Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (391)

Search Parameters:
Keywords = alpha particle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 8979 KB  
Article
Physics-Consistent Overtopping Estimation for Dam-Break Induced Floods via AE-Enhanced CatBoost and TreeSHAP
by Hanze Li, Yazhou Fan, Zhenzhu Meng, Xinhai Zhang, Jinxin Zhang and Liang Wang
Water 2026, 18(1), 42; https://doi.org/10.3390/w18010042 - 23 Dec 2025
Viewed by 458
Abstract
Dam break problem-induced floods can trigger hazardous dike overtopping, demanding predictions that are fast, accurate, and interpretable. We pursue two objectives: (i) introducing a new alpha evolution (AE) optimization scheme to improve tree-model predictive accuracy, and (ii) developing a cluster-wise modeling strategy in [...] Read more.
Dam break problem-induced floods can trigger hazardous dike overtopping, demanding predictions that are fast, accurate, and interpretable. We pursue two objectives: (i) introducing a new alpha evolution (AE) optimization scheme to improve tree-model predictive accuracy, and (ii) developing a cluster-wise modeling strategy in which regimes are defined by wave characteristics. Using a dataset generated via physical model experiments and smoothed particle hydrodynamics (SPH) numerical simulations, we first group samples via hierarchical clustering (HC) on the Froude number (Fr), wave nonlinearity (R), and relative distance to the dike (D). We then benchmark CatBoost, XGBoost, and ExtraTrees within each cluster and select the best-performing CatBoost as the baseline, after which we train standard CatBoost and its AE-optimized variant. Under random train–test splits, AE-CatBoost achieves the strongest generalization for predicting relative run-up distance Hm (testing dataset R2=0.9803, RMSE=0.0599), outperforming particle swarm optimization (PSO) and grid search (GS)-tuned CatBoost. We further perform TreeSHAP analyses on AE-CatBoost for global, local, and interaction attributions. SHAP analysis yields physics-consistent explanations: D dominates, followed by H and L, with a weaker positive effect of Fr and minimal influence of R; H×D is the strongest interaction pair. Overall, AE optimization combined with HC-based cluster-wise modeling produces accurate, interpretable overtopping predictions and provides a practical route toward field deployment. Full article
Show Figures

Figure 1

16 pages, 1430 KB  
Article
Ecological Succession of Airborne Bacterial Aerosols in Poultry Houses: Insights from Taihang Chickens
by Yejin Yang, Huan Cui, Zitong Yang, Zhenyue Li, Wenhao Feng, Zhuhua Liu, Mengxi Yan, Zhibin Ren, Ran Zhu, Yuqing Yang, Mingli Liu, Xiaolong Chen, Cheng Zhang, Huage Liu and Shishan Dong
Animals 2025, 15(24), 3635; https://doi.org/10.3390/ani15243635 - 17 Dec 2025
Viewed by 375
Abstract
Bioaerosols are a major source of airborne microbial contamination in intensive poultry production systems. Their concentration and community structure can profoundly influence animal health, public health, and the overall safety of the farming environment. However, the dynamic characteristics of bacterial aerosols in enclosed [...] Read more.
Bioaerosols are a major source of airborne microbial contamination in intensive poultry production systems. Their concentration and community structure can profoundly influence animal health, public health, and the overall safety of the farming environment. However, the dynamic characteristics of bacterial aerosols in enclosed poultry houses during winter remain insufficiently studied. Using Taihang chickens as a model, this study investigated three key production stages—brooding (15 days), growing (60 days), and laying (150 days)—under winter cage-rearing conditions. A six-stage Andersen sampler was employed alongside culture-dependent enumeration and 16S rRNA high-throughput sequencing to analyze variations in bacterial aerosol concentration, particle size distribution, and community succession patterns. The results revealed a significant increase in the concentration of culturable airborne bacteria with bird age, rising from 8.98 × 103 colony-forming unit (CFU)/m3 to 2.89 × 104 CFU/m3 (p < 0.001). The particle size distribution progressively shifted from larger, settleable particles (≥4.7 μm) toward smaller, respirable particles (<4.7 μm). Microbial sequencing indicated a continuous increase in bacterial alpha diversity across the three stages (Chao1 and Shannon indices, p < 0.05), while beta diversity exhibited stage-specific clustering, reflecting clear differences in community assembly. The composition of dominant bacterial genera transitioned from potentially pathogenic taxa such as Acinetobacter and Corynebacterium during the brooding stage to a greater abundance of beneficial genera, including Bacteroides, Lactobacillus, and Ruminococcus, in later stages. This shift suggests a potential ecological link between aerosolized bacterial communities and host development, possibly related to the aerosolization of gut microbiota. Notably, several zoonotic bacterial species were detected in the poultry house air, indicating potential public health and occupational exposure risks under winter confinement conditions. This study is the first to elucidate the ecological succession patterns of airborne bacterial aerosols in Taihang chicken houses across different growth stages during winter. The findings provide a scientific basis for optimizing winter ventilation strategies, implementing stage-specific environmental controls, and reducing pathogen transmission and occupational hazards. Full article
Show Figures

