Green Fabrication of Silver Nanoparticles, Statistical Process Optimization, Characterization, and Molecular Docking Analysis of Their Antimicrobial Activities onto Cotton Fabrics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Isolate and Biomass Preparation
2.2. Fungal Morphological and Molecular Identification
2.3. Extracellular Synthesis of AgNPs Using A. flavus
2.4. The Optimization of AgNPs Biosynthesis: A Box-Behnken Design Approach
2.5. Characterization of Bio-Synthesized AgNPs
2.5.1. Ultraviolet-Visible (UV-Vis) Spectral Analysis
2.5.2. Scanning Electron Microscopy (SEM) Analysis
2.5.3. Transmission Electron Microscopy (TEM) Analysis
2.5.4. Selected Area Electron Diffraction (SAED) Pattern
2.5.5. Zeta Potential Distribution
2.5.6. Energy-Dispersive X-Ray Spectroscopy (EDX) Analysis
2.5.7. X-Ray Diffractometer (XRD) Analysis
2.5.8. Fourier Transform Infrared (FTIR) Spectroscopy
2.6. Evaluation of Antimicrobial Activity Using AgNPs-Loaded Cotton Fabrics
2.7. Molecular Docking Approach
2.7.1. Ligand Preparation
2.7.2. Forward Reaction Prediction
2.7.3. Protein Preparation
2.7.4. Molecular Docking Process
2.7.5. ADMET, Pharmacokinetics, and Skin Sensitization Prediction of Products Generated from AgNPs-Loaded Cotton Fabrics
2.8. Statistical Analysis
3. Results and Discussion
3.1. Identification of A. flavus
3.2. Extracellular Synthesis of AgNPs Using A. flavus
3.3. Optimizing AgNPs Biosynthesis Using Box-Behnken Design (BBD)
3.4. Model Fitting
3.4.1. Three-Dimensional (3D) Surface Plot
3.4.2. The Model’s Adequacy
3.4.3. The Desirability Function
3.5. Characterization of the Biosynthesized AgNPs
3.6. Antimicrobial Efficacy of Cotton Fabrics Loaded with Bio-Synthesized AgNPs
3.7. Molecular Docking Analysis of AgNPs Biosynthesized by the Aqueous Mycelial-Free Filtrate of A. flavus Loaded onto Cotton Fabrics
3.8. Pharmacokinetic Properties of the Predicted Compound Resulting from AgNPs Loaded onto Cotton Fabrics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- A Afolalu, S.; Soetan, S.B.; O Ongbali, S.; A Abioye, A.; Oni, A.S. Morphological characterization and physio-chemical properties of nanoparticle—Review. IOP Conf. Ser. Mater. Sci. Eng. 2019, 640, 012065. [Google Scholar] [CrossRef]
- Altammar, K.A. A review on nanoparticles: Characteristics, synthesis, applications, and challenges. Front. Microbiol. 2023, 14, 1155622. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Jiménez, B.; Johnson, M.E.; Montoro Bustos, A.R.; Murphy, K.E.; Winchester, M.R.; Vega Baudrit, J.R. Silver Nanoparticles: Technological Advances, Societal Impacts, and Metrological Challenges. Front. Chem. 2017, 5, 6. [Google Scholar] [CrossRef] [PubMed]
- Pulit-Prociak, J.; Banach, M. Silver nanoparticles—A material of the future…? Open Chem. 2016, 14, 76–91. [Google Scholar] [CrossRef]
- Rodrigues, A.S.; Batista, J.G.S.; Rodrigues, M.V.; Thipe, V.C.; Minarini, L.A.R.; Lopes, P.S.; Lugão, A.B. Murilo Advances in silver nanoparticles: A comprehensive review on their potential as antimicrobial agents and their mechanisms of action elucidated by proteomics. Front. Microbiol. 2024, 15, 1440065. [Google Scholar] [CrossRef]
- Hou, T.; Guo, Y.; Han, W.; Zhou, Y.; Netala, V.R.; Li, H.; Li, H.; Zhang, Z. Exploring the biomedical applications of biosynthesized silver nanoparticles using Perilla frutescens flavonoid extract: Antibacterial, antioxidant, and cell toxicity properties against colon cancer cells. Molecules 2023, 28, 6431. [Google Scholar] [CrossRef]
- Zahoor, M.; Nazir, N.; Iftikhar, M.; Naz, S.; Zekker, I.; Burlakovs, J.; Uddin, F.; Kamran, A.W.; Kallistova, A.; Pimenov, N.; et al. A Review on Silver Nanoparticles: Classification, Various Methods of Synthesis, and Their Potential Roles in Biomedical Applications and Water Treatment. Water 2021, 13, 2216. [Google Scholar] [CrossRef]
- Sibuyi, N.R.S.; Thipe, V.C.; Panjtan-Amiri, K.; Meyer, M.; Katti, K.V. Green synthesis of gold nanoparticles using Acai berry and Elderberry extracts and investigation of their effect on prostate and pancreatic cancer cells. Nanobiomedicine 2021, 8, 1849543521995310. [Google Scholar] [CrossRef]
- Yafout, M.; Ousaid, A.; Khayati, Y.; El Otmani, I.S. Gold nanoparticles as a drug delivery system for standard chemotherapeutics: A new lead for targeted pharmacological cancer treatments. Sci. Afr. 2021, 11, e00685. [Google Scholar] [CrossRef]
