Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (162)

Search Parameters:
Keywords = alkali ion water

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2457 KiB  
Article
Exploring the Influence of NaOH Catalyst on the Durability of Liquid Calcium Aluminate Cement Concrete
by Chung-Lin Lin, Chia-Jung Tsai, Leila Fazeldehkordi, Wen-Shinn Shyu, Chih-Wei Lu and Jin-Chen Hsu
Materials 2025, 18(15), 3655; https://doi.org/10.3390/ma18153655 - 4 Aug 2025
Viewed by 197
Abstract
Liquid calcium aluminate cement (LCAC) is an innovative material technology with significant potential for varied applications in civil engineering. However, despite its promising results, a significant gap remains in the direct application of LCAC as a concrete binder. The primary catalysts for LCAC [...] Read more.
Liquid calcium aluminate cement (LCAC) is an innovative material technology with significant potential for varied applications in civil engineering. However, despite its promising results, a significant gap remains in the direct application of LCAC as a concrete binder. The primary catalysts for LCAC are sodium hydroxide (NaOH) and potassium hydroxide (KOH). Therefore, it is crucial to investigate the effects of sodium and potassium ions on alkali–aggregate reactions in concrete structures. This study evaluated the durability of liquid calcium aluminate cement concrete catalyzed using four different concentrations of NaOH (0.5%, 1.0%, 1.5%, and 2.0%) as experimental variables, incorporating a control group of traditional concrete with a water–cement ratio of 0.64. The findings indicate that NaOH catalysis in the concrete significantly trigger alkali–aggregate reactions, leading to volume expansion. Furthermore, it increased chloride ion penetration and porosity in the concrete. These effects were more notable with the increase in NaOH concentration. The results suggested that NaOH catalysis can enhance certain chemical reactions within the concrete matrix; however, its concentration must be carefully controlled to mitigate adverse effects. The NaOH dosage should be limited to 0.5% to ensure optimal durability of the concrete. This study emphasizes the crucial importance of precisely balancing catalyst concentration to maintain the long-term durability and performance of liquid calcium aluminate cement concrete in structural applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

23 pages, 3875 KiB  
Article
Soil Water-Soluble Ion Inversion via Hyperspectral Data Reconstruction and Multi-Scale Attention Mechanism: A Remote Sensing Case Study of Farmland Saline–Alkali Lands
by Meichen Liu, Shengwei Zhang, Jing Gao, Bo Wang, Kedi Fang, Lu Liu, Shengwei Lv and Qian Zhang
Agronomy 2025, 15(8), 1779; https://doi.org/10.3390/agronomy15081779 - 24 Jul 2025
Viewed by 613
Abstract
The salinization of agricultural soils is a serious threat to farming and ecological balance in arid and semi-arid regions. Accurate estimation of soil water-soluble ions (calcium, carbonate, magnesium, and sulfate) is necessary for correct monitoring of soil salinization and sustainable land management. Hyperspectral [...] Read more.
The salinization of agricultural soils is a serious threat to farming and ecological balance in arid and semi-arid regions. Accurate estimation of soil water-soluble ions (calcium, carbonate, magnesium, and sulfate) is necessary for correct monitoring of soil salinization and sustainable land management. Hyperspectral ground-based data are valuable in soil salinization monitoring, but the acquisition cost is high, and the coverage is small. Therefore, this study proposes a two-stage deep learning framework with multispectral remote-sensing images. First, the wavelet transform is used to enhance the Transformer and extract fine-grained spectral features to reconstruct the ground-based hyperspectral data. A comparison of ground-based hyperspectral data shows that the reconstructed spectra match the measured data in the 450–998 nm range, with R2 up to 0.98 and MSE = 0.31. This high similarity compensates for the low spectral resolution and weak feature expression of multispectral remote-sensing data. Subsequently, this enhanced spectral information was integrated and fed into a novel multiscale self-attentive Transformer model (MSATransformer) to invert four water-soluble ions. Compared with BPANN, MLP, and the standard Transformer model, our model remains robust across different spectra, achieving an R2 of up to 0.95 and reducing the average relative error by more than 30%. Among them, for the strongly responsive ions magnesium and sulfate, R2 reaches 0.92 and 0.95 (with RMSE of 0.13 and 0.29 g/kg, respectively). For the weakly responsive ions calcium and carbonate, R2 stays above 0.80 (RMSE is below 0.40 g/kg). The MSATransformer framework provides a low-cost and high-accuracy solution to monitor soil salinization at large scales and supports precision farmland management. Full article
(This article belongs to the Special Issue Water and Fertilizer Regulation Theory and Technology in Crops)
Show Figures

