [CrossRef]
- Lavisci, P.; Masson, D.; Deglise, X. Quality of Turkey Oak (Quercus cerris L.) Wood. II. Analysis of Some Physico-Chemical Parameters Related to Its Gluability. Holzforschung 1991, 45, 415–418. [Google Scholar] [CrossRef]
- Winkler, A. Faforgácslapok; Szaktudás Kiadó Ház Zrt: Budapest, Hungary, 1998; ISBN 3000000295236. [Google Scholar]
- Horváth, N.; Altgen, M.; Németh, R.; Militz, H.; Joóbné Preklet, E. Chemical and Structural Changes of Heat Treated Turkey Oak and Hornbeam—Overview and Preliminary Results. In Proceedings of the Eco-efficient Resource Wood with Special Focus on Hardwoods; University of West Hungary Press: Sopron, Hungary, 2016; pp. 100–101. [Google Scholar]
- Molnár, S.; Tolvaj, L.; Németh, R. Holzqualität Und Homogenisierung Der Farbe von Zerreiche (Quercus cerris L.) Mittels Dämpfprozess. Holztechnologie 2006, 47, 20–23. [Google Scholar]
- Tolvaj, L.; Molnár, S. Colour Homogenisation of Hardwood Species by Steaming. Acta Silv. Et Lignaria Hung. 2006, 2, 105–112. [Google Scholar]
- Todaro, L. Effect of Steaming Treatment on Resistance to Footprints in Turkey Oak Wood for Flooring. Eur. J. Wood Wood Prod. 2012, 70, 209–214. [Google Scholar] [CrossRef]
- Todaro, L.; Zanuttini, R.; Scopa, A.; Moretti, N. Influence of Combined Hydro-Thermal Treatments on Selected Properties of Turkey Oak (Quercus cerris L.) Wood. Wood Sci. Technol. 2012, 46, 563–578. [Google Scholar] [CrossRef]
- Todaro, L.; Zuccaro, L.; Marra, M.; Basso, B.; Scopa, A. Steaming Effects on Selected Wood Properties of Turkey Oak by Spectral Analysis. Wood Sci. Technol. 2012, 46, 89–100. [Google Scholar] [CrossRef]
- Ferrari, S.; Allegretti, O.; Cuccui, I.; Moretti, N.; Marra, M.; Todaro, L. A Revaluation of Turkey Oak Wood (Quercus cerris L.) Through Combined Steaming and Thermo-Vacuum Treatments. BioResources 2013, 8, 5051–5066. [Google Scholar] [CrossRef]
- Todaro, L.; Dichicco, P.; Moretti, N.; D’Auria, M. Effect of Combined Steam and Heat Treatments on Extractives and Lignin in Sapwood and Heartwood of Turkey Oak (Quercus cerris L.) Wood. BioResources 2013, 8, 1718–1730. [Google Scholar] [CrossRef]
- Todaro, L.; Rita, A.; Moretti, N.; Cuccui, I.; Pellerano, A. Assessment of Thermo-Treated Bonded Wood Performance: Comparisons among Norway Spruce, Common Ash, and Turkey Oak. BioResources 2014, 10, 772–781. [Google Scholar] [CrossRef]
- Todaro, L.; D’Auria, M.; Langerame, F.; Salvi, A.M.; Scopa, A. Surface Characterization of Untreated and Hydro-Thermally Pre-Treated Turkey Oak Woods after UV-C Irradiation. Surf. Interface Anal. 2015, 47, 206–215. [Google Scholar] [CrossRef]
- Todaro, L.; Rita, A.; Pucciariello, R.; Mecca, M.; Hiziroglu, S. Influence of Thermo-Vacuum Treatment on Thermal Degradation of Various Wood Species. Eur. J. Wood Wood Prod. 2018, 76, 541–547. [Google Scholar] [CrossRef]
- Cetera, P.; Todaro, L.; Lovaglio, T.; Moretti, N.; Rita, A. Steaming Treatment Decreases MOE and Compression Strength of Turkey Oak Wood. Wood Res. 2016, 61, 255–265. [Google Scholar]
- Cetera, P.; Russo, D.; Milella, L.; Todaro, L. Thermo-Treatment Affects Quercus Cerris L. Wood Properties and the Antioxidant Activity and Chemical Composition of Its by-Product Extracts. Ind. Crops Prod. 2019, 130, 380–388. [Google Scholar] [CrossRef]
- Rowell, R.M. The Chemistry of Solid Wood; American Chemical Society: Washington, DC, USA, 1984. [Google Scholar]
- Uzelac Glavinić, I.; Boko, I.; Lovrić Vranković, J.; Torić, N.; Abramović, M. An Experimental Investigation of Hardwoods Harvested in Croatian Forests for the Production of Glued Laminated Timber. Materials 2023, 16, 1843. [Google Scholar] [CrossRef] [PubMed]
- Sahula, L.; Šedivka, P.; Zachara, T.; Borůvka, V. The effect of chemical modification of the surface of the glued surface on the strength of the structural joint of oak wood. Cent. Eur. For. J. 2023, 69, 120–125. [Google Scholar] [CrossRef]
- Horváth, N.; Csiha, C. Measurements of the Load-Bearing Structural Aspects of Pannónia Poplar from Sites in Western Transdanubia, Hungary. Acta Silv. Et Lignaria Hung. 2022, 18, 119–127. [Google Scholar] [CrossRef]
- Girotra, K. Process for Wood Acetylation and Product Thereof 2013. Available online: https://patents.google.com/patent/US8512815B2/en (accessed on 17 December 2023).