- Guilger-Casagrande, M.; Lima, R.d. Synthesis of silver nanoparticles mediated by fungi: A review. Front. Bioeng. Biotechnol. 2019, 7, 287. [Google Scholar] [CrossRef]
- Osorio-Echavarría, J.; Ossa-Orozco, C.P.; Gómez-Vanegas, N.A. Synthesis of silver nanoparticles using white-rot fungus Anamorphous Bjerkandera sp. R1: Influence of silver nitrate concentration and fungus growth time. Sci. Rep. 2021, 11, 3842. [Google Scholar] [CrossRef] [PubMed]
- Huston, M.; DeBella, M.; DiBella, M.; Gupta, A. Green Synthesis of Nanomaterials. Nanomaterials 2021, 11, 2130. [Google Scholar] [CrossRef] [PubMed]
- Fouda, A.; Awad, M.A.; Al-Faifi, Z.E.; Gad, M.E.; Al-Khalaf, A.A.; Yahya, R.; Hamza, M.F. Aspergillus flavus-mediated green synthesis of silver nanoparticles and evaluation of their antibacterial, anti-candida, acaricides, and photocatalytic activities. Catalysts 2022, 12, 462. [Google Scholar] [CrossRef]
- El-Naggar, N.E.-A.; Dalal, S.R.; Zweil, A.M.; Eltarahony, M. Artificial intelligence-based optimization for chitosan nanoparticles biosynthesis, characterization and in-vitro assessment of its anti-biofilm potentiality. Sci. Rep. 2023, 13, 4401. [Google Scholar] [CrossRef]
- El-Naggar, N.E.-A.; El-Sawah, A.A.; Elmansy, M.F.; Elmessiry, O.T.; El-Saidy, M.E.; El-Sherbeny, M.K.; Sarhan, M.T.; Elhefnawy, A.A.; Dalal, S.R. Process optimization for gold nanoparticles biosynthesis by Streptomyces albogriseolus using artificial neural network, characterization and antitumor activities. Sci. Rep. 2024, 14, 4581. [Google Scholar] [CrossRef]
- Beg, S.; Akhter, S. Box–Behnken designs and their applications in pharmaceutical product development. In Design of Experiments for Pharmaceutical Product Development; Beg, S., Ed.; Springer: Singapore, 2021; Volume I, pp. 77–85. [Google Scholar]
- Mahmud, S.; Pervez, N.; Abu Taher, M.; Mohiuddin, K.; Liu, H.-H. Multifunctional organic cotton fabric based on silver nanoparticles green synthesized from sodium alginate. Text. Res. J. 2019, 90, 1224–1236. [Google Scholar] [CrossRef]
- Repon, R.; Islam, T.; Sadia, H.T.; Mikučionienė, D.; Hossain, S.; Kibria, G.; Kaseem, M. Development of Antimicrobial Cotton Fabric Impregnating AgNPs Utilizing Contemporary Practice. Coatings 2021, 11, 1413. [Google Scholar] [CrossRef]
- Zhou, Q.; Lv, J.; Ren, Y.; Chen, J.; Gao, D.; Lu, Z.; Wang, C. A green in situ synthesis of silver nanoparticles on cotton fabrics using Aloe vera leaf extraction for durable ultraviolet protection and antibacterial activity. Text. Res. J. 2016, 87, 2407–2419. [Google Scholar] [CrossRef]
- Crisan, C.M.; Mocan, T.; Manolea, M.; Lasca, L.I.; Tăbăran, F.-A.; Mocan, L. Review on Silver Nanoparticles as a Novel Class of Antibacterial Solutions. Appl. Sci. 2021, 11, 1120. [Google Scholar] [CrossRef]
- Zhao, S.-W.; Guo, C.-R.; Hu, Y.-Z.; Guo, Y.-R.; Pan, Q.-J. The preparation and antibacterial activity of cellulose/ZnO composite: A review. Open Chem. 2018, 16, 9–20. [Google Scholar] [CrossRef]
- Aziz, T.; Farid, A.; Haq, F.; Kiran, M.; Ullah, A.; Zhang, K.; Li, C.; Ghazanfar, S.; Sun, H.; Ullah, R.; et al. A Review on the Modification of Cellulose and Its Applications. Polymers 2022, 14, 3206. [Google Scholar] [CrossRef]
- Al-Bar, O.A.M.; El-Shishtawy, R.M.; Mohamed, S.A. Immobilization of Camel Liver Catalase on Nanosilver-Coated Cotton Fabric. Catalysts 2021, 11, 900. [Google Scholar] [CrossRef]
- Gao, Y.; Cranston, R. Recent Advances in Antimicrobial Treatments of Textiles. Text. Res. J. 2008, 78, 60–72. [Google Scholar] [CrossRef]
- Panáček, A.; Kvítek, L.; Prucek, R.; Kolář, M.; Večeřová, R.; Pizúrová, N.; Sharma, V.K.; Nevěčná, T.j.; Zbořil, R. Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B. 2006, 110, 16248–16253. [Google Scholar] [CrossRef] [PubMed]
- Elamawi, R.M.; Al-Harbi, R.E. Effect of biosynthesized silver nanoparticles on fusarium oxysporum fungus the cause of seed rot disease of faba bean, tomato and barley. J. Plant Prot. Pathol. 2014, 5, 225–237. [Google Scholar] [CrossRef]
- Jain, A.; Kongkham, B.; Puttaswamy, H.; Butola, B.S.; Malik, H.K.; Malik, A. Development of Wash-Durable Antimicrobial Cotton Fabrics by In Situ Green Synthesis of Silver Nanoparticles and Investigation of Their Antimicrobial Efficacy against Drug-Resistant Bacteria. Antibiotics 2022, 11, 864. [Google Scholar] [CrossRef]