Figure 1

16 pages, 2458 KiB  
Article
Effects of w/b Ratio on Sodium Sulfate Crystallization Damage and Degradation Mechanisms in Semi-Immersed Alkali-Activated Slag Mortar
by Zhenwei Zhou, Yuetao Qiu, Peng Liu, Jianxiong Ye, Kunpeng Yin, Linwen Yu and Changhui Yang
Materials 2025, 18(13), 2988; https://doi.org/10.3390/ma18132988 - 24 Jun 2025
Viewed by 396
Abstract
This study investigates the long-term durability and crystallization-induced degradation mechanisms of alkali-activated slag (AAS) mortars with varying water-to-binder ratios (w/b, 0.4, 0.45, 0.5) under semi-immersion in 5 wt.% sodium sulfate solution. Through 360 d of exposure, the evolution of physical–mechanical properties (mass change, [...] Read more.
This study investigates the long-term durability and crystallization-induced degradation mechanisms of alkali-activated slag (AAS) mortars with varying water-to-binder ratios (w/b, 0.4, 0.45, 0.5) under semi-immersion in 5 wt.% sodium sulfate solution. Through 360 d of exposure, the evolution of physical–mechanical properties (mass change, open porosity, compressive/flexural strength) and ion migration patterns (SO42−, Na+, Ca2+) were analyzed to unravel the interplay between pore structure, ion transport, and crystallization-induced deterioration. Results demonstrated that higher w/b ratios exacerbated surface crystallization and spalling due to accelerated ion transport and pore coarsening. Early-stage strength gains (up to 25.15% at 120–180 d) stemmed from pore refinement via sulfate deposition and continued slag hydration. However, prolonged exposure triggered microstructural degradation, with open porosity increasing by 58.9% and strength declining by 30.6% at 360 d for a w/b of 0.5 compared to a w/b of 0.4. This was driven by crystallization pressure and the decalcification of hydration products. Ion migration analysis revealed SO42− enrichment in evaporation area and outward Na+ diffusion, establishing supersaturation gradients that aligned with crystallization damage progression. These findings provide critical insights for optimizing AAS mortar formulations to mitigate sulfate crystallization risks in semi-immersed environments. Full article
Show Figures

Figure 1

16 pages, 5674 KiB  
Article
Stage-Dependent Mineral Element Dynamics in ‘Junzao’ Jujube: Ionic Homeostasis and Selective Transport Under Graduated Saline-Alkali Stress
by Ze Yuan, Xiaofeng Zhou, Yuyang Zhang, Yan Wang, Haoyu Yan, Wu Sun, Min Yan and Cuiyun Wu
Horticulturae 2025, 11(7), 726; https://doi.org/10.3390/horticulturae11070726 - 22 Jun 2025
Viewed by 387
Abstract
Plants dynamically regulate ions in the tree to defend against abiotic stresses such as drought and saline-alkali, However, it is not clear how ‘Junzao’ jujube regulates ions to maintain a normal life cycle under saline-alkali stress. Therefore, in this study, the roots of [...] Read more.
Plants dynamically regulate ions in the tree to defend against abiotic stresses such as drought and saline-alkali, However, it is not clear how ‘Junzao’ jujube regulates ions to maintain a normal life cycle under saline-alkali stress. Therefore, in this study, the roots of 10-year old steer jujube trees were watered using a saline and alkaline gradient solution simulating the main salt (NaCl) and alkali (NaHCO3) of Aral with NaCl:NaHCO3 = 3:1 gradient of 0, 60, 180, and 300 mM, and three jujube trees with uniform growth were taken as samples in each treatment plot, and the ion contents of potassium (K), sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn) and carbon (C) in each organ of the fruit at the dot red period (S1) and full-red period (S2) were determined, in order to elucidate the relationship between physiological adaptation mechanisms of saline-alkali tolerance and the characteristics of mineral nutrient uptake and utilisation in jujube fruit. The results showed that under saline-alkali stress, Na was stored in large quantities in the roots, Ca and Mg in the perennial branches at S1, Na and Fe in the leaves at S2, and K, Mg and Mn in the perennial branches. There was no significant difference in the distribution of C content in various organs of ‘Junzao’. Compared with CK (0 mM), under salinity stress, the K content in the leaves was significantly reduced at S1 and S2, and the K/Na ratios remained > 1.0. At S2, under medium and high concentrations of saline-alkali stress (180–300 mM), the K/Na is less than 1, and the ionic homeostasis was disrupted, and the leaves die and fall off, and the Na is excreted from the body. The selective transport coefficients SK/Na, SCa/Na and SMg/Na from root to leaf showed a downward trend at S1, but still maintained positive transport capacity. At S2, this stage is close to leaf fall, the nutrient transport coefficient is less than 1, and a large amount of nutrients are returned to the perennial branches and roots occurred. These results indicated that the mechanism of nutrient regulation and salt tolerance in jujube trees was different at different growth stages. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

