Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = alkaline proton carrier

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 5273 KB  
Review
A Comprehensive Review of Green Hydrogen Technology: Electrolysis Methods, Topologies and Control Strategies, Applications
by Ailitabaier Abudureyimu, Ayiguzhali Tuluhong, Qingpu Chang, Feng Wang and Bao Luo
Materials 2025, 18(21), 4826; https://doi.org/10.3390/ma18214826 - 22 Oct 2025
Viewed by 739
Abstract
As a pivotal clean energy carrier for achieving carbon neutrality, green hydrogen technology has attracted growing global attention. This review systematically examines four mainstream water electrolysis technologies—alkaline electrolysis, proton exchange membrane electrolysis, solid oxide electrolysis, and anion exchange membrane electrolysis—analyzing their fundamental principles, [...] Read more.
As a pivotal clean energy carrier for achieving carbon neutrality, green hydrogen technology has attracted growing global attention. This review systematically examines four mainstream water electrolysis technologies—alkaline electrolysis, proton exchange membrane electrolysis, solid oxide electrolysis, and anion exchange membrane electrolysis—analyzing their fundamental principles, material challenges, and development trends. It further classifies and compares power electronic converter topologies, including non-isolated and isolated DC–DC converters as well as AC–DC converter architectures, and summarizes advanced control strategies such as dynamic power regulation and fault-tolerant operation aimed at enhancing system efficiency and stability. A holistic “electrolyzer–power converter–control strategy” integration framework is proposed to provide tailored technological solutions for diverse application scenarios. Finally, the challenges and future prospects of green hydrogen across the energy, transportation, and industrial sectors are discussed, underscoring its potential to accelerate the global transition toward a sustainable, low-carbon energy system. Full article
(This article belongs to the Section Quantum Materials)
Show Figures

Graphical abstract

18 pages, 2838 KB  
Article
Evaluating the Role of Hydrogen as an Energy Carrier: Perspectives on Low-Emission Applications
by Dominika Polakovičová and Miroslav Variny
Hydrogen 2025, 6(4), 86; https://doi.org/10.3390/hydrogen6040086 - 13 Oct 2025
Viewed by 507
Abstract
Application of low-emission hydrogen production methods in the decarbonization process remains a highly relevant topic, particularly in the context of sustainable hydrogen value chains. This study evaluates hydrogen applications beyond industry, focusing on its role as an energy carrier and applying multi-criteria decision [...] Read more.
Application of low-emission hydrogen production methods in the decarbonization process remains a highly relevant topic, particularly in the context of sustainable hydrogen value chains. This study evaluates hydrogen applications beyond industry, focusing on its role as an energy carrier and applying multi-criteria decision analysis (MCDA) to assess economics, environmental impact, efficiency, and technological readiness. The analysis confirmed that hydrogen use for heating was the most competitive non-industrial application (ranking first in 66%), with favorable efficiency and costs. Power generation placed among the top two alternatives in 75% of cases. Transport end-use was less suitable due to compression requirements, raising emissions to 272–371 g CO2/kg H2 and levelizing the cost of hydrogen (LCOH) to 13–17 EUR/kg. When H2 transport was included, new pipelines and compressed H2 clearly outperformed other methods for short- and long-distances, adding only 3.2–3.9% to overall LCOH. Sensitivity analysis confirmed that electricity price variations had a stronger influence on LCOH than capital expenditures. Comparing electrolysis technologies yielded that, proton-exchange membrane and solid oxide reduced costs by 12–20% and CO2 emissions by 15–25% compared to alkaline. The study highlights heating end-use and compressed hydrogen and pipeline transport, proving MCDA to be useful for selecting scalable pathways. Full article
Show Figures

