Toxicological Mechanism of the Size–Form Synergy of Nano-Copper Oxide in Danio rerio
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Characterization of CuO-NPs and Preparation of Suspension
2.2. Acute Toxicity Test
2.3. Subchronic Toxicity Test
2.4. Histomorphological Observation
2.5. Measurement of Antioxidant-Related Enzymes and MDA Content
- (1)
- Superoxide dismutase (SOD) activity (A001-3-2, Nanjing Institute of Biological Engineering): Quantified by the WST-1 method. Absorbance was read at 450 nm using a microplate reader, and results were expressed as units per milligram of protein (U/mg prot).
- (2)
- Catalase (CAT) activity (A007-1-1, Nanjing Institute of Biological Engineering): Measured via the ammonium molybdate method. The formation of a pale-yellow complex was monitored at 405 nm, and activity was calculated as U/mg prot.
- (3)
- Malondialdehyde (MDA) content (A003-1-2, Nanjing Institute of Biological Engineering): Determined by the thiobarbituric acid (TBA) method. The red MDA-TBA adduct was quantified spectrophotometrically at 532 nm, with results expressed as nanomoles per milligram of protein (nmol/mg prot).
2.6. Micronucleus Frequency Analysis in Zebrafish Erythrocytes
2.7. Effect of CuO-NPs on Gut Microbes in Zebrafish
2.8. Statistical Data Analysis
3. Results
3.1. Morphological Characterization of Three Types of CuO-NPs
3.2. Acute Toxicity of CuO-NPs in Zebrafish
3.3. Construction and Evaluation of Zebrafish Model Under CuO-NPs Exposure
3.4. Impact of CuO-NPs on Zebrafish Body Length and Weight
3.5. Effect of CuO-NPs on Zebrafish Respiration Rate
3.6. Histopathological Observations of CuO-NPs on Zebrafish Liver/Gill/Muscle
3.7. Impact of CuO-NPs Exposure on Antioxidant Enzymes Activities and MDA Content
3.7.1. SOD Activity
3.7.2. CAT Activity
3.7.3. MDA Content
3.8. Impact of CuO-NPs on Micronucleus Frequency in Zebrafish
3.9. Impact of CuO-NPs on Gut Microbiota in Zebrafish
3.10. Effect of CuO-NPs on Gut Microbe Composition in Zebrafish
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumar, S.; Wang, Z.; Zhang, W.; Liu, X.; Li, M.; Li, G.; Zhang, B.; Singh, R. Optically Active Nanomaterials and Its Biosensing Applications-A Review. Biosensors 2023, 13, 85. [Google Scholar] [CrossRef]
- Singh, R.; Kumawat, M.; Gogoi, H.; Madhyastha, H.; Lichtfouse, E.; Daima, H.K. Engineered Nanomaterials for Immunomodulation: A Review. ACS Appl. Bio Mater. 2024, 7, 727–751. [Google Scholar] [CrossRef]
- Sajid, M.; Ilyas, M.; Basheer, C.; Tariq, M.; Daud, M.; Baig, N.; Shehzad, F. Impact of nanoparticles on human and environment: Review of toxicity factors, exposures, control strategies, and future prospects. Environ. Sci. Pollut. Res. Int. 2015, 22, 4122–4143. [Google Scholar] [CrossRef]
- Isani, G.; Falcioni, M.L.; Barucca, G.; Sekar, D.; Andreani, G.; Carpenè, E.; Falcioni, G. Comparative toxicity of CuO nanoparticles and CuSO4 in Rainbow trout. Ecotoxicol. Environ. Saf. 2013, 97, 40–46. [Google Scholar] [CrossRef]
- Facques, A.; Handy, R.D. Effects of CuSO4 and CuO nanoparticles on fish gut motility in Altantic salmon, Salmo salar. Ecotoxicology 2025, 28, 948–957. [Google Scholar] [CrossRef] [PubMed]