21 pages, 5095 KiB  
Article
Molecular Adaptations and Quality Enhancements in a Hybrid (Erythroculter ilishaeformis ♀ × Ancherythroculter nigrocauda ♂) Cultured in Saline–Alkali Water
by Lang Zhang, Qiuying Qin, Qing Li, Yali Yu, Ziwei Song, Li He, Yanhong Sun, Liting Ye, Guiying Wang and Jing Xu
Biology 2025, 14(6), 718; https://doi.org/10.3390/biology14060718 - 18 Jun 2025
Viewed by 584
Abstract
Declining freshwater resources have spurred interest in saline–alkali (SA) water aquaculture, with species like tilapia and rainbow trout demonstrating ecological plasticity in such environments. However, the molecular mechanisms underlying fish adaptation and quality impacts remain unclear. This study investigated the hybrid fish “Xianfeng [...] Read more.
Declining freshwater resources have spurred interest in saline–alkali (SA) water aquaculture, with species like tilapia and rainbow trout demonstrating ecological plasticity in such environments. However, the molecular mechanisms underlying fish adaptation and quality impacts remain unclear. This study investigated the hybrid fish “Xianfeng No. 1” (Erythroculter ilishaeformis × Ancherythroculter nigrocauda), a key aquaculture species in China, under 60-day SA exposure. The results showed increased levels of oxidative stress markers (MDA) and antioxidant enzymes (SOD, CAT, GSH-Px), alongside improved quality traits. Transcriptomics revealed differentially expressed genes (DEGs) in muscle tissue associated with oxidative stress (UQCRFS1, UQCR10, CYC1), ion transport (COX5A, COX7C, COX7B), and the immune response (ATG9A, ATG2B, ATG2A, ULK1, ULK2, CFI, CFH). Metabolomics identified increased non-volatile flavors (e.g., glycine, proline) and collagen-related compounds. Integrated analysis highlighted the upregulation of GSR and GGT, and the downregulation of CHDH and GBSA, potentially driving glycine accumulation. These findings suggest that SA stress enhances antioxidant capacity, activates immune pathways, and modulates ion transport, enabling adaptation while improving meat quality. This study elucidates molecular mechanisms of fish acclimation to SA environments, providing insights for sustainable aquaculture development and breeding of stress-tolerant species in SA regions. Full article
(This article belongs to the Special Issue Nutrition, Environment, and Fish Physiology)
Show Figures