Figure 1

24 pages, 10263 KB  
Article
Non-Renewable and Renewable Exergy Costs of Water Electrolysis in Hydrogen Production
by Alessandro Lima, Jorge Torrubia, Alicia Valero and Antonio Valero
Energies 2025, 18(6), 1398; https://doi.org/10.3390/en18061398 - 12 Mar 2025
Cited by 7 | Viewed by 1506
Abstract
Hydrogen production via water electrolysis and renewable electricity is expected to play a pivotal role as an energy carrier in the energy transition. This fuel emerges as the most environmentally sustainable energy vector for non-electric applications and is devoid of CO2 emissions. [...] Read more.
Hydrogen production via water electrolysis and renewable electricity is expected to play a pivotal role as an energy carrier in the energy transition. This fuel emerges as the most environmentally sustainable energy vector for non-electric applications and is devoid of CO2 emissions. However, an electrolyzer’s infrastructure relies on scarce and energy-intensive metals such as platinum, palladium, iridium (PGM), silicon, rare earth elements, and silver. Under this context, this paper explores the exergy cost, i.e., the exergy destroyed to obtain one kW of hydrogen. We disaggregated it into non-renewable and renewable contributions to assess its renewability. We analyzed four types of electrolyzers, alkaline water electrolysis (AWE), proton exchange membrane (PEM), solid oxide electrolysis cells (SOEC), and anion exchange membrane (AEM), in several exergy cost electricity scenarios based on different technologies, namely hydro (HYD), wind (WIND), and solar photovoltaic (PV), as well as the different International Energy Agency projections up to 2050. Electricity sources account for the largest share of the exergy cost. Between 2025 and 2050, for each kW of hydrogen generated, between 1.38 and 1.22 kW will be required for the SOEC-hydro combination, while between 2.9 and 1.4 kW will be required for the PV-PEM combination. A Grassmann diagram describes how non-renewable and renewable exergy costs are split up between all processes. Although the hybridization between renewables and the electricity grid allows for stable hydrogen production, there are higher non-renewable exergy costs from fossil fuel contributions to the grid. This paper highlights the importance of non-renewable exergy cost in infrastructure, which is required for hydrogen production via electrolysis and the necessity for cleaner production methods and material recycling to increase the renewability of this crucial fuel in the energy transition. Full article
Show Figures

Figure 1

37 pages, 2322 KB  
Review
A Comprehensive Overview of Technologies Applied in Hydrogen Valleys
by Michael Bampaou and Kyriakos D. Panopoulos
Energies 2024, 17(24), 6464; https://doi.org/10.3390/en17246464 - 22 Dec 2024
Cited by 2 | Viewed by 1859
Abstract
Hydrogen valleys are encompassed within a defined geographical region, with various technologies across the entire hydrogen value chain. The scope of this study is to analyze and assess the different hydrogen technologies for their application within the hydrogen valley context. Emphasizing on the [...] Read more.
Hydrogen valleys are encompassed within a defined geographical region, with various technologies across the entire hydrogen value chain. The scope of this study is to analyze and assess the different hydrogen technologies for their application within the hydrogen valley context. Emphasizing on the coupling of renewable energy sources with electrolyzers to produce green hydrogen, this study is focused on the most prominent electrolysis technologies, including alkaline, proton exchange membrane, and solid oxide electrolysis. Moreover, challenges related to hydrogen storage are explored, alongside discussions on physical and chemical storage methods such as gaseous or liquid storage, methanol, ammonia, and liquid organic hydrogen carriers. This article also addresses the distribution of hydrogen within valley operations, especially regarding the current status on pipeline and truck transportation methods. Furthermore, the diverse applications of hydrogen in the mobility, industrial, and energy sectors are presented, showcasing its potential to integrate renewable energy into hard-to-abate sectors. Full article
Show Figures