- Thit, A.; Selck, H.; Bjerregaard, H.F. Toxicity of CuO nanoparticles and Cu ions to tight epithelial cells from Xenopus laevis (A6): Effects on proliferation, cell cycle progression and cell death. Toxicol. Vitr. 2013, 27, 1596–1601. [Google Scholar] [CrossRef] [PubMed]
- Pang, R.; Shao, B.; Chen, Q.; Shi, H.; Xie, B.; Soliman, M.; Tai, J.; Su, Y. The co-occurrent microplastics and nano-CuO showed antagonistic inhibitory effects on bacterial denitrification: Interaction of pollutants and regulations on functional genes. Sci. Total Environ. 2023, 862, 160892. [Google Scholar] [CrossRef] [PubMed]
- Jośko, I.; Kusiak, M.; Xing, B.; Oleszczuk, P. Combined effect of nano-CuO and nano-ZnO in plant-related system: From bioavailability in soil to transcriptional regulation of metal homeostasis in barley. J. Hazard. Mater. 2021, 416, 126230. [Google Scholar] [CrossRef]
- Du, Z.; Chai, X.; Li, X.; Ren, G.; Yang, X.; Yang, Z. Nano-CuO causes cell damage through activation of dose-dependent autophagy and mitochondrial lncCyt b-AS/ND5-AS/ND6-AS in SH-SY5Y cells. Toxicol. Mech. Methods 2022, 32, 37–48. [Google Scholar] [CrossRef]
- Rosa, J.G.S.; Lima, C.; Lopes-Ferreira, M. Zebrafish Larvae Behavior Models as a Tool for Drug Screenings and Pre-Clinical Trials: A Review. Int. J. Mol. Sci. 2022, 23, 6647. [Google Scholar] [CrossRef]
- Yang, P.; Takahashi, H.; Murase, M.; Itoh, M. Zebrafish behavior feature recognition using three-dimensional tracking and machine learning. Sci. Rep. 2021, 11, 13492. [Google Scholar] [CrossRef]
- Kang, Y.F.; Li, Y.H.; Fang, Y.W.; Xu, Y.; Wei, X.M.; Yin, X.B. Carbon Quantum Dots for Zebrafish Fluorescence Imaging. Sci. Rep. 2015, 5, 11835. [Google Scholar] [CrossRef]
- Heinlaan, M.; Kahru, A.; Kasemets, K.; Arbeille, B.; Prensier, G.; Dubourguier, H.C. Changes in the Daphnia magna midgut upon ingestion of copper oxide nanoparticles: A transmission electron microscopy study. Water Res. 2011, 45, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Torres-Duarte, C.; Hutton, S.; Vines, C.; Moore, J.; Cherr, G.N. Effects of soluble copper and copper oxide nanoparticle exposure on the immune system of mussels, Mytilus galloprovincialis. Environ. Toxicol. 2019, 34, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Culloty, S.; Darmody, G.; Lynch, S.; Davenport, J.; Ramirez-Garcia, S.; Dawson, K.A.; Lynch, I.; Blasco, J.; Sheehan, D. Toxicity of copper oxide nanoparticles in the blue mussel, Mytilus edulis: A redox proteomic investigation. Chemosphere 2014, 108, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liao, S.; Xiao, Z.; Pan, Q.; Wang, X.; Shen, K.; Wang, S.; Yang, L.; Guo, F.; Liu, H.F.; et al. The development and improvement of immunodeficient mice and humanized immune system mouse models. Front. Immunol. 2022, 13, 1007579. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Y.; Yin, S.; Dai, Y.; Zhao, J.; Wang, Z.; Xing, B. Antagonism toxicity of CuO nanoparticles and mild ocean acidification to marine algae. J. Hazard. Mater. 2023, 448, 130857. [Google Scholar] [CrossRef]
- Chebotaryova, S.P.; Zakharova, O.V.; Gusev, A.A.; Baranchikov, P.A.; Kolesnikov, E.A.; Yakusheva, A.S.; Skripnikova, E.V.; Lobakova, E.S.; Xu, J.; Alam, M.A.; et al. Assessment of the Tolerance of a Chlorophyte Desmodesmus to CuO-NP for Evaluation of the Nanopollution Bioremediation Potential of This Microalga. Nanomaterials 2023, 13, 737. [Google Scholar] [CrossRef]
