Formation of Alpha-Al2O3 Coatings on Tungsten Substrate by Plasma Electrolytic Oxidation
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nogami, S.; Watanabe, S.; Reiser, J.; Rieth, M.; Sickinger, S.; Hasegawa, A. A review of impact properties of tungsten materials. Fusion Eng. Des. 2018, 135, 196–203. [Google Scholar] [CrossRef]
- Luo, C.; Xu, L.; Zong, L.; Shen, H.; Wei, S. Research status of tungsten-based plasma-facing materials: A review. Fusion Eng. Des. 2023, 190, 113487. [Google Scholar] [CrossRef]
- Zych, M.; Syrek, K.; Pisarek, M.; Sulka, G.D. Synthesis and characterization of anodic WO3 layers in situ doped with C, N during anodization. Electrochim. Acta 2022, 411, 140061. [Google Scholar] [CrossRef]
- Hao, L.; Li, F.; Hu, T.; Hu, Y.; Zhao, Q.; Guan, S.; Lu, Y. WO3 films prepared by anodic oxidation in acid electrolytes and their photocatalytic activity of organic dye degradation. J. Mater. Sci. Mater. Electron. 2022, 33, 2921–2931. [Google Scholar] [CrossRef]
- Silva, E.D.; Sánchez-García, G.; Pérez-Calvo, A.; Fernández-Domene, R.M.; Solsona, B.; Sánchez-Tovar, R. Anodizing tungsten foil with ionic liquids for enhanced photoelectrochemical applications. Materials 2024, 17, 1243. [Google Scholar] [CrossRef]
- Ou, J.Z.; Rani, R.A.; Balendhran, S.; Zoolfakar, A.S.; Field, M.R.; Zhuiykov, S.; O’Mullane, A.P.; Kalantar-zadeh, K. Anodic formation of a thick three-dimensional nanoporous WO3 film and its photocatalytic property. Electrochem. Commun. 2013, 27, 128–132. [Google Scholar] [CrossRef]
- Syrek, K.; Kotarba, S.; Zych, M.; Pisarek, M.; Uchacz, T.; Sobańska, K.; Pięta, Ł.; Sulka, G.D. Surface engineering of anodic WO3 layers by in situ doping for light-assisted water splitting. ACS Appl. Mater. Interfaces 2024, 16, 36752–36762. [Google Scholar] [CrossRef]
- Kadir, R.A.; Zhang, W.; Wang, Y.; Ou, J.Z.; Wlodarski, W.; O’Mullane, A.P.; Bryant, G.; Taylor, M.; Kalantar-zadeh, K. Anodized nanoporous WO3 Schottky contact structures for hydrogen and ethanol sensing. J. Mater. Chem. A 2015, 3, 7994. [Google Scholar] [CrossRef]
- Xiao, Y.; Jiang, M.; Cao, M. Developing WO3 as high-performance anode material for lithium-ion batteries. Mater. Lett. 2021, 285, 129129. [Google Scholar] [CrossRef]
- Upadhyay, K.K.; Altomare, M.; Eugénio, S.; Schmuki, P.; Silva, T.M.; Montemor, M.F. On the supercapacitive behaviour of anodic porous WO3-based negative electrodes. Electrochim. Acta 2017, 232, 192–201. [Google Scholar] [CrossRef]
- Stojadinović, S.; Nelson, P. Plasma electrolytic oxidation of tungsten. Mater. Lett. 2024, 365, 136427. [Google Scholar] [CrossRef]
- Stojadinović, S.; Jovović, J.; Tadić, N.; Vasilić, R.; Šišović, N.M. The characterization of cathodic plasma electrolysis of tungsten by means of optical emission spectroscopy techniques. Europhys. Lett. 2015, 110, 48004. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Q.; Wu, J.; Wang, H.; Tian, K.; Wu, C. Preparation and characterization of corundum-based ceramics for thermal storage. Ceram. Int. 2021, 47, 23620–23629. [Google Scholar] [CrossRef]