Graphical abstract

22 pages, 4653 KiB  
Article
Recycled Clay Brick Powder as a Dual-Function Additive: Mitigating the Alkali–Silica Reaction (ASR) and Enhancing Strength in Eco-Friendly Mortar with Hybrid Waste Glass and Clay Brick Aggregates
by Xue-Fei Chen, Xiu-Cheng Zhang and Ying Peng
Materials 2025, 18(12), 2838; https://doi.org/10.3390/ma18122838 - 16 Jun 2025
Viewed by 467
Abstract
The construction industry’s escalating environmental footprint, coupled with the underutilization of construction waste streams, necessitates innovative approaches to sustainable material design. This study investigates the dual functionality of recycled clay brick powder (RCBP) as both a supplementary cementitious material (SCM) and an alkali–silica [...] Read more.
The construction industry’s escalating environmental footprint, coupled with the underutilization of construction waste streams, necessitates innovative approaches to sustainable material design. This study investigates the dual functionality of recycled clay brick powder (RCBP) as both a supplementary cementitious material (SCM) and an alkali–silica reaction (ASR) inhibitor in hybrid mortar systems incorporating recycled glass (RG) and recycled clay brick (RCB) aggregates. Leveraging the pozzolanic activity of RCBP’s residual aluminosilicate phases, the research quantifies its influence on mortar durability and mechanical performance under varying substitution scenarios. Experimental findings reveal a nonlinear relationship between RCBP dosage and mortar properties. A 30% cement replacement with RCBP yields a 28-day activity index of 96.95%, confirming significant pozzolanic contributions. Critically, RCBP substitution ≥20% effectively mitigates ASRs induced by RG aggregates, with optimal suppression observed at 25% replacement. This threshold aligns with microstructural analyses showing RCBP’s Al3+ ions preferentially reacting with alkali hydroxides to form non-expansive gels, reducing pore solution pH and silica dissolution rates. Mechanical characterization reveals trade-offs between workability and strength development. Increasing RCBP substitution decreases mortar consistency and fluidity, which is more pronounced in RG-RCBS blends due to glass aggregates’ smooth texture. Compressively, both SS-RCBS and RG-RCBS mortars exhibit strength reduction with higher RCBP content, yet all specimens show accelerated compressive strength gain relative to flexural strength over curing time. Notably, 28-day water absorption increases with RCBP substitution, correlating with microstructural porosity modifications. These findings position recycled construction wastes and glass as valuable resources in circular economy frameworks, offering municipalities a pathway to meet recycled content mandates without sacrificing structural integrity. The study underscores the importance of waste synergy in advancing sustainable mortar technology, with implications for net-zero building practices and industrial waste valorization. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

15 pages, 3552 KiB  
Article
Transforming Waste into Sustainable Construction Materials: Resistant Geopolymers from Recycled Sources
by Rosalia Maria Cigala, Georgia Papanikolaou, Paola Lanzafame, Giuseppe Sabatino, Alessandro Tripodo, Giuseppina La Ganga, Francesco Crea, Ileana Ielo and Giovanna De Luca
Recycling 2025, 10(3), 118; https://doi.org/10.3390/recycling10030118 - 14 Jun 2025
Viewed by 3835
Abstract
The construction industry faces a growing challenge in managing waste materials, making the development of sustainable alternatives critical. This study investigates the preparation of geopolymers using construction and demolition waste materials, such as cement, brick, and glass waste. Specifically, crushed glass was used [...] Read more.
The construction industry faces a growing challenge in managing waste materials, making the development of sustainable alternatives critical. This study investigates the preparation of geopolymers using construction and demolition waste materials, such as cement, brick, and glass waste. Specifically, crushed glass was used to produce sodium silicate, a key source of silicate ions and alkali necessary in geopolymerization processes. The performance of this in-house activator was compared to that of the commercial counterpart. Seven geopolymer formulations were prepared and characterized using SEM-EDX, ATR-FTIR, and XRD techniques. Chemical resistance against harsh environments was assessed through a 7-day immersion in water, hydrochloric acid (pH ~ 1), and sodium hydroxide (pH ~ 13) solutions. The samples were then dried and weighed to determine mass loss, revealing the promising resistance of specific formulations. Similarly, Portland cement specimens of the same dimensions as the geopolymer ones were prepared, tested, and compared to the geopolymers. Our study emphasizes the potential of transforming waste materials into high-performance, resistant geopolymers for construction materials. By optimizing waste-derived geopolymers, we may achieve significant environmental benefits through waste recycling and contribute to advancing sustainable construction technology. Full article
Show Figures