- Moura, J.A.S.; Souza-Santos, L.P. Environmental risk assessment (ERA) of pyriproxyfen in non-target aquatic organisms. Aquat. Toxicol. 2020, 222, 105448. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, Q.; Liu, D.; Liu, T.; Xing, L. Neurotoxicity of nanoparticles: Insight from studies in zebrafish. Ecotoxicol. Environ. Saf. 2022, 242, 113896. [Google Scholar] [CrossRef]
- Fadeel, B. Nanomaterial characterization: Understanding nano-bio interactions. Biochem. Biophys. Res. Commun. 2022, 633, 45–51. [Google Scholar] [CrossRef]
- Kiran, N.S.; Yashaswini, C.; Chatterjee, A. Zebrafish: A trending model for gut-brain axis investigation. Aquat. Toxicol. 2024, 270, 106902. [Google Scholar] [CrossRef]
- Zheng, Y.; Song, J.; Qian, Q.; Wang, H. Silver nanoparticles induce liver inflammation through ferroptosis in zebrafish. Chemosphere 2024, 362, 142673. [Google Scholar] [CrossRef]
- Ma, G.; Zhang, M.; Shi, G.; Gu, C.; Shen, H.; Ba, K.; Zhang, Y.; Wang, D.; Liu, X.; Yu, B.; et al. Flexible Self-Powered Respiration Sensor Inspired by Fish Lateral Line Systems. Research 2025, 8, 0905. [Google Scholar] [CrossRef]
- Rossner, P., Jr.; Cervena, T.; Echalar, B.; Palacka, K.; Milcova, A.; Novakova, Z.; Sima, M.; Simova, Z.; Vankova, J.; Holan, V. Metal Nanoparticles with Antimicrobial Properties: The Toxicity Response in Mouse Mesenchymal Stem Cells. Toxics 2023, 11, 253. [Google Scholar] [CrossRef] [PubMed]
- Gudkov, S.V.; Burmistrov, D.E.; Fomina, P.A.; Validov, S.Z.; Kozlov, V.A. Antibacterial Properties of Copper Oxide Nanoparticles (Review). Int. J. Mol. Sci. 2024, 25, 11563. [Google Scholar] [CrossRef] [PubMed]
- Sajjad, H.; Sajjad, A.; Haya, R.T.; Khan, M.M.; Zia, M. Copper oxide nanoparticles: In vitro and in vivo toxicity, mechanisms of action and factors influencing their toxicology. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2023, 271, 109682. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Q.Q.; Zhang, Z.S.; Zheng, T.J.; Lu, L.Y.; Lin, M.T.; Yang, J.L.; Deng, H.H.; Xu, Y.Y.; Chen, W. Alkaline phosphatase-activated prodrug system based on a bifunctional CuO NP tandem nanoenzyme for on-demand bacterial inactivation and wound disinfection. J. Nanobiotechnol. 2024, 22, 485. [Google Scholar] [CrossRef]
- Gräf, T.; Koch, V.; Köser, J.; Fischer, J.; Tessarek, C.; Filser, J. Biotic and Abiotic Interactions in Freshwater Mesocosms Determine Fate and Toxicity of CuO Nanoparticles. Environ. Sci. Technol. 2023, 57, 12376–12387. [Google Scholar] [CrossRef]
- Nakhaeepour, Z.; Mashreghi, M.; Matin, M.M.; NakhaeiPour, A.; Housaindokht, M.R. Multifunctional CuO nanoparticles with cytotoxic effects on KYSE30 esophageal cancer cells, antimicrobial and heavy metal sensing activities. Life Sci. 2019, 234, 116758. [Google Scholar] [CrossRef]
- Chao, S.J.; Huang, C.P.; Lam, C.C.; Hua, L.C.; Chang, S.H.; Huang, C. Transformation of copper oxide nanoparticles as affected by ionic strength and its effects on the toxicity and bioaccumulation of copper in zebrafish embryo. Ecotoxicol. Environ. Saf. 2021, 225, 112759. [Google Scholar] [CrossRef] [PubMed]
