Water Use Enhancement and Root Function Compensatory Regulation of Biomass Accumulation in Quinoa Under Salt Stress by Photosynthetic Drive Advantage
Abstract
:1. Introduction
2. Results
2.1. Leaf Water Status and Sodium Accumulation
2.2. Antioxidant Enzyme Activity and Photosynthetic Characteristics
2.3. Morphological Characteristics and Total Biomass
2.4. Principal Component Analysis and Correlation Assessment
2.5. Importance Analysis Based on Random Forest Model
2.6. Analysis of Factors Driving Total Biomass in Quinoa
3. Discussion
3.1. Responses of Different Quinoa Varieties’ Growth Physiological Functions and Photosynthesis to Water and Salt Stress
3.2. Enhanced Water-Use Efficiency and Compensatory Root Function Regulation of Biomass Accumulation in Quinoa Driven by Photosynthetic Dominance Under Salt Stress
3.3. Moderated Irrigation Management to Address the Impact of Intrinsic Drivers on Biomass in Quinoa Under Varying Salinity Stress
4. Materials and Methods
4.1. Experimental Site and Design
4.2. Gas Exchange Parameters
4.3. Antioxidant Enzyme Activity and Sodium Accumulation
4.4. Leaf Water Parameters
4.5. Plant Morphological Characteristics and Biomass
4.6. Data Processing
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De Battisti, D.; Fowler, M.S.; Jenkins, S.R.; Skov, M.W.; Bouma, T.J.; Neyland, P.J.; Griffin, J.N. Multiple trait dimensions mediate stress gradient effects on plant biomass allocation, with implications for coastal ecosystem services. J. Ecol. 2020, 108, 1227–1240. [Google Scholar] [CrossRef]
- Bi, Y.; Zhou, B.; Ren, P.; Chen, X.; Zhou, D.; Yao, S.; Fan, D.; Chen, X. Effects of Bacillus subtilis on cotton physiology and growth under water and salt stress. Agric. Water Manag. 2024, 303, 109038. [Google Scholar] [CrossRef]
- Lu, J.; Shao, G.; Wang, W.; Gao, Y.; Wang, Z.; Zhang, Y.; Wang, J.; Song, E. The role of hydraulic lift in tomato yield and fruit quality under different water and salt stresses. Agric. Water Manag. 2024, 299, 108899. [Google Scholar] [CrossRef]
- Gao, J.; Li, L.; Ding, R.; Kang, S.; Du, T.; Tong, L.; Kang, J.; Xu, W.; Tang, G. Grain yield and water productivity of maize under deficit irrigation and salt stress: Evidences from field experiment and literatures. Agric. Water Manag. 2025, 307, 109260. [Google Scholar] [CrossRef]
- Çiçek, N.; Oukarroum, A.; Strasser, R.J.; Schansker, G. Salt stress effects on the photosynthetic electron transport chain in two chickpea lines differing in their salt stress tolerance. Photosynth. Res. 2018, 136, 291–301. [Google Scholar] [CrossRef]
- Hussin, S.A.; Ali, S.H.; Lotfy, M.E.; El-Samad, E.H.A.; Eid, M.A.; Abd-Elkader, A.M.; Eisa, S.S. Morpho-physiological mechanisms of two different quinoa ecotypes to resist salt stress. BMC Plant Biol. 2023, 23, 374. [Google Scholar] [CrossRef]
- Amjad, M.; Akhtar, S.S.; Yang, A.; Akhtar, J.; Jacobsen, S.E. Antioxidative Response of Quinoa Exposed to Iso-Osmotic, Ionic and Non-Ionic Salt Stress. J. Agron. Crop Sci. 2015, 201, 452–460. [Google Scholar] [CrossRef]
- Special Report—2021 FAO/WFP Crop and Food Security Assessment Mission (CFSAM) to South Sudan; FAO: Rome, Italy; WFP: Rome, Italy, 2022.