- Patil, A.H.; Jadhav, S.A.; Gurav, K.D.; Waghmare, S.R.; Patil, G.D.; Jadhav, V.D.; Vhanbatte, S.H.; Kadole, P.V.; Sonawane, K.D.; Patil, P.S. Single step green process for the preparation of antimicrobial nanotextiles by wet chemical and sonochemical methods. J. Text. Inst. 2019, 111, 1380–1388. [Google Scholar] [CrossRef]
- Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol. 2016, 7, 1831. [Google Scholar] [CrossRef]
- Jin, J.; Wu, Y.; Liang, L.; Wei, Y.; Zheng, X.; Chen, Y. Altering sliver nanoparticles-induced inhibition to bacterial denitrification via visible light by regulating silver transformation and adaptive mechanism under anaerobic conditions. Chem. Eng. J. 2022, 452, 139268. [Google Scholar] [CrossRef]
- Abdalla, S.S.I.; Katas, H.; Chan, J.Y.; Ganasan, P.; Azmi, F.; Busra, M.F.M. Antimicrobial activity of multifaceted lactoferrin or graphene oxide functionalized silver nanocomposites biosynthesized using mushroom waste and chitosan. RSC Adv. 2020, 10, 4969–4983. [Google Scholar] [CrossRef]
- Segler, M.H.S.; Preuss, M.; Waller, M.P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 2018, 555, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Tropsha, A.; Isayev, O.; Varnek, A.; Schneider, G.; Cherkasov, A. Integrating QSAR modelling and deep learning in drug discovery: The emergence of deep QSAR. Nat. Rev. Drug Discov. 2023, 23, 141–155. [Google Scholar] [CrossRef] [PubMed]
- El-Kadi, S.M.; El-Fadaly, H.A.; El-Gayar, E. Scanning electron microscopy of fungi isolated from some cake samples. Int. J. Microbiol. Application 2018, 5, 50–55. [Google Scholar]
- Doyle, J. DNA protocols for plants. Molecular techniques in taxonomy. Nato. Asi. Ser. 1991, 57, 283–293. [Google Scholar]
- Rozen, S.; Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. Bioinform. Methods Protoc. 2000, 132, 365–386. [Google Scholar]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Ruud, C.; Barrett, C.; Russell, P.; Clark, R. Selected area electron diffraction and energy dispersive X-ray analysis for the identification of asbestos fibres, a comparison. Micron 1976, 7, 115–132. [Google Scholar] [CrossRef]
- Basavaraja, S.; Balaji, D.S.; Bedre, M.D.; Raghunandan, D.; Swamy, P.M.P.; Venkataraman, A. Solvothermal synthesis and characterization of acicular α-Fe2O3 nanoparticles. Bull. Mater. Sci. 2011, 34, 1313–1317. [Google Scholar] [CrossRef]
- Wang, Z.L. Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies. J. Phys. Chem. B 2000, 104, 1153–1175. [Google Scholar] [CrossRef]
- Devi, L.S.; Joshi, S.R. Antimicrobial and Synergistic Effects of Silver Nanoparticles Synthesized Using Soil Fungi of High Altitudes of Eastern Himalaya. Mycobiology 2012, 40, 27–34. [Google Scholar] [CrossRef]
- Durán, N.; Marcato, P.D.; Alves, O.L.; De Souza, G.I.H.; Esposito, E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanobiotechnol. 2005, 3, 8. [Google Scholar] [CrossRef]
- El-Naggar, N.E.-A.; El-Shweihy, N.M.; El-Ewasy, S.M. Identification and statistical optimization of fermentation conditions for a newly isolated extracellular cholesterol oxidase-producing Streptomyces cavourensis strain NEAE-42. BMC Microbiol. 2016, 16, 217. [Google Scholar] [CrossRef]
- Rajendran, P.; Rathinasabapathy, R.; Kishore, S.C.; Bellucci, S. Computational-Simulation-Based Behavioral Analysis of Chemical Compounds. J. Compos. Sci. 2023, 7, 196. [Google Scholar] [CrossRef]
- Sankaranarayanan, K.; Jensen, K.F. Computer-assisted multistep chemoenzymatic retrosynthesis using a chemical synthesis planner. Chem. Sci. 2023, 14, 6467–6475. [Google Scholar] [CrossRef]
- Ninh The, S.; Le Tuan, A.; Dinh Thi Thu, T.; Nguyen Dinh, L.; Tran Thi, T.; Pham-The, H. Essential oils of Uvaria boniana–chemical composition, in vitro bioactivity, docking, and in silico ADMET profiling of selective major compounds. Z. Naturforsch. C. 2022, 77, 207–218. [Google Scholar] [CrossRef]
- Monk, B.C.; Keniya, M.V. Roles for Structural Biology in the Discovery of Drugs and Agrochemicals Targeting Sterol 14α-Demethylases. J. Fungi 2021, 7, 67. [Google Scholar] [CrossRef]
- Świątek, P.; Glomb, T.; Dobosz, A.; Gębarowski, T.; Wojtkowiak, K.; Jezierska, A.; Panek, J.J.; Świątek, M.; Strzelecka, M. Biological Evaluation and Molecular Docking Studies of Novel 1,3,4-Oxadiazole Derivatives of 4,6-Dimethyl-2-sulfanylpyridine-3-carboxamide. Int. J. Mol. Sci. 2022, 23, 549. [Google Scholar] [CrossRef]