Graphical abstract

29 pages, 5717 KiB  
Review
Alkali-Activated Materials Reinforced via Fibrous Biochar: Modification Mechanisms, Environmental Benefits, and Challenges
by Yukai Wang, Kai Zheng, Lilin Yang, Han Li, Yang Liu, Ning Xie and Guoxiang Zhou
J. Compos. Sci. 2025, 9(6), 298; https://doi.org/10.3390/jcs9060298 - 11 Jun 2025
Viewed by 777
Abstract
Alkali-activated materials, as a low-carbon cementitious material, are widely known for their excellent durability and mechanical properties. In recent years, the modification of alkali-activated materials using biochar has gradually attracted attention. Fibrous biochar has a highly porous structure and large specific surface area, [...] Read more.
Alkali-activated materials, as a low-carbon cementitious material, are widely known for their excellent durability and mechanical properties. In recent years, the modification of alkali-activated materials using biochar has gradually attracted attention. Fibrous biochar has a highly porous structure and large specific surface area, which can effectively adsorb alkaline ions in alkali-activated materials, thereby improving their pore structure and density. Additionally, the surface of the biochar contains abundant functional groups and chemically reactive sites. These can interact with the active components in alkali-activated materials, forming stable composite phases. This interaction further enhances the material’s mechanical strength and durability. Moreover, the incorporation of biochar endows alkali-activated materials with special adsorption capabilities and environmental remediation functions. For instance, they can adsorb heavy metal ions and organic pollutants from water, offering significant environmental benefits. However, research on biochar-modified alkali-activated materials is still in the exploratory phase. There are several challenges, such as the unclear mechanisms of how biochar preparation conditions and performance parameters affect the modification outcomes, and the need for further investigation into the compatibility and long-term stability of biochar with alkali-activated materials. Future research should focus on these issues to promote the widespread application of biochar-modified alkali-activated materials. Full article
Show Figures

Figure 1

18 pages, 5459 KiB  
Article
Study on the Effect of Slurry Concentration on the Mechanical Properties and Fluoride Immobilization of Red Mud-Based Backfill Under Phosphogypsum Neutralization
by Qinli Zhang, Jingjing Yang, Bin Liu, Daolin Wang, Qiusong Chen and Yan Feng
Appl. Sci. 2025, 15(11), 6041; https://doi.org/10.3390/app15116041 - 27 May 2025
Viewed by 691
Abstract
Red mud (RM) is a strongly alkaline waste residue produced during alumina production, and its high alkali and fine particle characteristics are prone to cause soil, water, and air pollution. Phosphogypsum (PG), as a by-product of the wet process phosphoric acid industry, poses [...] Read more.
Red mud (RM) is a strongly alkaline waste residue produced during alumina production, and its high alkali and fine particle characteristics are prone to cause soil, water, and air pollution. Phosphogypsum (PG), as a by-product of the wet process phosphoric acid industry, poses a significant risk of fluorine leaching and threatens the ecological environment and human health due to its high fluorine content and strong acidic properties. In this study, RM-based cemented paste backfill (RCPB) based on the synergistic curing of PG and ordinary Portland cement (OPC) was proposed, aiming to achieve a synergistic enhancement of the material’s mechanical properties and fluorine fixation efficacy by optimizing the slurry concentration (63–69%). Experimental results demonstrated that increasing slurry concentration significantly improved unconfined compressive strength (UCS). The 67% concentration group achieved a UCS of 3.60 MPa after 28 days, while the 63%, 65%, and 69% groups reached 2.50 MPa, 3.20 MPa, and 3.40 MPa, respectively. Fluoride leaching concentrations for all groups were below the Class I groundwater standard (≤1.0 mg/L), with the 67% concentration exhibiting the lowest leaching value (0.6076 mg/L). The dual immobilization mechanism of fluoride ions was revealed by XRD, TGA, and SEM-EDS characterization: (1) Ca2⁺ and F to generate CaF2 precipitation; (2) hydration products (C-S-H gel and calixarenes) immobilized F by physical adsorption and chemical bonding, where the alkaline component of the RM (Na2O) further promotes the formation of sodium hexafluoroaluminate (Na3AlF6) precipitation. The system pH stabilized at 9.0 ± 0.3 after 28 days, mitigating alkalinity risks. High slurry concentrations (67–69%) reduced material porosity by 40–60%, enhancing mechanical performance. It was confirmed that the synergistic effect of RM and PG in the RCPB system could effectively neutralize the alkaline environment and optimize the hydration environment, and, at the same time, form CaF2 as well as complexes encapsulating and adsorbing fluoride ions, thus significantly reducing the risk of fluorine migration. The aim is to improve the mechanical properties of materials and the fluorine-fixing efficiency by optimizing the slurry concentration (63–69%). The results provide a theoretical basis for the efficient resource utilization of PG and RM and open up a new way for the development of environmentally friendly building materials. Full article
Show Figures