- Jia, R.; Liu, L.; Yin, H.; Li, W.; Sun, J.; Zhu, P.; Cao, C. Synthesis of corundum rich coating on 7055 aluminum alloy by micro-arc oxidation and its corrosion resistant property in a saline medium. Surf. Coat. Technol. 2024, 476, 130182. [Google Scholar] [CrossRef]
- Ćirić, A.; Stojadinović, S. Tuning phase and photoluminescent properties of ZrO2:Eu3+ coatings formed by plasma electrolytic oxidation and Judd-Ofelt analysis of composite materials. J. Lumin. 2024, 266, 120268. [Google Scholar] [CrossRef]
- Stojadinović, S.; Vasilić, R.; Perić, M. Investigation of plasma electrolytic oxidation on valve metals by means of molecular spectroscopy—A review. Europhys. RSC Adv. 2014, 4, 25759. [Google Scholar] [CrossRef]
- Albella, J.M.; Montero, I.; Martinez-Duart, J.M. A theory of avalanche breakdown during anodic oxidation. Electrochim. Acta 1987, 32, 255–258. [Google Scholar] [CrossRef]
- Ikonopisov, S. Theory of electrical breakdown during formation of barrier anodic films. Electrochim. Acta 1977, 22, 1077–1082. [Google Scholar] [CrossRef]
- Mavrič, A.; Fanetti, M.; Mali, G.; Valant, M. High-temperature stabilization of bulk amorphous Al2O3. J. Non-Cryst. Solids 2018, 499, 363–370. [Google Scholar] [CrossRef]
- Kikuchi, T.; Kawashima, J.; Natsui, S.; Suzuki, R.O. Fabrication of porous tungsten oxide via anodizing in an ammonium nitrate/ethylene glycol/water mixture for visible light-driven photocatalyst. Appl. Surf. Sci. 2017, 422, 130–137. [Google Scholar] [CrossRef]
- Wu, T.; Blawert, C.; Serdechnova, M.; Karlova, P.; Dovzhenko, G.; Wieland, D.C.F.; Stojadinović, S.; Vasilić, R.; Mojsilović, K.; Zheludkevich, M.L. Formation of plasma electrolytic oxidation coatings on pure niobium in different electrolytes. Appl. Surf. Sci. 2022, 573, 151629. [Google Scholar] [CrossRef]
- Goj, P.; Handke, B.; Stoch, P. Vibrational characteristics of aluminum–phosphate compounds by an experimental and theoretical approach. Sci. Rep. 2022, 12, 17495. [Google Scholar] [CrossRef] [PubMed]
- Zhai, D.; Qiu, T.; Shen, J.; Feng, K. Growth kinetics and mechanism of microarc oxidation coating on Ti–6Al–4V alloy in phosphate/silicate electrolyte. Int. Int. J. Miner. Metall. Mater. 2022, 29, 1991. [Google Scholar] [CrossRef]
- Xu, W.L.; Zheng, M.J.; Wu, S.; Shen, W.Z. Effects of high-temperature annealing on structural and optical properties of highly ordered porous alumina membrane. Appl. Phys. Lett. 2004, 85, 4364–4366. [Google Scholar] [CrossRef]
- Petković, M.; Stojadinović, S.; Vasilić, R.; Belča, I.; Nedić, Z.; Kasalica, B.; Mioč, U.B. Preparation of silicate tungsten bronzes on aluminum by plasma electrolytic oxidation process in 12-tungstosilicic acid. Appl. Surf. Sci. 2011, 257, 9555–9561. [Google Scholar] [CrossRef]
- Mousa, M.S. Characteristics of tungsten substrate with Al2O3 coatings under UHV conditions. Vacuum 1988, 38, 835–838. [Google Scholar] [CrossRef]
- Wheeler, J.M.; Curran, J.A.; Shrestha, S. Microstructure and multi-scale mechanical behavior of hard anodized and plasma electrolytic oxidation (PEO) coatings on aluminum alloy 5052. Surf. Coat. Technol. 2012, 207, 480–488. [Google Scholar] [CrossRef]