- Sardar, H. Drug like potential of Daidzein using Swiss ADME prediction: In silico Approaches. Phytonutrients 2023, 2, 2–8. [Google Scholar] [CrossRef]
- Borba, J.V.B.; Braga, R.C.; Alves, V.M.; Muratov, E.N.; Kleinstreuer, N.C.; Tropsha, A.; Andrade, C.H. Pred-Skin: A Web Portal for Accurate Prediction of Human Skin Sensitizers. Chem. Res. Toxicol. 2020, 34, 258–267. [Google Scholar] [CrossRef]
- Mansoori, G.A.; Soelaiman, T.F. Nanotechnology—An introduction for the standards community. J. ASTM Int. 2005, 2, 1–21. [Google Scholar] [CrossRef]
- Rai, M.; Yadav, A.; Gade, A. Mycofabrication, mechanistic aspect and multifunctionality of metal nanoparticles–where are we? And where should we go? In Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology; Formatex Research Center: Norristown, PA, USA, 2010; pp. 1343–1354. [Google Scholar]
- Gopa, D.R.; Pullapukuri, K. Green synthesis of silver nanoparticles from Aspergillus flavus and their antibacterial performance. Chem. Prod. Process Model. 2022, 18, 761–768. [Google Scholar] [CrossRef]
- Derbalah, A.; Khattab, I.; Allah, M.S. Isolation and molecular identification of Aspergillus flavus and the study of its potential for malathion biodegradation in water. World J. Microbiol. Biotechnol. 2020, 36, 91. [Google Scholar] [CrossRef] [PubMed]
- Brause, R.; Möltgen, H.; Kleinermanns, K. Characterization of laser-ablated and chemically reduced silver colloids in aqueous solution by UV/VIS spectroscopy and STM/SEM microscopy. Appl. Phys. B Laser Opt. 2002, 75, 711–716. [Google Scholar] [CrossRef]
- Mohamedin, A.; El-Naggar, N.E.-A.; Hamza, S.S.; Sherief, A. Green Synthesis, Characterization and Antimicrobial Activities of Silver Nanoparticles by Streptomyces viridodiastaticus SSHH-1 as a Living Nanofactory: Statistical Optimization of Process Variables. Curr. Nanosci. 2015, 11, 640–654. [Google Scholar] [CrossRef]
- El-Naggar, N.E.-A. Isolation, Screening and Identification of Actinobacteria with Uricase Activity: Statistical Optimization of Fermentation Conditions for Improved Production of Uricase by Streptomyces rochei NEAE-25. Int. J. Pharmacol. 2015, 11, 644–658. [Google Scholar] [CrossRef]
- El-Naggar, N.E.-A.; Hussein, M.H.; El-Sawah, A.A. Phycobiliprotein-mediated synthesis of biogenic silver nanoparticles, characterization, in vitro and in vivo assessment of anticancer activities. Sci. Rep. 2018, 8, 8925. [Google Scholar] [CrossRef]
- El-Naggar, N.E.-A.; Rabei, N.H. Bioprocessing optimization for efficient simultaneous removal of methylene blue and nickel by Gracilaria seaweed biomass. Sci. Rep. 2020, 10, 17439. [Google Scholar] [CrossRef]
- El-Naggar, N.E.-A.; El-Khateeb, A.Y.; Ghoniem, A.A.; El-Hersh, M.S.; Saber, W.I.A. Innovative low-cost biosorption process of Cr6+ by Pseudomonas alcaliphila NEWG-2. Sci. Rep. 2020, 10, 14043. [Google Scholar] [CrossRef]
- El-Naggar, N.E.-A.; El-Shweihy, N.M. Bioprocess development for L-asparaginase production by Streptomyces rochei, purification and in-vitro efficacy against various human carcinoma cell lines. Sci. Rep. 2020, 10, 7942. [Google Scholar] [CrossRef]
- El-Naggar, N.E.-A.; Hamouda, R.A.; Saddiq, A.A.; Alkinani, M.H. Simultaneous bioremediation of cationic copper ions and anionic methyl orange azo dye by brown marine alga Fucus vesiculosus. Sci. Rep. 2021, 11, 3555. [Google Scholar] [CrossRef]
- El-Naggar, N.E.-A.; Shweqa, N.S.; Abdelmigid, H.M.; Alyamani, A.A.; Elshafey, N.; Soliman, H.M.; Heikal, Y.M. Myco-Biosynthesis of Silver Nanoparticles, Optimization, Characterization, and In Silico Anticancer Activities by Molecular Docking Approach against Hepatic and Breast Cancer. Biomolecules 2024, 14, 1170. [Google Scholar] [CrossRef] [PubMed]
- Phongtongpasuk, S.; Norasingsatorn, T.; Yongvanich, N. Effect of pH on the Environmentally Friendly Fabrication of Silver Nanoparticles Using Rambutan Peel Extract. Key Eng. Mater. 2019, 824, 149–155. [Google Scholar] [CrossRef]
- Khan, N.; Jameel, J. Optimization of reaction parameters for silver nanoparticles synthesis from Fusarium oxysporum and determination of silver nanoparticles concentration. J. Mater. Sci. Eng. 2016, 5, 6–9. [Google Scholar]
- Singh, A.; Gaud, B.; Jaybhaye, S. Optimization of synthesis parameters of silver nanoparticles and its antimicrobial activity. Mater. Sci. Energy Technol. 2020, 3, 232–236. [Google Scholar] [CrossRef]