Figure 1

26 pages, 7839 KiB  
Article
Water Use Enhancement and Root Function Compensatory Regulation of Biomass Accumulation in Quinoa Under Salt Stress by Photosynthetic Drive Advantage
by Hao Xu, Lingzheng Feng, Jia Hao, Yongkun Zhang and Runjie Li
Plants 2025, 14(11), 1615; https://doi.org/10.3390/plants14111615 - 25 May 2025
Viewed by 445
Abstract
Water and salt stress significantly impact the accumulation of crop biomass (TB); however, the relative contributions of photosynthetic, physiological, and morphological factors remain poorly understood. This study aims to comprehensively investigate the effects of water and salt stress on crop growth physiology and [...] Read more.
Water and salt stress significantly impact the accumulation of crop biomass (TB); however, the relative contributions of photosynthetic, physiological, and morphological factors remain poorly understood. This study aims to comprehensively investigate the effects of water and salt stress on crop growth physiology and identify the primary factors influencing biomass accumulation. We examined four quinoa varieties (Qingli No.1, Qingli No.8, Gongza No.4, and Black quinoa) under four salinity levels (s0: 0 mmol/L, s1: 100 mmol/L, s2: 200 mmol/L, and s3: 300 mmol/L) and two moisture levels (w1: 30% field capacity (FC), w2: 80% FC). Using principal component analysis (PCA) and correlation analysis, we constructed a random forest model (RF) and a partial least-squares path modeling (PLS-PM) framework to elucidate the effects of water and salt stress on quinoa growth physiology and clarify the adaptive mechanisms of quinoa under varying salinity conditions. The results indicate that (1) salinity has a more substantial regulatory effect on the accumulation of proline (Pro) and sodium ions (Na+) than water availability. Under conditions of adequate moisture (w2), the activity of antioxidant enzymes increased in response to mild salinity stress (s1). However, with escalating salinity levels, a significant decrease in enzyme activity was observed (p < 0.05). (2) PCA identified salinity as a key factor significantly influencing physiological changes in quinoa growth. The RF model indicated that, under severe salinity conditions (s3), intrinsic water-use efficiency (iWUE) emerged as a critical driver affecting biomass (TB) accumulation. (3) The PLS-PM model quantified the relative contribution rates of various factors to total biomass (TB). It revealed that, as salinity increased, the path coefficients of photosynthetic factors also rose, but their relative contribution diminished due to a corresponding reduction in the contribution of morphological factors. These findings offer a theoretical foundation and decision-making support for the integrated management of water–salt conditions in saline–alkali agricultural fields, as well as for the cultivation of salt-tolerant crops. Full article
Show Figures

Figure 1

20 pages, 4300 KiB  
Article
Structural and Gelation Characteristics of Alkali-Soluble β-Glucan from Poria cocos
by Zhixing Li, Chenglei Sun, Fan Wang and Zhaofei Xia
Gels 2025, 11(6), 387; https://doi.org/10.3390/gels11060387 - 24 May 2025
Viewed by 385
Abstract
Alkali-soluble polysaccharides from Poria cocos (APCP) are typically discarded due to poor water solubility and limited bioavailability, despite their β-(1→3)-glucan backbone suggesting potential for functional applications. This study aimed to explore the structural characteristics, gelation behavior, and the capacity of APCP to reduce [...] Read more.
Alkali-soluble polysaccharides from Poria cocos (APCP) are typically discarded due to poor water solubility and limited bioavailability, despite their β-(1→3)-glucan backbone suggesting potential for functional applications. This study aimed to explore the structural characteristics, gelation behavior, and the capacity of APCP to reduce silver ions. Structural analysis confirmed that APCP is a homogenous β-(1→3)-D-glucan with a molecular weight of 314.2 kDa and a PDI of 1.32. A pH-mediated strategy enabled the formation of stable single-component APCP hydrogel (APCPH) with tunable mechanical strength, high swelling capacity (>590%), and thermal stability. The APCPH further acted as both a reducing and stabilizing matrix for in situ AgNP formation. Notably, the Ag-APCP hydrogel exhibited distinct antibacterial activity, with inhibition zones reaching 5.31 mm against Staphylococcus pseudintermedius. These findings demonstrate the feasibility of transforming underutilized APCP into multifunctional hydrogel platforms for green nanomaterial synthesis and biomedical applications. Future studies will focus on optimizing AgNP synthesis parameters and evaluating long-term stability and biocompatibility for translational use in antimicrobial therapies. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Figure 1