Figure 1

24 pages, 4949 KB  
Article
Preliminary Assessment of a Hydrogen Farm Including Health and Safety and Capacity Needs
by Esmaeil Alssalehin, Paul Holborn and Pericles Pilidis
Energies 2024, 17(24), 6395; https://doi.org/10.3390/en17246395 - 19 Dec 2024
Cited by 5 | Viewed by 1318
Abstract
The safety engineering design of hydrogen systems and infrastructure, worker education and training, regulatory compliance, and engagement with other stakeholders are significant to the viability and public acceptance of hydrogen farms. The only way to ensure these are accomplished is for the field [...] Read more.
The safety engineering design of hydrogen systems and infrastructure, worker education and training, regulatory compliance, and engagement with other stakeholders are significant to the viability and public acceptance of hydrogen farms. The only way to ensure these are accomplished is for the field of hydrogen safety engineering (HSE) to grow and mature. HSE is described as the application of engineering and scientific principles to protect the environment, property, and human life from the harmful effects of hydrogen-related mishaps and accidents. This paper describes a whole hydrogen farm that produces hydrogen from seawater by alkaline and proton exchange membrane electrolysers, then details how the hydrogen gas will be used: some will be stored for use in a combined-cycle gas turbine, some will be transferred to a liquefaction plant, and the rest will be exported. Moreover, this paper describes the design framework and overview for ensuring hydrogen safety through these processes (production, transport, storage, and utilisation), which include legal requirements for hydrogen safety, safety management systems, and equipment for hydrogen safety. Hydrogen farms are large-scale facilities used to create, store, and distribute hydrogen, which is usually produced by electrolysis using renewable energy sources like wind or solar power. Since hydrogen is a vital energy carrier for industries, transportation, and power generation, these farms are crucial in assisting the global shift to clean energy. A versatile fuel with zero emissions at the point of use, hydrogen is essential for reaching climate objectives and decarbonising industries that are difficult to electrify. Safety is essential in hydrogen farms because hydrogen is extremely flammable, odourless, invisible, and also has a small molecular size, meaning it is prone to leaks, which, if not handled appropriately, might cause fires or explosions. To ensure the safe and dependable functioning of hydrogen production and storage systems, stringent safety procedures are required to safeguard employees, infrastructure, and the surrounding environment from any mishaps. Full article
(This article belongs to the Special Issue Hydrogen Economy in the Global Energy Transition)
Show Figures

Figure 1

14 pages, 3735 KB  
Article
A Sustainable and Eco-Friendly Membrane for PEM Fuel Cells Using Bacterial Cellulose
by Xiaozhen Yang, Lin Huang, Qiang Deng and Weifu Dong
Polymers 2024, 16(21), 3017; https://doi.org/10.3390/polym16213017 - 28 Oct 2024
Cited by 7 | Viewed by 2645
Abstract
Bacterial cellulose (BC) is an advantageous polymer due to its renewable nature, low cost, environmental compatibility, biocompatibility, biodegradability, chemical stability, and ease of modification. With these advantages, BC is an interesting candidate for the development of novel eco-friendly materials for proton-exchange membrane (PEM) [...] Read more.
Bacterial cellulose (BC) is an advantageous polymer due to its renewable nature, low cost, environmental compatibility, biocompatibility, biodegradability, chemical stability, and ease of modification. With these advantages, BC is an interesting candidate for the development of novel eco-friendly materials for proton-exchange membrane (PEM) applications. However, its practical applications have been limited by its relatively high dispersion in water, which usually occurs during the operation of proton-exchange membrane fuel cells (PEMFCs). In addition, the proton conductivity of bacterial cellulose is poor. In this study, functionalized BC modified with 3-aminopropyltriethoxysilane (APTES) was prepared using a solvent casting method to enhance its performance. The results showed that the water stability of the modified BC membrane was significantly improved, with the contact angle increasing from 54.9° to 103.3°. Furthermore, the optimum ratio of BC and APTES was used to prepare a proton-exchange membrane with a maximum proton conductivity of 62.2 mS/cm, which exhibited a power generation performance of 4.85 mW/cm2 in PEMFCs. It is worth mentioning that modified BC membranes obtained by combining an alkaline proton carrier (-NH2) with BC have rarely been reported. As fully bio-based conductive membranes for PEMFCs, they have the potential to be a low-cost, eco-friendly, and degradable alternative to expensive, ecologically problematic fluoric ionomers in short-term or disposable applications, such as biodegradable electronics and portable power supplies. Full article
(This article belongs to the Special Issue Eco-Friendly Polymer-Based Materials: Design and Applications)
Show Figures