- El-Naggar, N.E.-A.; Hamouda, R.A.; Mousa, I.E.; Abdel-Hamid, M.S.; Rabei, N.H. Statistical optimization for cadmium removal using Ulva fasciata biomass: Characterization, immobilization and application for almost-complete cadmium removal from aqueous solutions. Sci. Rep. 2018, 8, 12456. [Google Scholar] [CrossRef]
- El-Naggar, N.E.-A.; Hussein, M.H.; El-Sawah, A.A. Bio-fabrication of silver nanoparticles by phycocyanin, characterization, in vitro anticancer activity against breast cancer cell line and in vivo cytotxicity. Sci. Rep. 2017, 7, 10844. [Google Scholar] [CrossRef]
- Ghoniem, A.A.; El-Naggar, N.E.-A.; Saber, W.I.A.; El-Hersh, M.S.; El-Khateeb, A.Y. Statistical modeling-approach for optimization of Cu2+ biosorption by Azotobacter nigricans NEWG-1; characterization and application of immobilized cells for metal removal. Sci. Rep. 2020, 10, 9491. [Google Scholar] [CrossRef]
- Hamouda, R.A.; El-Naggar, N.E.-A.; Doleib, N.M.; Saddiq, A.A. Bioprocessing strategies for cost-effective simultaneous removal of chromium and malachite green by marine alga Enteromorpha intestinalis. Sci. Rep. 2020, 10, 13479. [Google Scholar] [CrossRef]
- El-Naggar, N.E.-A.; Saber, W.I.A.; Zweil, A.M.; Bashir, S.I. An innovative green synthesis approach of chitosan nanoparticles and their inhibitory activity against phytopathogenic Botrytis cinerea on strawberry leaves. Sci. Rep. 2022, 12, 3515. [Google Scholar] [CrossRef]
- Narasimha, G.; Alzohairy, M.; Khadri, H.; Mallikarjuna, K. Extracellular synthesis, characterization and antibacterial activity of Silver nanoparticles by Actinomycetes isolative. Int. J. Nano Dimens. 2013, 4, 77–83. [Google Scholar]
- Jaidev, L.; Narasimha, G. Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids Surf. B Biointerfaces 2010, 81, 430–433. [Google Scholar] [CrossRef]
- Raza, M.A.; Kanwal, Z.; Rauf, A.; Sabri, A.N.; Riaz, S.; Naseem, S. Size- and Shape-Dependent Antibacterial Studies of Silver Nanoparticles Synthesized by Wet Chemical Routes. Nanomaterials 2016, 6, 74. [Google Scholar] [CrossRef]
- Forough, M.; Farhadi, K. Biological and green synthesis of silver nanoparticles. Turkish. J. Eng. Environ. Sci. 2010, 34, 281–287. [Google Scholar]
- Roy, S.; Mukherjee, T.; Chakraborty, S.; Das, T.K. Biosynthesis, characterisation & antifungal activity of silver nanoparticles synthesized by the fungus Aspergillus foetidus MTCC8876. Dig. J. Nanomater. Biostruct. 2013, 8, 197–205. [Google Scholar]
- Basheer, M.A.; Abutaleb, K.; Abed, N.N.; Mekawey, A.A.I. Mycosynthesis of silver nanoparticles using marine fungi and their antimicrobial activity against pathogenic microorganisms. J. Genet. Eng. Biotechnol. 2023, 21, 127. [Google Scholar] [CrossRef] [PubMed]
- Karthik, L.; Kumar, G.; Kirthi, A.V.; Rahuman, A.A.; Rao, K.V.B. Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosyst. Eng. 2013, 37, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Hamida, R.S.; Ali, M.A.; Alfassam, H.E.; Momenah, M.A.; Alkhateeb, M.A.; Bin-Meferij, M.M. One-Step Phytofabrication Method of Silver and Gold Nanoparticles Using Haloxylon salicornicum for Anticancer, Antimicrobial, and Antioxidant Activities. Pharmaceutics 2023, 15, 529. [Google Scholar] [CrossRef]
- Majeed, S.; Danish, M.; Ibrahim, M.N.M.; Sekeri, S.H.B.; Islam, S.A.U.; Ansari, M.T. In vitro cytotoxic effect of Aspergillus clavatus generated silver nanoparticles on RAW 264.7 cells. Karbala Int. J. Mod. Sci. 2020, 6, 2. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, A.; Nayal, A.S.; Vikal, S.; Shukla, G.; Singh, A.; Singh, A.; Goswami, S.; Kumar, A.; Gautam, Y.K.; et al. Comprehensive antifungal investigation of green synthesized silver nanoformulation against four agriculturally significant fungi and its cytotoxic applications. Sci. Rep. 2024, 14, 5934. [Google Scholar] [CrossRef]
- Jyoti, K.; Baunthiyal, M.; Singh, A. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J. Radiat. Res. Appl. Sci. 2016, 9, 217–227. [Google Scholar] [CrossRef]
- Gole, A.; Dash, C.; Ramakrishnan, V.; Sainkar, S.; Mandale, A.; Rao, M.; Sastry, M. Pepsin–gold colloid conjugates: Preparation, characterization, and enzymatic activity. Langmuir 2001, 17, 1674–1679. [Google Scholar] [CrossRef]
- Elamawi, R.M.; Al-Harbi, R.E.; Hendi, A.A. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt. J. Biol. Pest Control. 2018, 28, 28. [Google Scholar] [CrossRef]