- Rowell, R. Handbook Of Wood Chemistry And Wood Composites; CRC Press: Boca Raton, FL, USA, 2012; ISBN 978-0-8493-1588-6. [Google Scholar]
- Ghavidel, A.; Hofmann, T.; Bak, M.; Sandu, I.; Vasilache, V. Comparative Archaeometric Characterization of Recent and Historical Oak (Quercus spp.) Wood. Wood Sci. Technol. 2020, 54, 1121–1137. [Google Scholar] [CrossRef]
- Ghavidel, A.; Gelbrich, J.; Kuqo, A.; Vasilache, V.; Sandu, I. Investigation of Archaeological European White Elm (Ulmus laevis) for Identifying and Characterizing the Kind of Biological Degradation. Heritage 2020, 3, 1083–1093. [Google Scholar] [CrossRef]
- Amato, D.; Squillaci, G.; Giudicianni, P.; Morana, A.; Ragucci, R.; Cara, F.L. Valorization of Agroindustrial Waste from Chestnut Production. Chem. Eng. Trans. 2021, 87, 445–450. [Google Scholar] [CrossRef]
- Stefke, B.; Windeisen, E.; Schwanninger, M.; Hinterstoisser, B. Determination of the Weight Percentage Gain and of the Acetyl Group Content of Acetylated Wood by Means of Different Infrared Spectroscopic Methods. Anal. Chem. 2008, 80, 1272–1279. [Google Scholar] [CrossRef]
- Schwanninger, M.; Stefke, B.; Hinterstoisser, B. Qualitative Assessment of Acetylated Wood with Infrared Spectroscopic Methods. J. Near Infrared Spectrosc. 2011, 19, 349–357. [Google Scholar] [CrossRef]
- Mohebby, B. Application of ATR Infrared Spectroscopy in Wood Acetylation. J. Agric. Sci. Technol. 2008, 10, 253–259. [Google Scholar]
- Fodor, F.; Németh, R.; Lankveld, C.; Hofmann, T. Effect of Acetylation on the Chemical Composition of Hornbeam (Carpinus betulus L.) in Relation with the Physical and Mechanical Properties. Wood Mater. Sci. Eng. 2018, 13, 271–278. [Google Scholar] [CrossRef]
- Bari, E.; Jamali, A.; Nazarnezhad, N.; Nicholas, D.D.; Humar, M.; Najafian, M. An Innovative Method for the Chemical Modification of Carpinus Betulus Wood: A Methodology and Approach Study. Holzforschung 2019, 73, 839–846. [Google Scholar] [CrossRef]
- Baufleur, A.M.Y.; Stangerlin, D.M.; de Vasconcelos, L.G.; Pariz, E.; Junior, F.R.; Paula, E.A. de O.; de Melo, R.R. Effect of Acetylation on Technological Characteristics of Jacaranda Copaia wood: Part 2—Chemical and Colorimetric Changes. Nativa 2022, 10, 283–289. [Google Scholar] [CrossRef]
- Chai, Y.; Liu, J.; Wang, Z.; Zhao, Y. Dimensional Stability and Mechanical Properties of Plantation Poplar Wood Esterified Using Acetic Anhydride. BioResources 2016, 12, 912–922. [Google Scholar] [CrossRef]
- Rowell, R.M. Acetylation of Wood: Journey from Analytical Technique to Commercial Reality. For. Prod. J. 2006, 56, 4–12. [Google Scholar]