Graphical abstract

30 pages, 4155 KB  
Article
Thermo-Economic Comparison between Three Different Electrolysis Technologies Powered by a Conventional Organic Rankine Cycle for the Green Hydrogen Production Onboard Liquefied Natural Gas Carriers
by Doha Elrhoul, Manuel Naveiro and Manuel Romero Gómez
J. Mar. Sci. Eng. 2024, 12(8), 1287; https://doi.org/10.3390/jmse12081287 - 31 Jul 2024
Cited by 4 | Viewed by 3369
Abstract
The high demand for natural gas (NG) worldwide has led to an increase in the size of the LNG carrier fleet. However, the heat losses from this type of ship’s engines are not properly managed, nor is the excess boil-off gas (BOG) effectively [...] Read more.
The high demand for natural gas (NG) worldwide has led to an increase in the size of the LNG carrier fleet. However, the heat losses from this type of ship’s engines are not properly managed, nor is the excess boil-off gas (BOG) effectively utilised when generation exceeds the ship’s power demand, resulting in significant energy losses dissipated into the environment. This article suggests storing the lost energy into green H2 for subsequent use. This work compares three different electrolysis technologies: solid oxide (SOEC), proton exchange membrane (PEME), and alkaline (AE). The energy required by the electrolysis processes is supplied by both the LNG’s excess BOG and engine waste heat through an organic Rankine cycle (ORC). The results show that the SOEC consumes (743.53 kW) less energy while producing more gH2 (21.94 kg/h) compared to PEME (796.25 kW, 13.96 kg/h) and AE (797.69 kW, 10.74 kg/h). In addition, both the overall system and SOEC stack efficiencies are greater than those of PEME and AE, respectively. Although the investment cost required for AE (with and without H2 compression consideration) is cheaper than SOEC and PEME in both scenarios, the cost of the H2 produced by the SOEC is cheaper by more than 2 USD/kgH2 compared to both other technologies. Full article
Show Figures

Figure 1

22 pages, 1607 KB  
Review
pH Homeodynamics and Male Fertility: A Coordinated Regulation of Acid-Based Balance during Sperm Journey to Fertilization
by Pengyuan Dai, Meng Zou, Ziyi Cai, Xuhui Zeng, Xiaoning Zhang and Min Liang
Biomolecules 2024, 14(6), 685; https://doi.org/10.3390/biom14060685 - 12 Jun 2024
Cited by 11 | Viewed by 8095
Abstract
pH homeostasis is crucial for spermatogenesis, sperm maturation, sperm physiological function, and fertilization in mammals. HCO3 and H+ are the most significant factors involved in regulating pH homeostasis in the male reproductive system. Multiple pH-regulating transporters and ion channels localize [...] Read more.
pH homeostasis is crucial for spermatogenesis, sperm maturation, sperm physiological function, and fertilization in mammals. HCO3 and H+ are the most significant factors involved in regulating pH homeostasis in the male reproductive system. Multiple pH-regulating transporters and ion channels localize in the testis, epididymis, and spermatozoa, such as HCO3 transporters (solute carrier family 4 and solute carrier family 26 transporters), carbonic anhydrases, and H+-transport channels and enzymes (e.g., Na+-H+ exchangers, monocarboxylate transporters, H+-ATPases, and voltage-gated proton channels). Hormone-mediated signals impose an influence on the production of some HCO3 or H+ transporters, such as NBCe1, SLC4A2, MCT4, etc. Additionally, ion channels including sperm-specific cationic channels for Ca2+ (CatSper) and K+ (SLO3) are directly or indirectly regulated by pH, exerting specific actions on spermatozoa. The slightly alkaline testicular pH is conducive to spermatogenesis, whereas the epididymis’s low HCO3 concentration and acidic lumen are favorable for sperm maturation and storage. Spermatozoa pH increases substantially after being fused with seminal fluid to enhance motility. In the female reproductive tract, sperm are subjected to increasing concentrations of HCO3 in the uterine and fallopian tube, causing a rise in the intracellular pH (pHi) of spermatozoa, leading to hyperpolarization of sperm plasma membranes, capacitation, hyperactivation, acrosome reaction, and ultimately fertilization. The physiological regulation initiated by SLC26A3, SLC26A8, NHA1, sNHE, and CFTR localized in sperm is proven for certain to be involved in male fertility. This review intends to present the key factors and characteristics of pHi regulation in the testes, efferent duct, epididymis, seminal fluid, and female reproductive tract, as well as the associated mechanisms during the sperm journey to fertilization, proposing insights into outstanding subjects and future research trends. Full article
Show Figures