Figure 1

14 pages, 1283 KB  
Article
A Comparative Study of COMPLET Code Predictions with Experimental Data on Alpha Particle-Induced Reactions on Cobalt Isotope up to 120 MeV
by Cherie Sisay Mekonen and Ayyagari Venkata Mohan Rao
Atoms 2025, 13(12), 96; https://doi.org/10.3390/atoms13120096 - 4 Dec 2025
Viewed by 446
Abstract
A comparative study of alpha-induced reactions on cobalt isotope with the predictions by COMPLET code is presented for nine excitation functions, 59Co(α,p5n)57Ni, 59Co (α,p6n)56Ni, 59Co(α,2pn)60Co, 59Co(α,3pn)59Fe, 59Co(α,αn)58Co, 59 [...] Read more.
A comparative study of alpha-induced reactions on cobalt isotope with the predictions by COMPLET code is presented for nine excitation functions, 59Co(α,p5n)57Ni, 59Co (α,p6n)56Ni, 59Co(α,2pn)60Co, 59Co(α,3pn)59Fe, 59Co(α,αn)58Co, 59Co(α,α2n)57Co, 59Co(α,α3n)56Co, 59Co(α,2αn)54Mn, and 59Co(α,2α3n)52Mn. The experimental values were taken from the EXFOR data base. Theoretical cross-sections were calculated using initial exciton number n0 = 4 (4p0h) and level density parameter a (=ACN/10) globally. While several reactions showed excellent agreement with experimental data, others displayed a notable discrepancy. This is because of the limitations of the COMPLET code to take the alpha emission in a pre-equilibrium phase. Full article
Show Figures

Figure 1

16 pages, 11356 KB  
Article
Extraction of Electron and Hole Drift Velocities in Thin 4H-SiC PIN Detectors Using High-Frequency Readout Electronics
by Andreas Gsponer, Sebastian Onder, Stefan Gundacker, Jürgen Burin, Matthias Knopf, Daniel Radmanovac, Simon Waid and Thomas Bergauer
Sensors 2025, 25(23), 7196; https://doi.org/10.3390/s25237196 - 25 Nov 2025
Viewed by 511
Abstract
Silicon carbide (SiC) has been widely adopted in the semiconductor industry, particularly in power electronics, because of its high temperature stability, high breakdown field, and fast switching speeds. Its wide bandgap makes it an interesting candidate for radiation-hard particle detectors in high-energy physics [...] Read more.
Silicon carbide (SiC) has been widely adopted in the semiconductor industry, particularly in power electronics, because of its high temperature stability, high breakdown field, and fast switching speeds. Its wide bandgap makes it an interesting candidate for radiation-hard particle detectors in high-energy physics and medical applications. Furthermore, the high electron and hole drift velocities in 4H-SiC enable devices suitable for ultra-fast particle detection and timing applications. However, currently, the front-end readout electronics used for 4H-SiC detectors constitute a bottleneck in investigations of the charge carrier drift. To address these limitations, a high-frequency readout board with an intrinsic bandwidth of 10 GHz was developed. With this readout, the transient current signals of a 4H-SiC diode with a diameter of 141 μm and a thickness of 50 μm upon UV laser, alpha particle, and high-energy proton beam excitation were recorded. In all three cases, the electron and hole drift can clearly be separated, which enables the extraction of the charge carrier drift velocities as a function of the electric field. These velocities, directly measured for the first time, provide a valuable comparison to Monte Carlo-simulated literature values and constitute an essential input for TCAD simulations. Finally, a complete simulation environment combining TCAD, the Allpix2 framework, and SPICE simulations is presented, which is in good agreement with the measured data. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