- Killi, D.; Haworth, M. Diffusive and Metabolic Constraints to Photosynthesis in Quinoa during Drought and Salt Stress. Plants 2017, 6, 49. [Google Scholar] [CrossRef]
- Gechev, T.; Petrov, V. Reactive Oxygen Species and Abiotic Stress in Plants. Int. J. Mol. Sci. 2020, 21, 7433. [Google Scholar] [CrossRef]
- Santhoshi, Y.; Anjana, A.B.; Zala, H.; Bosamia, T.; Tiwari, K.; Prajapati, K.; Patel, P.; Soni, N.; Patel, N.; Solanki, S.; et al. Comprehensive Analysis of the NHX Gene Family and Its Regulation Under Salt and Drought Stress in Quinoa (Chenopodium quinoa Willd.). Genes 2025, 16, 70. [Google Scholar] [CrossRef]
- Talebnejad, R.; Sepaskhah, A.R. Quinoa: A new crop for plant diversification under water and salinity stress conditions in Iran. Acta Hortic. 2018, 1190, 101–106. [Google Scholar] [CrossRef]
- Soliman, D.A.; Attaya, A.S.; Kamel, A.S.; ElSarag, E.I. Physiological Response of Quinoa to Salt Stress Under Shad House Condition. Sinai J. Appl. Sci. 2019, 8, 89–100. [Google Scholar] [CrossRef]
- Telahigue, D.C.; Yahia, L.B.; Aljane, F.; Belhouchett, K.; Toumi, L. Grain yield, biomass productivity and water use efficiency in quinoa (Chenopodium quinoa Willd.) under drought stress. J. Sci. Agric. 2017, 1, 222–232. [Google Scholar] [CrossRef]
- Slimani, N.; Arraouadi, S.; Hajlaoui, H. Biochemical and Physiological Behavior against Salt Stress effect on two Quinoa accessions (Chenopodium quinoa Willd.). Int. J. Agric. Anim. Prod. 2022, 2, 9–19. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Huang, J.; Peng, S.; Xiong, D. Diffusional conductance to CO2 is the key limitation to photosynthesis in salt-stressed leaves of rice (Oryza sativa). Physiol. Plant. 2018, 163, 45–58. [Google Scholar] [CrossRef]
- Chaves, M.M.; Flexas, J.; Pinheiro, C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann. Bot. 2009, 103, 551–560. [Google Scholar] [CrossRef]
- Kaya, Ç.I.; Yazar, A. Saltmed Model Performance for Quinoa Irrigated with Fresh and Saline Water in a Mediterranean Environment. Irrig. Drain. 2016, 65, 29–37. [Google Scholar] [CrossRef]
- Nidhi; Iqbal, N.; Khan, N.A. Synergistic effects of phytohormones and membrane transporters in plant salt stress mitigation. Plant Physiol. Biochem. 2025, 221, 109685. [Google Scholar] [CrossRef]
- Khalloufi, M.; Martínez-Andújar, C.; Karray-Bouraouib, N.; Pérez-Alfocea, F.; Albacete, A. The crosstalk interaction of ethylene, gibberellins, and arbuscular mycorrhiza improves growth in salinized tomato plants by modulating the hormonal balance. J. Plant Physiol. 2024, 303, 154336. [Google Scholar] [CrossRef]
- Reisizadeh, A.; Amerian, M.; Gholami, A. Effect of Spermidine and Salicylic Acid Application on the Morphological and Physiological Characteristics of Quinoa (Chenopodium quinoa) Under Salt Stress Conditions. Agric. Res. 2024, 13, 450–464. [Google Scholar] [CrossRef]
- Hou, J.; Liu, X.; Zhang, J.; Wei, Z.; Ma, Y.; Wan, H.; Liu, J.; Cui, B.; Zong, Y.; Chen, Y.; et al. Combined application of biochar and partial root-zone drying irrigation improves water relations and water use efficiency of cotton plants under salt stress. Agric. Water Manag. 2023, 290, 108584. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Jia, L.; Ji, L.; Wang, C.; Xu, W.; Wang, S.; Zhou, Y.; Han, H.; Han, K.; et al. Partial root zone irrigation and K application improves summer maize production and salt resistance in saline soil. Agric. Water Manag. 2024, 303, 109057. [Google Scholar] [CrossRef]
- Su, J.; Jing, G.; Jin, J.; Wei, L.; Liu, J.; Cheng, J. Identifying drivers of root community compositional changes in semiarid grassland on the Loess plateau after long-term grazing exclusion. Ecol. Eng. 2017, 99, 13–21. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, Y.; Testerink, C. Root dynamic growth strategies in response to salinity. Plant Cell Environ. 2022, 45, 695–704. [Google Scholar] [CrossRef]