Figure 1

19 pages, 1010 KB  
Review
Current Status and Economic Analysis of Green Hydrogen Energy Industry Chain
by Xinrong Yan, Wenguang Zheng, Yajuan Wei and Zhaoqian Yan
Processes 2024, 12(2), 315; https://doi.org/10.3390/pr12020315 - 1 Feb 2024
Cited by 36 | Viewed by 9552
Abstract
Under the background of the power system profoundly reforming, hydrogen energy from renewable energy, as an important carrier for constructing a clean, low-carbon, safe and efficient energy system, is a necessary way to realize the objectives of carbon peaking and carbon neutrality. As [...] Read more.
Under the background of the power system profoundly reforming, hydrogen energy from renewable energy, as an important carrier for constructing a clean, low-carbon, safe and efficient energy system, is a necessary way to realize the objectives of carbon peaking and carbon neutrality. As a strategic energy source, hydrogen plays a significant role in accelerating the clean energy transition and promoting renewable energy. However, the cost and technology are the two main constraints to green hydrogen energy development. Herein, the technological development status and economy of the whole industrial chain for green hydrogen energy “production-storage-transportation-use” are discussed and reviewed. After analysis, the electricity price and equipment cost are key factors to limiting the development of alkaline and proton exchange membrane hydrogen production technology; the quantity, scale and distance of transportation are key to controlling the costs of hydrogen storage and transportation. The application of hydrogen energy is mainly concentrated in the traditional industries. With the gradual upgrading and progress of the top-level design and technology, the application of hydrogen energy mainly including traffic transportation, industrial engineering, energy storage, power to gas and microgrid will show a diversified development trend. And the bottleneck problems and development trends of the hydrogen energy industry chain are also summarized and viewed. Full article
(This article belongs to the Special Issue Progress in Catalysis Technology in Clean Energy Utilization)
Show Figures

Figure 1

24 pages, 7979 KB  
Review
Numerical Modeling of Ammonia-Fueled Protonic-Ion Conducting Electrolyte-Supported Solid Oxide Fuel Cell (H-SOFC): A Brief Review
by Md. Mosfiqur Rahman, Abdalla M. Abdalla, Lukman Ahmed Omeiza, Veena Raj, Shammya Afroze, Md. Sumon Reza, Mahendra Rao Somalu and Abul K. Azad
Processes 2023, 11(9), 2728; https://doi.org/10.3390/pr11092728 - 12 Sep 2023
Cited by 16 | Viewed by 3495
Abstract
Solid oxide fuel cells with protonic ion conducting electrolytes (H-SOFCs) are recognized and anticipated as eco-friendly electrochemical devices fueled with several kinds of fuels. One distinct feature of SOFCs that makes them different from others is fuel flexibility. Ammonia is a colorless gas [...] Read more.
Solid oxide fuel cells with protonic ion conducting electrolytes (H-SOFCs) are recognized and anticipated as eco-friendly electrochemical devices fueled with several kinds of fuels. One distinct feature of SOFCs that makes them different from others is fuel flexibility. Ammonia is a colorless gas with a compound of nitrogen and hydrogen with a distinct strong smell at room temperature. It is easily dissolved in water and is a great absorbent. Ammonia plays a vital role as a caustic for its alkaline characteristics. Nowadays, ammonia is being used as a hydrogen carrier because it has carbon-free molecules and prosperous physical properties with transportation characteristics, distribution options, and storage capacity. Using ammonia as a fuel in H-SOFCs has the advantage of its ammonia cracking attributes and quality of being easily separated from generated steam. Moreover, toxic NOx gases are not formed in the anode while using ammonia as fuel in H-SOFCs. Recently, various numerical studies have been performed to comprehend the electrochemical and physical phenomena of H-SOFCs in order to develop a feasible and optimized design under different operating conditions rather than doing costlier experimentation. The aim of this concisely reviewed article is to present the current status of ammonia-fueled H-SOFC numerical modeling and the application of numerical modeling in ammonia-fueled H-SOFC geometrical shape optimization, which is still more desirable than traditional SOFCs. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