- Heikal, Y.M.; Şuţan, N.A.; Rizwan, M.; Elsayed, A. Green synthesized silver nanoparticles induced cytogenotoxic and genotoxic changes in Allium cepa L. varies with nanoparticles doses and duration of exposure. Chemosphere 2020, 243, 125430. [Google Scholar] [CrossRef] [PubMed]
- Hamouda, T.; Myc, A.; Donovan, B.; Shih, A.Y.; Reuter, J.D.; Baker, J.R. A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi. Microbiol. Res. 2001, 156, 1–7. [Google Scholar] [CrossRef]
- Dibrov, P.; Dzioba, J.; Gosink, K.K.; Häse, C.C. Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrobial agents and chemotherapy. Antimicrob Agents Chemother 2002, 46, 2668–2670. [Google Scholar] [CrossRef]
- Ibrahim, H.M.; Hassan, M.S. Characterization and antimicrobial properties of cotton fabric loaded with green synthesized silver nanoparticles. Carbohydr. Polym. 2016, 151, 841–850. [Google Scholar] [CrossRef]
- Chudasama, B.; Vala, A.K.; Andhariya, N.; Upadhyay, R.V.; Mehta, R.V. Enhanced antibacterial activity of bifunctional Fe3O4-Ag core-shell nanostructures. Nano Res. 2009, 2, 955–965. [Google Scholar] [CrossRef]
- Chen, S.F.; Li, J.P.; Qian, K.; Xu, W.P.; Lu, Y.; Huang, W.X.; Yu, S.H. Large scale photochemical synthesis of M@TiO2 nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect. Nano Res. 2010, 3, 244–255. [Google Scholar] [CrossRef]
- Fatima, F.; Verma, S.R.; Pathak, N.; Bajpai, P. Extracellular mycosynthesis of silver nanoparticles and their microbicidal activity. J. Glob. Antimicrob. Resist. 2016, 7, 88–92. [Google Scholar] [CrossRef]
- Fooshee, D.; Mood, A.; Gutman, E.; Tavakoli, M.; Urban, G.; Liu, F.; Huynh, N.; Van Vranken, D.; Baldi, P. Deep learning for chemical reaction prediction. Mol. Syst. Des. Eng. 2017, 3, 442–452. [Google Scholar] [CrossRef]
- Hashem, A.H.; Hasanin, M.; Kamel, S.; Dacrory, S. A new approach for antimicrobial and antiviral activities of biocompatible nanocomposite based on cellulose, amino acid and graphene oxide. Colloid. Surface. B 2022, 209, 112172. [Google Scholar] [CrossRef]
- Rajavel, M.; Kumar, V.; Nguyen, H.; Wyatt, J.; Marshall, S.H.; Papp-Wallace, K.M.; Deshpande, P.; Bhavsar, S.; Yeole, R.; Bhagwat, S.; et al. Structural Characterization of Diazabicyclooctane β-Lactam “Enhancers” in Complex with Penicillin-Binding Proteins PBP2 and PBP3 of Pseudomonas aeruginosa. mBio 2021, 12, e03058-20. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Kim, S.; Kwon, Y.; Kim, Y.; Park, H.; Kwak, K.; Lee, H.; Lee, J.H.; Jang, K.-M.; Kim, D.; et al. Structural Insights for β-Lactam Antibiotics. Biomol. Ther. 2023, 31, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Farid, N.; Bux, K.; Ali, K.; Bashir, A.; Tahir, R. Repurposing Amphotericin B: Anti-microbial, molecular docking and molecular dynamics simulation studies suggest inhibition potential of Amphotericin B against MRSA. BMC Chem. 2023, 17, 67. [Google Scholar] [CrossRef] [PubMed]
- Rusu, A.V.; Penedo, B.A.; Schwarze, A.-K.; Trif, M. The influence of Candida spp. in intestinal microbiota; diet therapy, the emerging conditions related to candida in athletes and elderly people. In Update in Geriatrics; Amornyotin, S., Ed.; IntechOpen: London, UK, 2021. [Google Scholar]
- Xing, X.; Liao, Z.; Tan, F.; Zhu, Z.; Jiang, Y.; Cao, Y. Effect of nicotinamide against Candida albicans. Front. Microbiol. 2019, 10, 595. [Google Scholar] [CrossRef] [PubMed]
- Monk, B.C.; Sagatova, A.A.; Hosseini, P.; Ruma, Y.N.; Wilson, R.K.; Keniya, M.V. Fungal Lanosterol 14α-demethylase: A target for next-generation antifungal design. Biochim. Et Biophys. Acta (BBA) Proteins Proteom. 2020, 1868, 140206. [Google Scholar] [CrossRef]
- Ganeshkumar, A.; Suvaithenamudhan, S.; Rajaram, R. In Vitro and In Silico Analysis of Ascorbic Acid Towards Lanosterol 14-α-Demethylase Enzyme of Fluconazole-Resistant Candida albicans. Curr. Microbiol. 2020, 78, 292–302. [Google Scholar] [CrossRef]
- Caldeira, C.; Farcal, L.; Garmendia Aguirre, I.; Mancini, L.; Tosches, D.; Amelio, A.; Rasmussen, K.; Rauscher, H.; Riego Sintes, J.; Sala, S. Safe and Sustainable by Design Chemicals and Materials—Framework for the Definition of Criteria and Evaluation Procedure for Chemicals and Materials. Available online: https://data.europa.eu/doi/10.2760/487955 (accessed on 17 November 2024).