- Morad, M.; Hassanein, T.F.; El-Khadragy, M.F.; Fehaid, A.; Habotta, O.A.; Abdel Moneim, A. Biochemical and histopathological effects of copper oxide nanoparticles exposure on the bivalve Chambardia rubens (Lamarck, 1819). Biosci. Rep. 2023, 43, BSR20222308. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.; Sun, X.; Shi, Y.; Chen, L.; Wang, L.; Cai, H.; Han, C.; Liao, T.; Yang, C.; Zuo, Z.; et al. The valence state of iron-based nanomaterials determines the ferroptosis potential in a zebrafish model. Sci. Total Environ. 2023, 855, 158715. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.; Gautam, A.; Das, S.; Pal, K.; Das, S.; Karmakar, P.; Ray, M.; Ray, S. Effects of copper oxide nanoparticle on gill filtration rate, respiration rate, hemocyte associated immune parameters and oxidative status of an Indian freshwater mussel. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2020, 237, 108855. [Google Scholar] [CrossRef]
- Liu, Q.; Du, P.; Zhu, Y.; Zhang, X.; Cai, J.; Zhang, Z. Thioredoxin reductase 3 suppression promotes colitis and carcinogenesis via activating pyroptosis and necrosis. Cell. Mol. Life Sci. 2022, 79, 106. [Google Scholar] [CrossRef]
- Abudayyak, M.; Guzel, E.; Özhan, G. Cupric Oxide Nanoparticles Induce Cellular Toxicity in Liver and Intestine Cell Lines. Adv. Pharm. Bull. 2020, 10, 213–220. [Google Scholar] [CrossRef]
- Büttner, J.; Schneider, T.; Westermann, M.; Glei, M. Artificial Digestion of Polydisperse Copper Oxide Nanoparticles: Investigation of Effects on the Human In Vitro Intestinal Co-Culture Model Caco-2/HT29-MTX. Toxics 2022, 10, 130. [Google Scholar] [CrossRef]
- Lammel, T.; Thit, A.; Cui, X.; Mouneyrac, C.; Baun, A.; Valsami-Jones, E.; Sturve, J.; Selck, H. Dietary uptake and effects of copper in Sticklebacks at environmentally relevant exposures utilizing stable isotope-labeled 65CuCl2 and 65CuO NPs. Sci. Total Environ. 2021, 757, 143779. [Google Scholar] [CrossRef]
- Jiang, M.; Tao, X.; Pang, Y.; Qin, Z.; Song, E.; Song, Y. Copper oxide nanoparticles induce non-alcoholic fatty liver disease by disrupting bile acid homeostasis and perturbing the intestinal microbial homeostasis. J. Hazard. Mater. 2024, 480, 136416. [Google Scholar] [CrossRef]
- Mishra, R.K.; Selim, A.; Gowri, V.; Ahmad, A.; Nadeem, A.; Siddiqui, N.; Raza, S.S.; Jayamurugan, G.; Khan, R. Thiol-Functionalized Cellulose-Grafted Copper Oxide Nanoparticles for the Therapy of Experimental Colitis in Swiss Albino Mice. ACS Biomater. Sci. Eng. 2022, 8, 2088–2095. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, T.; Wang, L.; Tang, J. Polystyrene micro and nanoplastics attenuated the bioavailability and toxic effects of Perfluorooctane sulfonate (PFOS) on soybean (Glycine max) sprouts. J. Hazard. Mater. 2023, 448, 130911. [Google Scholar] [CrossRef]
Group | Time (h) | Y = aX + b | Correlation (R2) | LC50 (mg·L−1) |
---|---|---|---|---|
SP-L | 24 | Y = 0.3500 × X − 280.0 | 1.0000 | 942.8571 |
48 | Y = 0.2500 × X − 163.3 | 0.8242 | 853.2000 | |
72 | Y = 0.1200 × X − 34.00 | 0.9172 | 700.0000 | |
96 | Y = 0.0943 × X − 10.48 | 0.8975 | 641.4254 | |
SP-S | 24 | Y = 0.4500 × X − 360.0 | 1.0000 | 911.1111 |