34 pages, 99537 KB  
Article
Microchemical Analysis of Rammed Earth Residential Walls Surface in Xiaochikan Village, Guangdong
by Liang Zheng, Qingnian Deng, Jingwei Liang, Zekai Guo, Yufei Zhu, Wei Liu and Yile Chen
Coatings 2025, 15(11), 1351; https://doi.org/10.3390/coatings15111351 - 19 Nov 2025
Cited by 2 | Viewed by 571
Abstract
Xiaochikan Village, located in Guangdong Province in South China, is one of the few remaining traditional rammed earth dwellings of the Cantonese ethnic group in the Lingnan region. However, the influence of Zhuhai’s subtropical maritime monsoon climate has led to continuous physical and [...] Read more.
Xiaochikan Village, located in Guangdong Province in South China, is one of the few remaining traditional rammed earth dwellings of the Cantonese ethnic group in the Lingnan region. However, the influence of Zhuhai’s subtropical maritime monsoon climate has led to continuous physical and chemical erosion of the rammed earth walls. For example, cracking occurs due to high temperatures and heavy rain, accelerated weathering occurs due to salt spray deposition, and biological erosion occurs due to high humidity and high temperatures. Therefore, two experimental analysis techniques, X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectrometer (SEM-EDS), were used to explore the structural anti-erosion mechanism of the ancient, rammed earth buildings in Xiaochikan Village. The results show that (1) the morphological characteristics of the east and west walls of the rammed earth dwellings in Xiaochikan Village are more similar. The particles on the east wall are regular spherical or polygonal, small, and evenly distributed, while the particles on the west wall are mainly spherical and elliptical, with consistent size and less agglomeration. The surfaces of the particles on both walls are relatively smooth and flat. (2) The core element bases of the four wall samples are consistent, with C, Si, Al, Ca, and Fe as the core, accounting for more than 93%, reflecting the base characteristics of the local alluvial soil “silicate skeleton–carbonate cementation–organic matter residue” and reflecting the “local material” attribute of rammed earth. Except for the south wall sample, the Cl content of the remaining samples exceeds 1%. In the thermal map, Cl shows “pore/interstitial enrichment”, which confirms that the salinization process of marine aerosols with rainwater infiltration and evaporation residue is a common influence of marine climate. (3) The rammed earth walls in Xiaochikan Village consist of three main minerals: Quartz (SiO2, including alpha-type SiO2), Calcite (CaCO3, including synthetic calcite), and Gibbsite (Al(OH)3). Full article
Show Figures

Graphical abstract

28 pages, 5509 KB  
Article
Defensin-Rich Platelets Drive Pro-Tumorigenic Programs in Pancreatic Adenocarcinoma
by Jonathan Gonzalez-Ruiz, Miryam Sarmiento-Casas, Ivan Bahena-Ocampo, Magali Espinosa, Gisela Ceballos-Cancino, Karla Vazquez-Santillan, Vilma Maldonado and Jorge Melendez-Zajgla
Int. J. Mol. Sci. 2025, 26(22), 10898; https://doi.org/10.3390/ijms262210898 - 10 Nov 2025
Viewed by 627
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is one of the most aggressive and lethal malignancies, driven by late diagnosis, limited therapeutic options, and high metastatic potential. Beyond their canonical roles in hemostasis, platelets have emerged as active modulators of tumor progression and promising noninvasive biomarkers. [...] Read more.
Pancreatic Ductal Adenocarcinoma (PDAC) is one of the most aggressive and lethal malignancies, driven by late diagnosis, limited therapeutic options, and high metastatic potential. Beyond their canonical roles in hemostasis, platelets have emerged as active modulators of tumor progression and promising noninvasive biomarkers. Among platelet-associated molecules, α-defensins, particularly Defensin Alpha 1/3 (DEFA1/3), have been implicated in inflammation and immunity; however, their contribution to PDAC pathogenesis remains unclear. We combined bioinformatic analysis of platelet transcriptomes with functional and in vivo zebrafish xenograft validation to investigate the impact of DEFA1/3 on PDAC aggressiveness. DEFA1/3 was significantly upregulated in PDAC-derived platelets. Defensin-enriched platelet-like particles (defensin-rich platelets, DRPs) and recombinant DEFA1/3 enhanced pancreatic cancer cell proliferation, migration, and three-dimensional growth in vitro and promoted tumor dissemination in zebrafish xenografts. Transcriptomic profiling revealed the upregulation of SPARC, KDM6A, and GATA6, whereas clinical data from The Cancer Genome Atlas (TCGA)-PDAC linked high DEFA1/3 expression to poor survival, increased immune infiltration, and activation of epithelial–mesenchymal transition (EMT). Platelet-derived DEFA1/3 acts as a functional modulator of PDAC progression, linking platelet granule content to tumor aggressiveness and highlighting a potential biomarker and therapeutic target within the platelet–tumor axis. Full article
(This article belongs to the Special Issue Advancements in Cancer Biomarkers)
Show Figures