- Wu, F.; Zhou, Y.; Li, L.; Shen, X.; Chen, G.; Wang, X.; Liang, X.; Tan, M.; Huang, Z. Computational Approaches in Preclinical Studies on Drug Discovery and Development. Front. Chem. 2020, 8, 726. [Google Scholar] [CrossRef]
- Martins, B.; Vieira, M.; Delerue-Matos, C.; Grosso, C.; Soares, C. Biological Potential, Gastrointestinal Digestion, Absorption, and Bioavailability of Algae-Derived Compounds with Neuroprotective Activity: A Comprehensive Review. Mar. Drugs 2022, 20, 362. [Google Scholar] [CrossRef]
- Hammami, M.; Chaabani, E.; Yeddes, W.; Wannes, W.A.; Bourgou, S. Phenolic Compounds and Skin Permeability: An In Silico Investigation. Avicenna J. Med. Biochem. 2023, 11, 11–18. [Google Scholar] [CrossRef]
- Cho, S.A.; Choi, M.; Park, S.R.; An, S.; Park, J.H. Application of Spectro-DPRA, KeratinoSens™ and h-CLAT to estimation of the skin sensitization potential of cosmetics ingredients. J. Appl. Toxicol. 2020, 40, 300–312. [Google Scholar] [CrossRef]
- Herzler, M.; Abedini, J.; Allen, D.G.; Germolec, D.; Gordon, J.; Ko, H.-S.; Matheson, J.; Reinke, E.; Strickland, J.; Thierse, H.-J.; et al. Use of human predictive patch test (HPPT) data for the classification of skin sensitization hazard and potency. Arch. Toxicol. 2024, 98, 1253–1269. [Google Scholar] [CrossRef]
Std | Run | Variables | AgNPs (µg/mL) | Residuals | ||||
---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | Experimental | Predicted | |||
11 | 1 | −1 | 0 | 0 | 1 | 76.0 | 75.23 | 0.77 |
14 | 2 | 0 | 1 | −1 | 0 | 124.77 | 126.82 | −2.05 |
6 | 3 | 0 | 0 | 1 | −1 | 77.48 | 77.78 | −0.30 |
27 | 4 | 0 | 0 | 0 | 0 | 71.26 | 72.88 | −1.62 |
13 | 5 | 0 | −1 | −1 | 0 | 47.56 | 46.15 | 1.41 |
20 | 6 | 1 | 0 | 1 | 0 | 75.48 | 75.06 | 0.42 |
1 | 7 | −1 | −1 | 0 | 0 | 49.75 | 51.59 | −1.84 |
4 | 8 | 1 | 1 | 0 | 0 | 174.72 | 174.31 | 0.40 |
12 | 9 | 1 | 0 | 0 | 1 | 74.1 | 73.7 | 0.4 |
16 | 10 | 0 | 1 | 1 | 0 | 221.69 | 222.75 | −1.06 |
22 | 11 | 0 | 1 | 0 | −1 | 143.2 | 142.24 | 0.96 |
18 | 12 | 1 | 0 | −1 | 0 | 18.88 | 18.22 | 0.66 |
3 | 13 | −1 | 1 | 0 | 0 | 142.84 | 142.84 | 0.00 |
9 | 14 | −1 | 0 | 0 | −1 | 30.32 | 30.34 | −0.02 |
23 | 15 | 0 | −1 | 0 | 1 | 62.99 | 62.87 | 0.12 |
26 | 16 | 0 | 0 | 0 | 0 | 71.1 | 72.88 | −1.78 |
2 | 17 | 1 | −1 | 0 | 0 | 32.33 | 33.77 | −1.44 |
19 | 18 | −1 | 0 | 1 | 0 | 72.51 | 72.09 | 0.42 |
21 | 19 | 0 | −1 | 0 | −1 | 80.19 | 80.86 | −0.67 |
7 | 20 | 0 | 0 | −1 | 1 | 52.47 | 53.61 | −1.14 |
5 | 21 | 0 | 0 | −1 | −1 | 30.96 | 30.51 | 0.45 |
24 | 22 | 0 | 1 | 0 | 1 | 235.03 | 233.28 | 1.75 |
15 | 23 | 0 | −1 | 1 | 0 | 74.03 | 71.62 | 2.41 |
8 | 24 | 0 | 0 | 1 | 1 | 125.85 | 127.74 | −1.89 |
17 | 25 | −1 | 0 | −1 | 0 | 8.19 | 7.53 | 0.66 |
25 | 26 | 0 | 0 | 0 | 0 | 73.11 | 72.88 | 0.23 |
10 | 27 | 1 | 0 | 0 | −1 | 45.11 | 45.53 | −0.43 |
29 | 28 | 0 | 0 | 0 | 0 | 72.55 | 72.88 | −0.33 |
28 | 29 | 0 | 0 | 0 | 0 | 76.43 | 72.88 | 3.55 |
11 | 1 | −1 | 0 | 0 | 1 | 76.01 | 75.23 | 0.78 |
Variable | Code | Coded and Actual Levels | ||||||
−1 | 0 | 1 | ||||||
AgNO3 conc. (mM) | X1 | 1 | 3 | 1 | ||||
Initial pH level | X2 | 6 | 7 | 5 | ||||
Temperature (°C) | X3 | 25 | 30 | 8 | ||||
Incubation time (h) | X4 | 24 | 48 | 35 |
Source of Variance | Coefficient Estimate | Sum of Squares | Degrees of Freedom | Mean Square | f-Value | p-Value | |
---|---|---|---|---|---|---|---|
Model | Intercept | 72.88 | 85,288.54 | 14 | 6092.04 | 1734.16 | <0.0001 * |
Linear effect | X1 | 3.41 | 139.79 | 1 | 139.79 | 39.79 | <0.0001 * |
X2 | 57.95 | 40,297.60 | 1 | 40,297.60 | 11,471.09 | <0.0001 * | |
X3 | 30.35 | 11,053.54 | 1 | 11,053.54 | 3146.50 | <0.0001 * | |
X4 | 18.26 | 4002.78 | 1 | 4002.78 | 1139.43 | <0.0001 * | |