- Bazile, D. Biology and Biotechnology of Quinoa; Springer: Singapore, 2021; pp. 397–417. [Google Scholar]
- Mansour, S. Quinoa and World Food Security. Food Sci. Nutr. Technol. 2019, 4, 1–2. [Google Scholar]
- Jacobsen, S.-E. The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Rev. Int. 2003, 19, 167–177. [Google Scholar] [CrossRef]
- Hui, R.; Tan, H.; Li, X.; Wang, B. Variation of soil physical-chemical characteristics in salt-affected soil in the Qarhan Salt Lake, Qaidam Basin. J. Arid Land 2022, 14, 341–355. [Google Scholar] [CrossRef]
- Aggarwal, G.; Edhigalla, P.; Walia, P.; Jindal, S.; Sandal, S.S. A method for screening salt stress tolerance in Indian mustard (Brassica juncea) (L.) Czern & Coss at seedling stage. Sci. Rep. 2024, 14, 12705. [Google Scholar]
- Trotti, J.; Trapani, I.; Gulino, F.; Aceto, M.; Minio, M.; Gerotto, C.; Mica, E.; Valè, G.; Barbato, R.; Pagliano, C. Physiological Responses to Salt Stress at the Seedling Stage in Wild (Oryza rufipogon Griff.) and Cultivated (Oryza sativa L.) Rice. Plants 2024, 13, 369. [Google Scholar] [CrossRef]
- Miranda-Apodaca, J.; Yoldi-Achalandabaso, A.; Aguirresarobe, A.; del Canto, A.; Pérez-López, U. Similarities and differences between the responses to osmotic and ionic stress in quinoa from a water use perspective. Agric. Water Manag. 2018, 203, 344–352. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, T.; Xu, H.; Gao, G.; Dou, H. Photosynthetic and Physiological Characteristics of Three Common Halophytes and Their Relationship with Biomass Under Salt Stress Conditions in Northwest China. Appl. Sci. 2024, 14, 11890. [Google Scholar] [CrossRef]
- Mathivanan, S. Abiotic Stress in Plants; Intechopen: London, UK, 2021. [Google Scholar]
- Mohammadi Alagoz, S.; Hadi, H.; Toorchi, M.; Pawłowski, T.A.; Asgari Lajayer, B.; Price, G.W.; Farooq, M.; Astatkie, T. Morpho-physiological responses and growth indices of triticale to drought and salt stresses. Sci. Rep. 2023, 13, 8896. [Google Scholar] [CrossRef]
- Farooq, M.; Hussain, M.; Wakeel, A.; Siddique, K.H. Salt stress in maize: Effects, resistance mechanisms, and management. A review. Agron. Sustain. Dev. 2015, 35, 461–481. [Google Scholar] [CrossRef]
- Quintero, J.M.; Fournier, J.M.; Benlloch, M. Na+ accumulation in shoot is related to water transport in K+-starved sunflower plants but not in plants with a normal K+ status. J. Plant Physiol. 2007, 164, 60–67. [Google Scholar] [CrossRef]
- Davenport, R.; James, R.A.; Zakrisson-Plogander, A.; Tester, M.; Munns, R. Control of Sodium Transport in Durum Wheat. Plant Physiol. 2005, 137, 807–818. [Google Scholar] [CrossRef]
- Ami, K.; Planchais, S.; Cabassa, C.; Guivarc’h, A.; Very, A.A.; Khelifi, M.; Djebbar, R.; Abrous-Belbachir, O.; Carol, P. Different proline responses of two Algerian durum wheat cultivars to in vitro salt stress. Acta Physiol. Plant. 2020, 42, 21. [Google Scholar] [CrossRef]
- Wang, W.B.; Kim, Y.H.; Lee, H.S.; Kim, K.Y.; Deng, X.P.; Kwak, S.S. Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol. Biochem. 2009, 47, 570–577. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, Y.; Zhao, Y.; Wang, Y.; Zou, F.; Huang, S.; Yang, X.; Xu, Z.; Hu, H. Physiological and transcriptional evaluation of sweet sorghum seedlings in response to single and combined drought and salinity stress. S. Afr. J. Bot. 2022, 146, 459–471. [Google Scholar] [CrossRef]
- Luna, M.; Badiani, M.; Felici, M.; Artemi, F.; Sermanni, G.G. Selective enzyme inactivation under water stress in maize (Zea mays L.) and wheat (Triticum aestivum L.) seedlings. Environ. Exp. Bot. 1985, 25, 153–156. [Google Scholar] [CrossRef]