20 pages, 2780 KB  
Review
A Review on the Role of Bicarbonate and Proton Transporters during Sperm Capacitation in Mammals
by Ariadna Delgado-Bermúdez, Marc Yeste, Sergi Bonet and Elisabeth Pinart
Int. J. Mol. Sci. 2022, 23(11), 6333; https://doi.org/10.3390/ijms23116333 - 6 Jun 2022
Cited by 26 | Viewed by 5247
Abstract
Alkalinization of sperm cytosol is essential for plasma membrane hyperpolarization, hyperactivation of motility, and acrosomal exocytosis during sperm capacitation in mammals. The plasma membrane of sperm cells contains different ion channels implicated in the increase of internal pH (pHi) by favoring [...] Read more.
Alkalinization of sperm cytosol is essential for plasma membrane hyperpolarization, hyperactivation of motility, and acrosomal exocytosis during sperm capacitation in mammals. The plasma membrane of sperm cells contains different ion channels implicated in the increase of internal pH (pHi) by favoring either bicarbonate entrance or proton efflux. Bicarbonate transporters belong to the solute carrier families 4 (SLC4) and 26 (SLC26) and are currently grouped into Na+/HCO3 transporters and Cl/HCO3 exchangers. Na+/HCO3 transporters are reported to be essential for the initial and fast entrance of HCO3 that triggers sperm capacitation, whereas Cl/HCO3 exchangers are responsible for the sustained HCO3 entrance which orchestrates the sequence of changes associated with sperm capacitation. Proton efflux is required for the fast alkalinization of capacitated sperm cells and the activation of pH-dependent proteins; according to the species, this transport can be mediated by Na+/H+ exchangers (NHE) belonging to the SLC9 family and/or voltage-gated proton channels (HVCN1). Herein, we discuss the involvement of each of these channels in sperm capacitation and the acrosome reaction. Full article
(This article belongs to the Special Issue Ion Channels in Sperm Physiology 2.0)
Show Figures