- Cetin, N.S.; Ozmen, N. Acetylation of Wood Components and Fourier Transform Infra-Red Spectroscopy Studies. AJB 2011, 10, 3091–3096. [Google Scholar] [CrossRef]
- Ohkoshi, M.; Kato, A. 13C-NMR Analysis of Acetyl Groups in Acetylated Wood II. Acetyl Groups in Lignin. Mokuzai Gakkaishi 1997, 43, 364–369. [Google Scholar]
- Tolvaj, L. A Faanyag Optikai Tulajdonságai; University of West Hungary: Sopron, Hungary, 2013. [Google Scholar]
- Ying, W.; Ouyang, J.; Lian, Z.; Xu, Y.; Zhang, J. Lignin Removal Improves Xylooligosaccharides Production from Poplar by Acetic Acid Hydrolysis. Bioresour. Technol. 2022, 354, 127190. [Google Scholar] [CrossRef]
- Osman, N.B.; McDonald, A.G.; Laborie, M.-P.G. Characterization of Water-Soluble Extracts from Hot-Pressed Poplar. Eur. J. Wood Wood Prod. 2013, 71, 343–351. [Google Scholar] [CrossRef]
- Szadkowska, D.; Zawadzki, J.; Kozakiewicz, P.; Radomski, A. Identification of Extractives from Various Poplar Species. Forests 2021, 12, 647. [Google Scholar] [CrossRef]
- Pettersen, R.C. The Chemical Composition of Wood. In The Chemistry of Solid Wood; Advances in Chemistry; American Chemical Society: Washington, DC, USA, 1984; Volume 207, pp. 57–126. ISBN 978-0-8412-0796-7. [Google Scholar]
- Bongers, F.; Meijerink, T.; Lütkemeier, B.; Lankveld, C.; Alexander, J.; Militz, H.; Lehringer, C. Bonding of Acetylated Wood. Int. Wood Prod. J. 2016, 7, 102–106. [Google Scholar] [CrossRef]
- Beckers, E.P.J.; Bongers, F.; van der Zee, M.E.; Sander, C. Acetyl Content Determination Using Different Analytical Techniques. In Proceedings of the First European Conference on Wood Modification; Ghent University: Ghent, Belgium, 2003; pp. 83–103. [Google Scholar]
- Dreher, W.A.; Goldstein, I.S.; Cramer, G.R. Mechanical Properties of Acetylated Wood. For. Prod. J. 1964, 14, 66–68. [Google Scholar]
- Papadopoulos, A.N.; Tountziarakis, P. The Effect of Acetylation on the Janka Hardness of Pine Wood. Eur. J. Wood Wood Prod. 2011, 69, 499–500. [Google Scholar] [CrossRef]
- Sandberg, D.; Kutnar, A.; Karlsson, O.; Jones, D. Wood Modification Technologies—Principles, Sustainability, and the Need for Innovation; CRC Press: Boca Raton, FL, USA, 2021; ISBN 978-1-351-02822-6. [Google Scholar]
- Boever, L.D.; Vansteenkiste, D.; Stevens, M.; Acker, J.V. Kiln Drying of Poplar Wood at Low Temperature: Beam Distortions in Relation to Wood Density, Tension Wood Occurence and Moisture Distribution. Wood Res. 2011, 56, 245–256. [Google Scholar]
- Ward, J.C.; Pong, W.Y. Wetwood in Trees: A Timber Resource Problem; U.S. Department of Agriculture, Forest Service, Pacific Northwest Forestry and Range Experiment Station: Madison, MI, USA, 1980; p. 56.