11 pages, 681 KiB  
Article
Assessment of Silicon and Rhenium Recovery Efficiency from Copper-Containing Tailings of Processing Plants
by Lyutsiya Karimova, Guldana Makasheva, Yelena Kharchenko and Adilet Magaz
Eng 2025, 6(4), 77; https://doi.org/10.3390/eng6040077 - 14 Apr 2025
Viewed by 321
Abstract
In the face of the global depletion of natural resources and increasing demand for sustainable development, processing industrial waste, such as tailings from processing plants, is becoming essential. This study focuses on combined processing technologies, including flotation concentration and concentrate processing, allowing the [...] Read more.
In the face of the global depletion of natural resources and increasing demand for sustainable development, processing industrial waste, such as tailings from processing plants, is becoming essential. This study focuses on combined processing technologies, including flotation concentration and concentrate processing, allowing the efficient recovery of valuable components. This study aims to investigate the possibility of thermochemical enrichment and the opening of low-grade copper tailings of processing plants with the transfer of silicon and rhenium in the form of silicate-ions and perrhenate-ions into a solution with the output of a multifactor multiplicative model and obtaining tabular nomograms. Multifactor experiments on the thermochemical enrichment of rough copper concentrates made it possible to construct partial dependences of silicon and rhenium extraction into a solution and to obtain multiplicative Protodyakonov–Malyshev models of these processes and multifactor nomograms over a wide range of temperatures, durations, and alkali-to-concentrate ratios to determine the maximum recovery rates. The developed multifactor models made it possible to establish the optimal intervals of changes in the concentrate sintering parameters, providing high recovery rates (over 85% of silicon and 98% of rhenium) during subsequent water leaching. Optimal sintering conditions (temperature of 350 °C, the duration of 90 min, and the ratio of NaOH to concentrate = 1:2) ensured a recovery of up to 85% of silicon and 98% of rhenium from the concentrate into the solution. This recovery rate reduces the need for primary raw materials and positively affects the production’s environmental performance because it minimizes the amount of industrial waste disposal. Full article
Show Figures

Figure 1

22 pages, 4923 KiB  
Article
Biochar Input to Saline-Alkali Farmland Can Improve Soil Health and Crop Yield: A Meta-Analysis
by Liqiang Zhang, Baoyin Bate, Jinhu Cui, Yudi Feng, Jianning Yu, Zhengguo Cui, Hongyu Wang and Qiuzhu Li
Agriculture 2025, 15(5), 561; https://doi.org/10.3390/agriculture15050561 - 6 Mar 2025
Cited by 2 | Viewed by 1160
Abstract
Soil salinization in farmland is a critical factor limiting global soil health, food security, and ecosystem productivity. Biochar has recently shown great application potential in agricultural fields in many domains, such as soil structure improvement, carbon sequestration, and reductions in greenhouse gas emissions. [...] Read more.
Soil salinization in farmland is a critical factor limiting global soil health, food security, and ecosystem productivity. Biochar has recently shown great application potential in agricultural fields in many domains, such as soil structure improvement, carbon sequestration, and reductions in greenhouse gas emissions. Here, a meta-analysis of 113 published papers was carried out to quantify the effects of biochar on the remediation of saline-alkali soil and crop yield in terms of climatic conditions and agricultural management, with the aim of determining the optimal agricultural management strategy for biochar application to saline-alkali soils. The results show that adding biochar to saline-alkali farmland increases the TOC in soil (44.0%) and water utilization efficiency (8.7%), and decreases soil salinity (−9.6%), certain salt ion contents in particular (Na+, 12.5%; Cl, 23.4%; HCO3, −17.7%), along with soil pH (−2.2%), resulting in a 20.8% higher crop yield. Applying shell biochar at a rate of 10–20 t·ha−1 for monoculture is the most promising way to bolster the yield in severely saline-alkali irrigated farmland. However, adding biochar raises CO2 and CH4 emissions by 9.8% and 31.6%, respectively, but lowers the emission of N2O by 29.4%. These findings provide scientific recommendations for the sustainable application of biochar in saline-alkali farmland areas worldwide. Full article
(This article belongs to the Special Issue Biochar Applications in Agricultural Soil Restoration)
Show Figures