Figure 1

13 pages, 1326 KB  
Article
Characterization of Alpha Particle Track Lengths in LR-115 Detectors
by Luiz Augusto Stuani Pereira and Carlos Alberto Tello Sáenz
Physics 2025, 7(4), 56; https://doi.org/10.3390/physics7040056 - 7 Nov 2025
Viewed by 492
Abstract
We investigate the dependence of the maximum etched track length (Lmax) on alpha-particle energy and incidence angle in LR-115 type II nuclear track detectors by combining Geant4 Monte Carlo simulations with controlled chemical etching experiments. The bulk (VB [...] Read more.
We investigate the dependence of the maximum etched track length (Lmax) on alpha-particle energy and incidence angle in LR-115 type II nuclear track detectors by combining Geant4 Monte Carlo simulations with controlled chemical etching experiments. The bulk (VB) and track (VT) etch rates were determined under standardized conditions, yielding VB=(3.1±0.1) µm/h and VT=(5.98±0.06) µm/h, which correspond to a critical detection angle of about (58.8±1.2)°. Simulations covering initial energies spanning 1 MeV to 5 MeV and incidence angles up to 70° confirmed that the maximum etched track length varies quadratically with particle energy E and depends systematically on incidence angle θ. Empirical parameterizations of Lmax(E,θ) were obtained, and energy thresholds for complete track registration within the 12 µm sensitive layer were established. The angular acceptance predicted by the VT/VB ratio was validated, and the results demonstrate that Lmax provides a monotonic and more reliable observable for energy calibration compared to track diameter. These findings improve the quantitative calibration of LR-115 detectors and strengthen their use in environmental radon monitoring, radiation dosimetry, and alpha spectrometry. In addition, they highlight the utility of Geant4-based modeling for refining solid state nuclear track detector response functions and guiding the development of optimized detector protocols for nuclear and environmental physics applications. Full article
(This article belongs to the Section Applied Physics)
Show Figures

Figure 1

22 pages, 2682 KB  
Review
Unitary Entities Are the True “Atoms”
by Chris Jeynes and Michael Charles Parker
Entropy 2025, 27(11), 1119; https://doi.org/10.3390/e27111119 - 30 Oct 2025
Viewed by 568
Abstract
Quantitative Geometrical Thermodynamics (QGT) exploits the entropic Lagrangian–Hamiltonian canonical equations of state as applied to entities obeying the holographic principle and exhibiting Shannon information, the creation of which measures the (validly defined) “entropic purpose” of the system. QGT provides a physical description for [...] Read more.
Quantitative Geometrical Thermodynamics (QGT) exploits the entropic Lagrangian–Hamiltonian canonical equations of state as applied to entities obeying the holographic principle and exhibiting Shannon information, the creation of which measures the (validly defined) “entropic purpose” of the system. QGT provides a physical description for what we might consider the true “atoms” of physical science and has also recently enabled a number of significant advances: accounting ab initio for the chirality of DNA and the stability of Buckminsterfullerene; the size of the alpha particle (and other nuclear entities) and the lifetime of the free neutron; and the shape, structure, and stability of the Milky Way galaxy. All these entities, ranging in size over more than 38 orders of magnitude, can each be considered to be an “atom”; in particular, the size of the alpha is calculated from QGT by assuming that the alpha is a “unitary entity” (that is, than which exists no simpler). The surprising conclusion is that clearly compound entities may also be physically treated as unitary (“uncuttable”) according to a principle of scale relativity, where a characteristic size for such an entity must be specified. Since QGT is entropic, and is therefore described using a logarithmic metric (involving hyperbolic space), it is not surprising that the length scale must be specified in order to account for unitary properties and for an entity to be appropriately considered an “atom”. The contribution to physics made by QGT is reviewed in the context of the related work of others. Full article
(This article belongs to the Special Issue Geometry in Thermodynamics, 4th Edition)
Show Figures