48 | Y = 0.1150 × X − 33.00 | 0.8644 | 721.7391 | |
72 | Y = 0.1350 × X − 29.00 | 0.9746 | 585.1852 | |
96 | Y = 0.1086 × X − 7.619 | 0.9670 | 530.5617 | |
SC | 24 | Y = 0.1250 × X − 31.00 | 0.9586 | 648.0000 |
48 | Y = 0.1250 × X + 4.000 | 0.9889 | 368.0000 | |
72 | Y = 0.1150 × X + 22.00 | 0.7919 | 243.4783 | |
96 | Y = 0.1650 × X + 13.00 | 0.8963 | 224.2424 |
Group | Treatment Time (d) | |||
---|---|---|---|---|
7 | 14 | 21 | 28 | |
CK | 26.78 ± 0.239 aA | 26.87 ± 0.403 aB | 26.73 ± 0.323 aAB | 26.92 ± 0.271 aA |
SP-L-L | 26.78 ± 0.285 abA | 26.25 ± 0.287 abB | 26.52 ± 0.302 abAB | 26.95 ± 0.341 abA |
SP-L-H | 26.84 ± 0.153 aA | 26.77 ± 0.225 aB | 26.72 ± 0.214 aAB | 26.34 ± 0.221 aA |
SP-S-L | 26.99 ± 0.319 abA | 26.06 ± 0.331 abB | 26.50 ± 0.259 abAB | 26.73 ± 0.378 abA |
SP-S-H | 26.77 ± 0.343 abA | 26.19 ± 0.292 abB | 26.38 ± 0.277 abAB | 26.49 ± 0.251 abA |
SC-L | 26.89 ± 0.243 aA | 26.11 ± 0.244 aB | 26.84 ± 0.284 aAB | 26.73 ± 0.390 aA |
SC-H | 26.61 ± 0.177 bA | 25.62 ± 0.435 bB | 25.86 ± 0.396 bAB | 26.09 ± 0.363 bA |
Group | Treatment Time (d) | |||
---|---|---|---|---|
7 | 14 | 21 | 28 | |
CK | 0.347 ± 0.010 aA | 0.333 ± 0.008 aB | 0.330 ± 0.011 aB | 0.331 ± 0.010 aB |
SP-L-L | 0.343 ± 0.016 abA | 0.329 ± 0.019 abB | 0.322 ± 0.016 abB | 0.316 ± 0.017 abB |
SP-L-H | 0.338 ± 0.007 abA | 0.321 ± 0.007 abB | 0.321 ± 0.006 abB | 0.310 ± 0.007 abB |
SP-S-L | 0.331 ± 0.012 bA | 0.302 ± 0.015 bB | 0.308 ± 0.020 bB | 0.298 ± 0.030 bB |
SP-S-H | 0.335 ± 0.010 abA | 0.308 ± 0.009 abB | 0.309 ± 0.007 abB | 0.311 ± 0.006 abB |
SC-L | 0.323 ± 0.011 abA | 0.321 ± 0.014 abB | 0.340 ± 0.017 abB | 0.305 ± 0.027 abB |
SC-H | 0.344 ± 0.007 bA | 0.299 ± 0.011 bB | 0.283 ± 0.014 bB | 0.274 ± 0.009 bB |
Group | Treatment Time (d) | |||
---|---|---|---|---|
7 | 14 | 21 | 28 | |
CK | 90 ± 1.09 aAB | 89 ± 2.61 aB | 92 ± 2.04 aA | 88 ± 1.77 aC |
SP-L-L | 88 ± 2.97 abAB | 87 ± 4.59 abB | 97 ± 2.34 abA | 72 ± 3.69 abC |
SP-L-H | 92 ± 1.03 aAB | 90 ± 1.27 aB | 100 ± 1.75 aA | 73 ± 3.47 aC |
SP-S-L | 87 ± 2.12 abAB | 90 ± 1.78 abB | 91 ± 1.59 abA | 68 ± 5.92 abC |
SP-S-H | 88 ± 2.01 bAB | 85 ± 1.51 bB | 92 ± 1.00 bA | 71 ± 5.01 bC |
SC-L | 72 ± 4.96 dAB | 62 ± 3.56 dB | 60 ± 5.66 dA | 57 ± 3.16 dC |
SC-H | 72 ± 3.89 Cab | 74 ± 4.07 cB | 72 ± 1.45 cA | 68 ± 4.98 cC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Li, X.; Fang, L.; Wang, Y.; Sun, F.; Liu, P. Toxicological Mechanism of the Size–Form Synergy of Nano-Copper Oxide in Danio rerio. Biology 2025, 14, 1408. https://doi.org/10.3390/biology14101408
Liu Q, Li X, Fang L, Wang Y, Sun F, Liu P. Toxicological Mechanism of the Size–Form Synergy of Nano-Copper Oxide in Danio rerio. Biology. 2025; 14(10):1408. https://doi.org/10.3390/biology14101408
Chicago/Turabian StyleLiu, Qi, Xiaoxuan Li, Lixin Fang, Yanhui Wang, Fang Sun, and Peng Liu. 2025. "Toxicological Mechanism of the Size–Form Synergy of Nano-Copper Oxide in Danio rerio" Biology 14, no. 10: 1408. https://doi.org/10.3390/biology14101408
APA StyleLiu, Q., Li, X., Fang, L., Wang, Y., Sun, F., & Liu, P. (2025). Toxicological Mechanism of the Size–Form Synergy of Nano-Copper Oxide in Danio rerio. Biology, 14(10), 1408. https://doi.org/10.3390/biology14101408