- Geissler, N.; Hussin, S.; El-Far, M.M.M.; Koyro, H.W. Elevated atmospheric CO2 concentration leads to different salt resistance mechanisms in a C3 (Chenopodium quinoa) and a C4 (Atriplex nummularia) halophyte. Environ. Exp. Bot. 2015, 118, 67–77. [Google Scholar] [CrossRef]
- González, J.A.; Bruno, M.; Valoy, M.; Prado, F.E. Genotypic Variation of Gas Exchange Parameters and Leaf Stable Carbon and Nitrogen Isotopes in Ten Quinoa Cultivars Grown under Drought. J. Agron. Crop Sci. 2011, 197, 81–93. [Google Scholar] [CrossRef]
- Jacobsen, S.-E.; Liu, F.; Jensen, C.R. Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). Sci. Hortic. 2009, 122, 281–287. [Google Scholar] [CrossRef]
- Munns, R.; James, R.A.; Läuchli, A. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 2006, 57, 1025–1043. [Google Scholar] [CrossRef]
- Ors, S.; Ekinci, M.; Yildirim, E.; Sahin, U.; Turan, M.; Dursun, A. Interactive effects of salinity and drought stress on photosynthetic characteristics and physiology of tomato (Lycopersicon esculentum L.) seedlings. S. Afr. J. Bot. 2021, 137, 335–339. [Google Scholar] [CrossRef]
- Lawlor, D.W.; Tezara, W. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: A critical evaluation of mechanisms and integration of processes. Ann. Bot. 2009, 103, 561–579. [Google Scholar] [CrossRef]
- Abideen, Z.; Koyro, H.W.; Hussain, T.; Rasheed, A.; Alwahibi, M.S.; Elshikh, M.S.; Hussain, M.I.; Zulfiqar, F.; Mansoor, S.; Abbas, Z. Biomass production and predicted ethanol yield are linked with optimum photosynthesis in Phragmites karka under salinity and drought conditions. Plants 2022, 11, 1657. [Google Scholar] [CrossRef]
- Medrano, H.; Flexas, J.; Galmés, J. Variability in water use efficiency at the leaf level among Mediterranean plants with different growth forms. Plant Soil 2009, 317, 17–29. [Google Scholar] [CrossRef]
- Ahrar, M.; Doneva, D.; Tattini, M.; Brunetti, C.; Gori, A.; Rodeghiero, M.; Wohlfahrt, G.; Biasioli, F.; Varotto, C.; Loreto, F.; et al. Phenotypic differences determine drought stress responses in ecotypes of Arundo donax adapted to different environments. J. Exp. Bot. 2017, 68, 2439–2451. [Google Scholar] [CrossRef]
- Ji, X.; Tang, J.; Zhang, J. Effects of Salt Stress on the Morphology, Growth and Physiological Parameters of Juglansmicrocarpa L. Seedlings. Plants 2022, 11, 2381. [Google Scholar] [CrossRef]
- Arif, M.; Khurshid, H.; Rabbani, M.A.; Jahanzaib, M.; Khattak, S.H.; Ullah, I.; Farah, M.A.; Singh, R.; Li, L. Morpho-physiological traits and stress indices reveal divergence in early-stage salt stress response in elite soybean germplasm. J. King Saud Univ.-Sci. 2024, 36, 103522. [Google Scholar] [CrossRef]
- Farooq, M.; Rafique, S.; Zahra, N.; Rehman, A.; Siddique, K.H. Root system architecture and salt stress responses in cereal crops. J. Agron. Crop Sci. 2024, 210, e12776. [Google Scholar] [CrossRef]
- Shannon, M.C.; Rhoades, J.D.; Draper, J.H.; Scardaci, S.C.; Spyres, M.D. Assessment of Salt Tolerance in Rice Cultivars in Response to Salinity Problems in California. Crop Sci. 1998, 38, 394–398. [Google Scholar] [CrossRef]
- Hussin, S.; Geissler, N.; Koyro, H.-W. Effect of NaCl salinity on Atriplex nummularia (L.) with special emphasis on carbon and nitrogen metabolism. Acta Physiol. Plant. 2013, 35, 1025–1038. [Google Scholar] [CrossRef]
- Seo, D.H.; Seomun, S.; Choi, Y.D.; Jang, G. Root Development and Stress Tolerance in rice: The Key to Improving Stress Tolerance without Yield Penalties. Int. J. Mol. Sci. 2020, 21, 1807. [Google Scholar] [CrossRef]
- Hao, S.; Wang, Y.; Yan, Y.; Liu, Y.; Wang, J.; Chen, S. A Review on Plant Responses to Salt Stress and Their Mechanisms of Salt Resistance. Horticulturae 2021, 7, 132. [Google Scholar] [CrossRef]
- Zhou, H.; Shi, H.; Yang, Y.; Feng, X.; Chen, X.; Xiao, F.; Lin, H.; Guo, Y. Insights into plant salt stress signaling and tolerance. J. Genet. Genom. 2024, 51, 16–34. [Google Scholar] [CrossRef]