Figure 1

11 pages, 1259 KB  
Communication
Attenuated Molecular Response to SARS-CoV-2 in MDMs Isolated from Immunosuppressed Transplanted Patients
by Roberta Vazzana, Josè Camilla Sammartino, Nicola Cuscino, Roberto Giambruno, Claudia Carcione, Vitale Miceli, Matteo Bulati, Valentina Agnese, Daniele Lilleri, Pier Giulio Conaldi, Fausto Baldanti, Irene Cassaniti and Alessia Gallo
Int. J. Mol. Sci. 2025, 26(21), 10489; https://doi.org/10.3390/ijms262110489 - 28 Oct 2025
Viewed by 596
Abstract
Immunosuppressive therapies used in clinics to reduce the risk of rejection in transplanted patients unfortunately also decrease the response of the immune system to the pathogens. Previous data has shown that the most diffuse SARS-CoV-2 variants of concern between 2020 and 2021 showed [...] Read more.
Immunosuppressive therapies used in clinics to reduce the risk of rejection in transplanted patients unfortunately also decrease the response of the immune system to the pathogens. Previous data has shown that the most diffuse SARS-CoV-2 variants of concern between 2020 and 2021 showed a different modulation of the host immune response in healthy subjects, with the Delta B.1.617.2 variant leading to a failure in the activation of the adaptive immune response. In this study, the transcriptomic profiles of monocyte-derived macrophages (MDM), isolated from four immunosuppressed kidney transplant patients and exposed to SARS-CoV-2 VOCs, were analyzed and compared with previously published data gathered from immune-competent subjects. Human monocytes were isolated from peripheral blood mononuclear cells (PBMCs) of four kidney transplant patients admitted to the IRCCS Policlinico San Matteo of Pavia (Italy), differentiated into macrophages, and exposed to the active and the UV-inactivated particles of the different SARS-CoV-2 VOCs (D614G, Alpha B.1.1.7, Gamma P.1, Delta B.1.617.2 and Omicron BA.1). Bulk RNA-Seq was performed and significant transcripts were assessed based on Student’s t-test (p-value < 0.05) and Fold change > 2. RNA-Seq data analyses of immunosuppressed MDMs showed that SARS-CoV-2 VOCs, although transcriptionally active, did not induce strong alterations in the transcriptomic profiles of these cells, while a strong down-regulation of key genes involved in the innate immunity pathways was observed when comparing these data to the ones obtained from immunocompetent participants. Overall, this study suggests that patients under immunosuppressive therapies do have an altered macrophage response to SARS-CoV-2 viral infection. Full article
Show Figures

Figure 1

42 pages, 1849 KB  
Review
Recommendations on the Clinical Application and Future Potential of α-Particle Therapy: A Comprehensive Review of the Results from the SECURE Project
by Valentina Di Iorio, Anna Sarnelli, Stefano Boschi, Maddalena Sansovini, Rosa Maria Genovese, Cipriana Stefanescu, Vlad Ghizdovat, Wael Jalloul, Jennifer Young, Jane Sosabowski, Petra Kolenc, Rachel Roberts, Govert de With, Dimitris Visvikis and Renata Mikolajczak
Pharmaceuticals 2025, 18(10), 1578; https://doi.org/10.3390/ph18101578 - 18 Oct 2025
Cited by 1 | Viewed by 3524
Abstract
This review comprehensively assesses the clinical applications and future potential of alpha-emitting radionuclides available for targeted alpha-particle therapy (TAT) in cancer treatment. The approval of radium-223 therapy in 2013 marked a significant advancement in alpha-emitting therapeutic radiopharmaceuticals, which are primarily used in treatment [...] Read more.
This review comprehensively assesses the clinical applications and future potential of alpha-emitting radionuclides available for targeted alpha-particle therapy (TAT) in cancer treatment. The approval of radium-223 therapy in 2013 marked a significant advancement in alpha-emitting therapeutic radiopharmaceuticals, which are primarily used in treatment of prostate cancer. The EU SECURE project was introduced as a major initiative to enhance the sustainability and safety of medical alpha-emitting radionuclides production in Europe. This literature review was conducted by a multidisciplinary team on selected radionuclides, including actinium-225, bismuth-213, astatine-211, lead-212, terbium-149, radium-223 and thorium-227. These were selected based on their clinical significance, as identified in the EU PRISMAP project and subsequent literature searches. The review process involved searching major databases using specific keywords related to alpha-emitter therapy and was limited to articles in English. For each selected radionuclide, the physical characteristics, the radiochemistry, and the pre-clinical and clinical studies are explored. Actinium-225 is the most widely studied alpha emitter, with several preclinical and clinical studies on prostate cancer and neuroendocrine tumours. Other types of tumours (such as glioblastoma) still require preclinical and clinical development. Bismuth-213 bound to antibodies, peptides and nanobodies has shown optimal results in preclinical and clinical studies, with increased median survival and no significant toxicity. Astatine-211 differs from most other α-emitters relevant to TAT, since it yields one α-particle per decay. This offers certain translational advantages, including the simplification of radiation dosimetry calculations and quality control (QC). Lead-212 has the advantage of being an in situ generator with likely widespread availability. Although clinical data are limited, the findings are promising at this stage. The unconventional production of Terbium-149 is the primary reason it has not yet progressed to clinical trials. Overcoming this production obstacle would allow more detailed preclinical investigations. Optimal results with Thorium-227-labelled agents have been observed in preclinical studies, including delays in cellular growth, multiple double-strand breaks and complete regression. Intermediate phase I trial results have also been reported, demonstrating safety and tolerability, as well as an objective response rate of 25%.: The results highlight the advantages of alpha particles in targeting cancer cells with minimal radiation to normal tissue, emphasising the need for high specificity and stability in delivery mechanisms, as well as suggesting that the full clinical potential of alpha particle therapy remains unexplored. Theranostic approach and dosimetric evaluations still represent relevant challenges. Full article
(This article belongs to the Section Radiopharmaceutical Sciences)
Show Figures