Interaction effect | X1 X2 | 12.32 | 607.53 | 1 | 607.53 | 172.94 | <0.0001 * |
X1 X3 | −1.93 | 14.90 | 1 | 14.90 | 4.24 | 0.0586 | |
X1 X4 | −4.18 | 69.97 | 1 | 69.97 | 19.92 | 0.0005 * | |
X2 X3 | 17.61 | 1240.68 | 1 | 1240.68 | 353.17 | <0.0001 * | |
X2 X4 | 27.26 | 2971.88 | 1 | 2971.88 | 845.97 | <0.0001 * | |
X3 X4 | 6.72 | 180.41 | 1 | 180.41 | 51.36 | <0.0001 * | |
Quadratic effect | X12 | −22.93 | 3411.56 | 1 | 3411.56 | 971.13 | <0.0001 * |
X22 | 50.68 | 16,658.37 | 1 | 16,658.37 | 4741.96 | <0.0001 * | |
X32 | −6.73 | 293.42 | 1 | 293.42 | 83.53 | <0.0001 * | |
X42 | 6.25 | 253.46 | 1 | 253.46 | 72.15 | <0.0001 * | |
Error effect | Lack of Fit | 30.47 | 10 | 3.05 | 0.65 | 0.735 | |
Pure Error | 18.71 | 4 | 4.68 | ||||
R2 | 0.9994 | ||||||
Adj R2 | 0.9988 | ||||||
Pred R2 | 0.9976 | ||||||
Adeq Precision | 167.47 |
Sequential Model Sum of Squares | |||||
---|---|---|---|---|---|
Source | Sum of Squares | df | Mean Square | f-Value | p-Value prob >f |
Linear vs. Mean | 55,493.71 | 4 | 13,873.43 | 11.16 | <0.0001 * |
2FI vs. Linear | 5085.37 | 6 | 847.56 | 0.6162 | 0.7148 |
Quadratic vs. 2FI | 24,709.46 | 4 | 6177.36 | 1758.45 | <0.0001 * |
Lack of Fit Tests | |||||
Source | Sum of Squares | df | Mean Square | f-Value | p-Value prob >f |
Linear | 29,825.3 | 20 | 1491.27 | 318.83 | <0.0001 * |
2FI | 24,739.93 | 14 | 1767.14 | 377.81 | <0.0001 * |
Quadratic | 30.47 | 10 | 3.05 | 0.65 | 0.735 |
Model Summary Statistics | |||||
Source | Standard Deviation | R2 | Adjusted R2 | Predicted R2 | PRESS |
Linear | 35.26 | 0.6503 | 0.592 | 0.4558 | 46,441.64 |
2FI | 37.09 | 0.7099 | 0.5487 | 0.0541 | 80,717.46 |
Quadratic | 1.87 | 0.9994 | 0.9988 | 0.9976 | 204.75 |
Predicted Compound Derived From | Target Protein | Binding Affinity Kcal/mol | Amino Acids Residues |
---|---|---|---|
AgNPs-loaded on cotton fabrics (cellulose) | Penicillin-binding proteins (PBPs) | −4.7 | AGR: A654, AGR: A463, PRO: A424, GLUA:476 |
Lanosterol-14-demethylase (L-14α-DM) protein | −5.2 | SER: A507, MET: A508, HIS: A377 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shweqa, N.S.; El-Naggar, N.E.-A.; Abdelmigid, H.M.; Alyamani, A.A.; Elshafey, N.; El-Shall, H.; Heikal, Y.M.; Soliman, H.M. Green Fabrication of Silver Nanoparticles, Statistical Process Optimization, Characterization, and Molecular Docking Analysis of Their Antimicrobial Activities onto Cotton Fabrics. J. Funct. Biomater. 2024, 15, 354. https://doi.org/10.3390/jfb15120354
Shweqa NS, El-Naggar NE-A, Abdelmigid HM, Alyamani AA, Elshafey N, El-Shall H, Heikal YM, Soliman HM. Green Fabrication of Silver Nanoparticles, Statistical Process Optimization, Characterization, and Molecular Docking Analysis of Their Antimicrobial Activities onto Cotton Fabrics. Journal of Functional Biomaterials. 2024; 15(12):354. https://doi.org/10.3390/jfb15120354
Chicago/Turabian StyleShweqa, Nada S., Noura El-Ahmady El-Naggar, Hala M. Abdelmigid, Amal A. Alyamani, Naglaa Elshafey, Hadeel El-Shall, Yasmin M. Heikal, and Hoda M. Soliman. 2024. "Green Fabrication of Silver Nanoparticles, Statistical Process Optimization, Characterization, and Molecular Docking Analysis of Their Antimicrobial Activities onto Cotton Fabrics" Journal of Functional Biomaterials 15, no. 12: 354. https://doi.org/10.3390/jfb15120354
APA StyleShweqa, N. S., El-Naggar, N. E.-A., Abdelmigid, H. M., Alyamani, A. A., Elshafey, N., El-Shall, H., Heikal, Y. M., & Soliman, H. M. (2024). Green Fabrication of Silver Nanoparticles, Statistical Process Optimization, Characterization, and Molecular Docking Analysis of Their Antimicrobial Activities onto Cotton Fabrics. Journal of Functional Biomaterials, 15(12), 354. https://doi.org/10.3390/jfb15120354