- Malayoglu, U.; Tekin, K.C.; Malayoglu, U.; Shrestha, S. An investigation into the mechanical and tribological properties of plasma electrolytic oxidation and hard-anodized coatings on 6082 aluminum alloy. Mater. Sci. Eng. A 2011, 528, 7451–7460. [Google Scholar] [CrossRef]
- Peng, Z.; Xu, H.; Liu, S.; Qi, Y.; Liang, J. Wear and corrosion resistance of plasma electrolytic oxidation coatings on 6061 Al alloy in electrolytes with aluminate and phosphate. Materials 2021, 14, 4037. [Google Scholar] [CrossRef]
- Deng, M.; Zhang, P.; Kang, Z.; Mao, Y.; Xiong, Q.; Zhang, W.; Cai, Z.; Gu, L. Comparative study on the fretting and sliding wear properties of micro-arc oxidation-treated aluminum alloy at different temperatures. Tribol. Int. 2024, 198, 109847. [Google Scholar] [CrossRef]
- Liang, J.; Peng, Z.; Cui, X.; Li, R.; Wang, B. Comparison of plasma electrolytic oxidation coatings on Al alloy produced in diluted and concentrated silicate electrolytes for space thermal control application. Ceram. Int. 2024, 50, 6349–6357. [Google Scholar] [CrossRef]
- Zhang, S.; Tan, C.; Lai, C.; Li, H.; Lu, Y.; Li, H.; Wang, J.; Chen, S. Oxidation behavior of the CVD-Al2O3 coatings on tungsten substrate at 1000 °C. Int. J. Refract. Met. Hard Mater. 2023, 114, 106236. [Google Scholar] [CrossRef]
- Ćirić, A.; Stojadinović, S.; Ristić, Z.; Zeković, I.; Kuzman, S.; Antić, Ž.; Dramićanin, M.D. Supersensitive Sm2+-activated Al2O3 thermometric coatings for high-resolution multiple temperature read-outs from luminescence. Adv. Mater. Technol. 2021, 6, 2001201. [Google Scholar] [CrossRef]
- Ćirić, A.; Stojadinović, S.; Ristić, Z.; Antić, Ž.; Dramićanin, M.D. Temperature sensing using ruby coatings created by plasma electrolytic oxidation. Sens. Actuators A 2021, 331, 112987. [Google Scholar] [CrossRef]
NaAlO2 | Thickness | Atomic (%) | |||
---|---|---|---|---|---|
(g/L) | (μm) | O | Al | P | W |
2 | 16.2 ± 1.9 | 74.21 | 20.15 | 5.22 | 0.42 |
3 | 19.1 ± 1.8 | 69.34 | 27.92 | 2.39 | 0.36 |
4 | 21.8 ± 1.6 | 67.14 | 31.41 | 1.19 | 0.26 |
PEO Time | Thickness | Atomic (%) | |||
---|---|---|---|---|---|
(min) | (μm) | O | Al | P | W |
0.5 | 1.2 ± 0.2 | 75.05 | 18.88 | 5.23 | 0.84 |
1 | 6.3 ± 0.4 | 75.72 | 19.06 | 4.92 | 0.30 |
3 | 9.7 ± 0.7 | 75.59 | 19.87 | 4.25 | 0.29 |
5 | 13.9 ± 1.1 | 74.60 | 20.88 | 4.17 | 0.35 |
10 | 21.8 ± 1.6 | 67.14 | 31.41 | 1.19 | 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stojadinović, S.; Nelson, P. Formation of Alpha-Al2O3 Coatings on Tungsten Substrate by Plasma Electrolytic Oxidation. Ceramics 2025, 8, 29. https://doi.org/10.3390/ceramics8020029
Stojadinović S, Nelson P. Formation of Alpha-Al2O3 Coatings on Tungsten Substrate by Plasma Electrolytic Oxidation. Ceramics. 2025; 8(2):29. https://doi.org/10.3390/ceramics8020029
Chicago/Turabian StyleStojadinović, Stevan, and Pedro Nelson. 2025. "Formation of Alpha-Al2O3 Coatings on Tungsten Substrate by Plasma Electrolytic Oxidation" Ceramics 8, no. 2: 29. https://doi.org/10.3390/ceramics8020029
APA StyleStojadinović, S., & Nelson, P. (2025). Formation of Alpha-Al2O3 Coatings on Tungsten Substrate by Plasma Electrolytic Oxidation. Ceramics, 8(2), 29. https://doi.org/10.3390/ceramics8020029