Graphical abstract

23 pages, 8277 KB  
Article
Toxicological Mechanism of the Size–Form Synergy of Nano-Copper Oxide in Danio rerio
by Qi Liu, Xiaoxuan Li, Lixin Fang, Yanhui Wang, Fang Sun and Peng Liu
Biology 2025, 14(10), 1408; https://doi.org/10.3390/biology14101408 - 14 Oct 2025
Viewed by 690
Abstract
CuO-NPs demonstrate significant potential across biomedical, environmental protection, and electronic technology domains. This widespread utilization inevitably leads to their discharge into aquatic ecosystems. Research on the biotoxicity of CuO-NPs constitutes a current scientific priority; however, toxicological impacts related to particle size and morphology [...] Read more.
CuO-NPs demonstrate significant potential across biomedical, environmental protection, and electronic technology domains. This widespread utilization inevitably leads to their discharge into aquatic ecosystems. Research on the biotoxicity of CuO-NPs constitutes a current scientific priority; however, toxicological impacts related to particle size and morphology remain inadequately documented. The zebrafish (Danio rerio Roloff, 1956) is employed as a model animal organism to assess acute and subchronic toxicity of differentially sized/shaped CuO-NPs. Organ-specific damage manifested in the gills, liver, and muscles. It was found that sheet-shaped CuO-NPs (SC) could induce the most severe histomorphological alterations. Among spherical CuO-NPs (SP), smaller particles exhibited higher toxicity (SC > 40 nm SP-S > 150–250 nm SP-L). Tissue antioxidant capacity followed the same decreasing trend. The three CuO-NPs in the present study reduced microbial alpha-diversity. Altered relative abundance of dominant taxa is observed at the phylum and genus levels. These results expand toxicological datasets for nanomaterial–vertebrate interactions and support environmental risk assessment for nano-pollutants in natural conditions. Full article
(This article belongs to the Section Toxicology)
Show Figures

Graphical abstract

17 pages, 1887 KB  
Article
AlphaGlue: A Novel Conceptual Delivery Method for α Therapy
by Lujin Abu Sabah, Laura Ballisat, Chiara De Sio, Magdalena Dobrowolska, Adam Chambers, Jinyan Duan, Susanna Guatelli, Dousatsu Sakata, Yuyao Shi, Jaap Velthuis and Anatoly Rosenfeld
BioMedInformatics 2025, 5(4), 58; https://doi.org/10.3390/biomedinformatics5040058 - 13 Oct 2025
Viewed by 967
Abstract
Extensive research is being carried out on the application of α particles for cancer treatment. A key challenge in α therapy is how to deliver the α emitters to the tumour. In AlphaGlue, a novel treatment delivery concept, the α emitters are suspended [...] Read more.
Extensive research is being carried out on the application of α particles for cancer treatment. A key challenge in α therapy is how to deliver the α emitters to the tumour. In AlphaGlue, a novel treatment delivery concept, the α emitters are suspended in a thin layer of glue that is put on top of the tumour. In principle, this should be an easy and safe way to apply α therapy. In this study, the effectiveness of AlphaGlue is evaluated using GEANT4 and GEANT4-DNA simulations to calculate the DNA damage as a function of depth. Two radionuclides are considered in this work, 211At and 224Ra. The results indicate that, as a concept, the method offers a promising hypothesis for treating superficial tumours, such as skin cancer, when 224Ra is applied directly on the tissue and stabilized with a glue layer. This results in 2×105 complex double strand breaks and 5×105 double strand breaks at 5 mm depth per applied 224Ra atom. When applying a 224Ra atom concentration of (4.35±0.2)×1011/cm2 corresponding to an activity of (21.8±1)μCi/cm2 on the skin surface, the RBE weighted dose exceeds 20 Gy at 5 mm depth. Hence, there is significant cell death at 5 mm into the tissue; a depth matching clinical requirements for skin cancer treatment. Given the rapidly falling weighted dose versus depth curve, the treatment depth can be tuned with good precision. The results of this study show that AlphaGlue is a promosing treatment and open the pathway towards the next stage of the research, which includes in-vitro studies. Full article
Show Figures