Chemical Composition | Untreated | Acetylated | Difference (pp) | Percent Change (%) | Acetylated | ||||
---|---|---|---|---|---|---|---|---|---|
S | H | S | H | S | H | S | H | Degraded | |
Moisture content (%) | 5.9 | 5.9 | 2.5 | 2.5 | −3.40 | −3.40 | −58 | −58 | 2.8 |
Holocellulose content (%) | 77.59 a (2.65) | 78.47 a (0.34) | 91.55 b (1.03) | 90.26 b (4.26) | +13.96 | +11.79 | +18 | +15 | 84.36 ab (2.60) |
Hemicelluloses content (%) | 33.52 a (3.64) | 33.81 a (1.45) | 60.68 b (0.19) | 58.08 b (0.59) | + 27.16 | +24.27 | +81 | +72 | 54.44 b (2.99) |
Alpha-cellulose content (%) | 44.07 bc (0.98) | 44.66 c (1.11) | 30.87 a (0.84) | 32.19 ab (3.67) | −13.20 | −12.47 | −30 | −28 | 29.92 a (5.59) |
Klason lignin content (%) | 17.10 b (0.43) | 19.11 b (1.95) | 6.47 a (0.47) | 8.14 a (1.98) | −10.63 | −10.97 | −62 | −57 | 7.17 a (0.23) |
Extractive content (%) | 4.41 c (0.03) | 3.38 b (0.14) | 2.72 a (0.15) | 2.41 a (0.01) | −1.69 | −0.97 | −38 | −29 | 3.79 b (0.13) |
Ash content (%) | 0.90 b (0.06) | 1.11 b (0.10) | 0.22 a (0.08) | 0.88 b (0.19) | −0.68 | −0.23 | −75 | −20 | 0.83 b (0.03) |
pH | 5.79 a (0.01) | 6.59 b (0.12) | 5.35 a (0.21) | 6.52 b (0.10) | - | - | - | - | 5.70 a (0.07) |
Buffering capacity (mg/g) | 0.36 b (0.03) | 0.11 a (0.03) | 0.35 b (0.08) | 0.13 a (0.05) | −0.01 | +0.02 | −3 | +18 | 0.56 c (0.00) |
Chemical Composition | Untreated | Acetylated | Difference (pp) | Percent Change (%) | ||||
---|---|---|---|---|---|---|---|---|
S | H | S | H | S | H | S | H | |
Moisture content (%) | 5.4 | 4.1 | 3.3 | 3.3 | −2.10 | −0.80 | −39 | −20 |
Holocellulose content (%) | 77.87 a (0.08) | 75.96 a (1.91) | 79.27 a (2.77) | 76.26 a (5.23) | +1.40 | +0.30 | +2 | +0 |
Hemicelluloses content (%) | 29.66 a (0.95) | 31.73 a (4.65) | 44.95 a (0.29) | 38.85 a (7.51) | +15.29 | +7.12 | +52 | +22 |
Alpha-cellulose content (%) | 48.21 c (0.87) | 44.23 bc (2.74) | 34.32 a (2.47) | 37.41 ab (2.28) | −13.89 | −6.82 | −29 | −15 |
Klason lignin content (%) | 16.27 a (0.23) | 16.20 a (1.60) | 13.25 a (1.07) | 17.27 a (2.16) | −3.02 | +1.07 | −19 | +7 |
Extractive content (%) | 4.89 a (0.09) | 5.09 a (0.11) | 4.70 a (0.23) | 5.64 b (0.04) | −0.19 | +0.55 | −4 | +11 |
Ash content (%) | 1.13 a (0.22) | 1.16 a (0.27) | 0.60 a (0.10) | 0.61 a (0.08) | −0.53 | −0.55 | −47 | −47 |
pH | 5.58 a (0.04) | 5.39 a (0.04) | 5.86 a (0.47) | 5.13 a (0.24) | - | - | - | - |
Buffering capacity (mg/g) | 0.45 b (0.01) | 0.48 b (0.00) | 0.27 a (0.04) | 1.02 c (0.03) | −0.18 | +0.54 | −40 | +113 |
Wood Species | Wavenumber (cm−1) | Absorption | Wavenumber (cm−1) | Absorption | Ratio | HPLC Acetyl Content (%) |
---|---|---|---|---|---|---|
Pannonia poplar | ||||||
Sapwood | 1760 | 3.287 | 1507 | 1.061 | 3.098 | 24 |
Heartwood | 1761 | 3.316 | 1508 | 1.018 | 3.257 | >24 |
Degraded part | 1755 | 3.235 | 1509 | 1.054 | 3.069 | 24 |
Turkey oak | ||||||
Sapwood | 1762 | 1.061 | 1510 | 0.581 | 1.828 | 15 |
Heartwood | 1752 | 0.783 | 1510 | 0.609 | 1.287 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fodor, F.; Hofmann, T. Chemical Composition and FTIR Analysis of Acetylated Turkey Oak and Pannonia Poplar Wood. Forests 2024, 15, 207. https://doi.org/10.3390/f15010207
Fodor F, Hofmann T. Chemical Composition and FTIR Analysis of Acetylated Turkey Oak and Pannonia Poplar Wood. Forests. 2024; 15(1):207. https://doi.org/10.3390/f15010207
Chicago/Turabian StyleFodor, Fanni, and Tamás Hofmann. 2024. "Chemical Composition and FTIR Analysis of Acetylated Turkey Oak and Pannonia Poplar Wood" Forests 15, no. 1: 207. https://doi.org/10.3390/f15010207