Figure 1

18 pages, 8695 KiB  
Article
Ordered Mesoporous Silica Prepared with Biodegradable Gemini Surfactants as Templates for Environmental Applications
by Sarvarjon Kurbonov, Martin Pisárčik, Miloš Lukáč, Zsolt Czigány, Zoltán Kovács, István Tolnai, Manfred Kriechbaum, Vasyl Ryukhtin, Viktor Petrenko, Mikhail V. Avdeev, Qiang Tian, Ana-Maria Lacrămă and László Almásy
Materials 2025, 18(4), 773; https://doi.org/10.3390/ma18040773 - 10 Feb 2025
Viewed by 1014
Abstract
Mesoporous silica sieves have been prepared through sol–gel synthesis using diester gemini surfactants as pore templates, aiming to obtain new materials with potential use for water remediation. A series of mesoporous spherical silica particles of submicron size have been prepared in an alkali-catalyzed [...] Read more.
Mesoporous silica sieves have been prepared through sol–gel synthesis using diester gemini surfactants as pore templates, aiming to obtain new materials with potential use for water remediation. A series of mesoporous spherical silica particles of submicron size have been prepared in an alkali-catalyzed reaction, using a tetraethyl orthosilicate precursor and bis-quaternary ammonium gemini surfactants with diester spacers of varied lengths as pore-forming agents. The effect of the spacer length on the particle morphology was studied using nitrogen porosimetry, small-angle X-ray scattering (SAXS), ultra-small-angle neutron scattering, scanning, and transmission electron microscopy (SEM, TEM). The results revealed that for all spacer lengths, a long-range hexagonal pore ordering developed in the materials. The silica particles were nearly spherical, with sizes below 1 micrometer, and a weak dependence of the mean particle size on the spacer length could be observed. The template removal procedure had a strong influence on the porosity: calcination caused a moderate shrinkage of the pores while retaining the hexagonal structure, whereas treatment with acidified ethanol resulted in only partial removal of the surfactants; however, the hexagonal structure was severely destroyed. The applicability of the obtained calcined materials as adsorbents for heavy metal ions from water was studied with the example of Pb(II). A high sorption capacity of 110 mg/g was obtained in batch experiments, at pH 5 and 4 h contact time. Full article
Show Figures

Figure 1

16 pages, 10606 KiB  
Article
Rare Earth Element Adsorption from Water Using Alkali-Activated Waste Fly Ash
by Tijana Radojičić, Katarina Trivunac, Marija Vukčević, Marina Maletić, Nataša Palić, Ivona Janković-Častvan and Aleksandra Perić Grujić
Materials 2025, 18(3), 699; https://doi.org/10.3390/ma18030699 - 5 Feb 2025
Cited by 1 | Viewed by 985
Abstract
As new technologies are developed, the demand for rare earth elements (REEs) has increased, despite limited awareness of their significant impact on people and the environment. In this study, waste fly ash was used as a precursor to synthesize inorganic aluminosilicate polymers by [...] Read more.
As new technologies are developed, the demand for rare earth elements (REEs) has increased, despite limited awareness of their significant impact on people and the environment. In this study, waste fly ash was used as a precursor to synthesize inorganic aluminosilicate polymers by adding an activator to the alumina and silica compounds of the ash. Due to their structure and adsorption potential, their application for the removal of selected REEs (Gd3+, Y3+, and Sc3+) from water has been investigated. A decrease in the intensity of the quartz peak at 2θ of 26.6° in the XRD spectrum and the disappearance of the albite and mullite peaks due to dissolution during alkaline activation in both modified samples were observed. The appearance of a peaks at 2θ of 29.3° and 39.3° corresponding to calcite in the modified sample indicates the presence of wood ash. A shifting of the band in the DRIFT spectrum to 1030 cm−1 on the spectra of modified samples corresponds to the vibrations of Al-O and Si-O bonds and the formation of a polymeric network structure (Si-O-Si or Si-O-Al). According to pHPZC values, thermodynamic and kinetic parameters, and chemical composition, the presumed mechanism of REE adsorption is chemisorption and ion exchange. The highest adsorption efficiencies (up to 95%) for all examined REEs in both single and mixed REE solutions were obtained from an alkali-activated mixture of fly ash and wood ash. The results of this research are significant for expanding knowledge about the removal of REEs from the environment, the reduction of waste ash by their modification, and their potential subsequent use in construction as additives. Full article
(This article belongs to the Special Issue Adsorbents and Their Applications (Second Volume))
Show Figures

Figure 1

Back to TopTop