Figure 1

17 pages, 849 KB  
Systematic Review
Health Effects and Preventive Strategies for Radon Exposure: A Systematic Review of the Literature
by Luigi Cofone, Marise Sabato, Chiara Colombo, Stefania Scalingi, Antonio Montesi, Lorenzo Paglione and Federica Patania
J. Respir. 2025, 5(4), 16; https://doi.org/10.3390/jor5040016 - 10 Oct 2025
Cited by 2 | Viewed by 2029
Abstract
Introduction: Radon is a radioactive noble gas formed from uranium decay in the Earth’s crust. The most significant isotope, 222Rn, emits alpha particles capable of damaging lung tissue and inducing cancer. Radon exposure is affected by geophysical and building characteristics and is [...] Read more.
Introduction: Radon is a radioactive noble gas formed from uranium decay in the Earth’s crust. The most significant isotope, 222Rn, emits alpha particles capable of damaging lung tissue and inducing cancer. Radon exposure is affected by geophysical and building characteristics and is recognized as a Group 1 carcinogen by the IARC. Despite regulatory thresholds (e.g., EURATOM standards), health risks remain. Various mitigation methods aim to reduce indoor radon exposure and its impact. Materials and Methods: This systematic review followed PRISMA guidelines. PubMed, Scopus, and Web of Science were searched up to 28 February 2025, using a defined string. Studies with original data on radon exposure and lung cancer risk or mitigation efficacy were included. Independent screening and quality assessment (Newcastle–Ottawa Scale) were conducted by multiple reviewers. Results: Of the 457 studies identified, 14 met the inclusion criteria. Eleven of these investigated the link between indoor radon and lung cancer risk, and three evaluated mitigation strategies. Radon levels were commonly measured using passive alpha track detectors. Levels varied depending on geographical location, season, building design and ventilation, these were higher in rural homes and during the colder months. Case–control studies consistently found an increased lung cancer risk with elevated radon exposure, especially among smokers. Effective mitigation methods included sub-slab depressurisation and balanced ventilation systems, which significantly reduced indoor radon concentrations. Adenocarcinoma was the most common lung cancer subtype in non-smokers, whereas squamous and small cell carcinomas were more prevalent in smokers exposed to radon. Discussion and Conclusions: This review confirms the robust association between indoor radon exposure and lung cancer. Risks persist even below regulatory limits and are amplified by smoking. While mitigation techniques are effective, their application remains uneven across regions. Stronger public education, building codes, and targeted interventions are needed, particularly in high-risk areas. To inform future prevention and policy, further research should seek to clarify radon’s molecular role in lung carcinogenesis, especially among non-smokers. Full article
Show Figures