Figure 1

20 pages, 3723 KB  
Article
Self-Crosslinkable Oxidized Alginate-Carboxymethyl Chitosan Hydrogels as an Injectable Cell Carrier for In Vitro Dental Enamel Regeneration
by Fatemeh Mohabatpour, Zahra Yazdanpanah, Silvana Papagerakis, Xiongbiao Chen and Petros Papagerakis
J. Funct. Biomater. 2022, 13(2), 71; https://doi.org/10.3390/jfb13020071 - 1 Jun 2022
Cited by 39 | Viewed by 6887
Abstract
Injectable hydrogels, as carriers, offer great potential to incorporate cells or growth factors for dental tissue regeneration. Notably, the development of injectable hydrogels with appropriate structures and properties has been a challenging task, leaving much to be desired in terms of cytocompatibility, antibacterial [...] Read more.
Injectable hydrogels, as carriers, offer great potential to incorporate cells or growth factors for dental tissue regeneration. Notably, the development of injectable hydrogels with appropriate structures and properties has been a challenging task, leaving much to be desired in terms of cytocompatibility, antibacterial and self-healing properties, as well as the ability to support dental stem cell functions. This paper presents our study on the development of a novel self-cross-linkable hydrogel composed of oxidized alginate and carboxymethyl chitosan and its characterization as a cell carrier for dental enamel regeneration in vitro. Oxidized alginate was synthesized with 60% theoretical oxidation degree using periodate oxidation and characterized by Fourier Transform Infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and Ultraviolet-visible absorption spectroscopy. Then, hydrogels were prepared at three varying weight ratios of oxidized alginate to carboxymethyl chitosan (4:1, 3:1, and 2:1) through Schiff base reactions, which was confirmed by Fourier Transform Infrared spectroscopy. The hydrogels were characterized in terms of gelation time, swelling ratio, structure, injectability, self-healing, antibacterial properties, and in vitro characterization for enamel regeneration. The results demonstrated that, among the three hydrogels examined, the one with the highest ratio of oxidized alginate (i.e., 4:1) had the fastest gelation time and the lowest swelling ability, and that all hydrogels were formed with highly porous structures and were able to be injected through a 20-gauge needle without clogging. The injected hydrogels could be rapidly reformed with the self-healing property. The hydrogels also showed antibacterial properties against two cariogenic bacteria: Streptococcus mutans and Streptococcus sobrinus. For in vitro enamel regeneration, a dental epithelial cell line, HAT-7, was examined, demonstrating a high cell viability in the hydrogels during injection. Furthermore, HAT-7 cells encapsulated in the hydrogels showed alkaline phosphatase production and mineral deposition, as well as maintaining their round morphology, after 14 days of in vitro culture. Taken together, this study has provided evidence that the oxidized alginate-carboxymethyl chitosan hydrogels could be used as an injectable cell carrier for dental enamel tissue engineering applications. Full article
Show Figures

Figure 1

32 pages, 4896 KB  
Article
Synthesis of Potential Haptens with Morphine Skeleton and Determination of Protonation Constants
by István Köteles, Károly Mazák, Gergő Tóth, Boglárka Tűz and Sándor Hosztafi
Molecules 2020, 25(17), 4009; https://doi.org/10.3390/molecules25174009 - 2 Sep 2020
Cited by 9 | Viewed by 7046
Abstract
Vaccination could be a promising alternative warfare against drug addiction and abuse. For this purpose, so-called haptens can be used. These molecules alone do not induce the activation of the immune system, this occurs only when they are attached to an immunogenic carrier [...] Read more.
Vaccination could be a promising alternative warfare against drug addiction and abuse. For this purpose, so-called haptens can be used. These molecules alone do not induce the activation of the immune system, this occurs only when they are attached to an immunogenic carrier protein. Hence obtaining a free amino or carboxylic group during the structural transformation is an important part of the synthesis. Namely, these groups can be used to form the requisite peptide bond between the hapten and the carrier protein. Focusing on this basic principle, six nor-morphine compounds were treated with ethyl acrylate and ethyl bromoacetate, while the prepared esters were hydrolyzed to obtain the N-carboxymethyl- and N-carboxyethyl-normorphine derivatives which are considered as potential haptens. The next step was the coupling phase with glycine ethyl ester, but the reactions did not work or the work-up process was not accomplishable. As an alternative route, the normorphine-compounds were N-alkylated with N-(chloroacetyl)glycine ethyl ester. These products were hydrolyzed in alkaline media and after the work-up process all of the derivatives contained the free carboxylic group of the glycine side chain. The acid-base properties of these molecules are characterized in detail. In the N-carboxyalkyl derivatives, the basicity of the amino and phenolate site is within an order of magnitude. In the glycine derivatives the basicity of the amino group is significantly decreased compared to the parent compounds (i.e., morphine, oxymorphone) because of the electron withdrawing amide group. The protonation state of the carboxylate group significantly influences the basicity of the amino group. All of the glycine ester and the glycine carboxylic acid derivatives are currently under biological tests. Full article
(This article belongs to the Special Issue ECSOC-23)
Show Figures

Figure 1

Back to TopTop