Figure 1

22 pages, 1862 KB  
Article
Production of Clinical-Grade SARS-CoV-2 Spike Ferritin Nanoparticle Protein Immunogen by Transient Transfection
by Agnes Hajduczki, William C. Chang, Rafael De La Barrera, James F. Wood, Wei-Hung Chen, Elizabeth J. Martinez, Jaime L. Jensen, Rajeshwer S. Sankhala, Clayton Smith, Alexander Anderson, Elaine B. Morrison, Caroline E. Peterson, Phyllis A. Rees, Sandrine Soman, Caitlin Kuklis, Aslaa Ahmed, Jocelyn King, Farooq Nasar, Courtney Corbitt, Misook Choe, Paul V. Thomas, Michelle Zemil, Lindsay Wieczorek, Victoria R. Polonis, Helen M. Dooley, John R. Mascola, Natalie de Val, Gary R. Matyas, Mangala Rao, Gregory D. Gromowski, Kayvon Modjarrad, Sandhya Vasan, Jeffrey W. Froude, Nelson L. Michael, M. Gordon Joyce and Stasya Zarlingadd Show full author list remove Hide full author list
Vaccines 2025, 13(10), 1041; https://doi.org/10.3390/vaccines13101041 - 9 Oct 2025
Viewed by 1681
Abstract
Background/Objectives: In response to the COVID-19 pandemic, we developed a vaccine candidate against SARS-CoV-2. Spike Ferritin Nanoparticle (SpFN) comprises 24 identical prefusion-stabilized spike proteins anchored to a self-assembled nanoparticle. Organized along the three-fold axis of the ferritin particle, eight SARS-CoV-2 spike trimers [...] Read more.
Background/Objectives: In response to the COVID-19 pandemic, we developed a vaccine candidate against SARS-CoV-2. Spike Ferritin Nanoparticle (SpFN) comprises 24 identical prefusion-stabilized spike proteins anchored to a self-assembled nanoparticle. Organized along the three-fold axis of the ferritin particle, eight SARS-CoV-2 spike trimers are presented per nanoparticle. Methods: Here, we describe the CGMP processes for manufacturing SpFN using transient transfection of Expi293F cells. Results: The final yield of SpFN was ~10 mg per liter of media supernatant. The resulting protein is stable in cold storage for two years at −20 °C, as well as for a month at room temperature, and can withstand multiple freeze/thaw cycles. SpFN material produced using the CGMP protocols adjuvanted with Army Liposomal Formulation-QS-21 (ALFQ) elicited potent neutralizing antibodies against WA-1, Alpha, Beta, and Delta variants in mice as measured by a pseudovirus neutralization assay. Conclusions: This work demonstrates rapid development and scaled-up production of clinical-grade SARS-CoV-2 vaccine protein material, allowing permissive storage and transport conditions, and serves as a framework for recombinant protein production for future emergent pathogens. Full article
Show Figures

Figure 1

22 pages, 3215 KB  
Article
Genes Associated with Apoptosis in an Experimental Breast Cancer Model
by Gloria M. Calaf and Leodan A. Crispin
Int. J. Mol. Sci. 2025, 26(19), 9735; https://doi.org/10.3390/ijms26199735 - 7 Oct 2025
Viewed by 1457
Abstract
Breast cancer remains a leading cause of global mortality. According to international cancer data, significant progress has been made in treating breast cancer; however, metastasis and drug resistance continue to be the primary causes of mortality for many patients. This study investigated the [...] Read more.
Breast cancer remains a leading cause of global mortality. According to international cancer data, significant progress has been made in treating breast cancer; however, metastasis and drug resistance continue to be the primary causes of mortality for many patients. This study investigated the modulation of apoptosis-related genes in response to ionizing radiation and estrogen exposure based on a human breast epithelial cell model (MCF-10F and its transformed variants: Estrogen, Alpha3, Alpha5, Tumor2) previously established, where cells were treated with high linear energy transfer alpha particles, with or without 17β-estradiol. Gene expression profiling was performed using an Affymetrix U133A microarray, and bioinformatic analyses assessed differential expression, estrogen receptor status, and correlations with overall survival. Distinct gene expression patterns emerged across cell lines and tumor subtypes. TP53 expression correlated positively with TP63, BIK, CFLAR, BIRC3, and BCLAF1. TP63, PERP, CFLAR, BCLAF1, GULP1, and BIRC3 were elevated in normal tissue, whereas BIK, PHLDA2, and BBC3 were upregulated in tumors. ER-positive tumors exhibited higher TP63, BIK, BCLAF1, and BBC3 expression, while ER-negative tumors showed increased PERP, CFLAR, BIRC3, and PHLDA2. Notably, elevated BCLAF1 expression was associated with poorer survival in Luminal A patients, and high PHLDA2 expression correlated with reduced survival in Luminal B cases. These findings indicate that resistance to apoptosis is a fundamental mechanism in breast cancer progression and therapeutic evasion. Breast tumors selectively alter the expression of key genes to promote growth, evade apoptosis, and develop therapeutic resistance. The differential expression and correlations of these apoptosis-related genes highlight their potential as molecular targets for future personalized cancer therapies and as valuable biomarkers for prognostic stratification and predicting therapeutic response. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

Back to TopTop