- Lin, J.; Li, J.P.; Yuan, F.; Yang, Z.; Wang, B.S.; Chen, M. Transcriptome profiling of genes involved in photosynthesis in Elaeagnus angustifolia L. under salt stress. Photosynthetica 2018, 56, 998–1009. [Google Scholar] [CrossRef]
- Fricke, W. Energy costs of salinity tolerance in crop plants: Night-time transpiration and growth. New Phytol. 2020, 225, 1152–1165. [Google Scholar] [CrossRef] [PubMed]
- Fernández-García, N.; Olmos, E.; Bardisi, E.; García-De la Garma, J.; López-Berenguer, C.; Rubio-Asensio, J.S. Intrinsic water use efficiency controls the adaptation to high salinity in a semi-arid adapted plant, henna (Lawsonia inermis L.). J. Plant Physiol. 2014, 171, 64–75. [Google Scholar] [CrossRef]
- Cocozza, C.; Pulvento, C.; Lavini, A.; Riccardi, M.; d’Andria, R.; Tognetti, R. Effects of Increasing Salinity Stress and Decreasing Water Availability on Ecophysiological Traits of Quinoa (Chenopodium quinoa Willd.) Grown in a Mediterranean-Type Agroecosystem. J. Agron. Crop Sci. 2013, 199, 229–240. [Google Scholar] [CrossRef]
- Han, J.; Wang, J.; Chen, L.; Xiang, J.; Ling, Z.; Li, Q.; Wang, E. Driving factors of desertification in Qaidam Basin, China: An 18-year analysis using the geographic detector model. Ecol. Indic. 2021, 124, 107404. [Google Scholar] [CrossRef]
- He, W.; Ye, W.; Sun, M.; Li, Y.; Chen, M.; Wei, M.; Hu, G.; Yang, Q.; Pan, H.; Lou, Y.; et al. Soil phosphorus availability and stoichiometry determine microbial activity and functional diversity of fluvo-aquic soils under long-term fertilization regimes. J. Soils Sediments 2022, 22, 1214–1227. [Google Scholar] [CrossRef]
- Barrow, N.J.; Debnath, A.; Sen, A. Measurement of the effects of pH on phosphate availability. Plant Soil 2020, 454, 217–224. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, T.; Huang, G.; Xiong, Y. Soil microbial community and associated functions response to salt stresses: Resistance and resilience. Sci. Total Environ. 2024, 954, 176475. [Google Scholar] [CrossRef]
- Hirapara, P.; Kathiriya, G.; Sonawane, A.V. Influence of tillage on physical properties and water holding capacity of the soil. J. Soil Water Conserv. 2022, 21, 34–40. [Google Scholar] [CrossRef]
- Peskin, A.V.; Winterbourn, C.C. A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1). Clin. Chim. Acta 2000, 293, 157–166. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, Z.; Zhou, W.; Yang, X.; Hu, H.; Li, C.; Ma, W.; Wei, Y. Comprehensive evaluation of quinoa seed responses to drought and salt stress during germination. Chin. J. Eco-Agric. 2020, 28, 1033–1042. (In Chinese) [Google Scholar]
- Ma, Y.; Wei, Z.; Liu, J.; Liu, X.; Hou, J.; Liu, F. Effects of K+ and Ca2+ supplement during fertigation on leaf gas exchange and salt tolerance of cotton at full and deficit irrigation regimes. Environ. Exp. Bot. 2021, 186, 104435. [Google Scholar] [CrossRef]
- Jing, M.; Han, G.; Wan, J.; Zhang, S.; Yang, J.; Zong, W.; Niu, Q.; Liu, R. Catalase and superoxide dismutase response and the underlying molecular mechanism for naphthalene. Sci. Total Environ. 2020, 736, 139567. [Google Scholar] [CrossRef]
- Vives-Bauza, C.; Starkov, A.; Garcia-Arumi, E. Measurements of the antioxidant enzyme activities of superoxide dismutase, catalase, and glutathione peroxidase. Methods Cell Biol. 2007, 80, 379–393. [Google Scholar]
- Turner, N.C. Techniques and experimental approaches for the measurement of plant water status. Plant Soil 1981, 58, 339–366. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
Salinity Level | Latent Variable | Direct Impact | Indirect Influence | Overall Impact | Contribution (%) |
---|---|---|---|---|---|
s0 | Photosynthetic factor | 0.39 | 0.4 | 0.79 | 47.59 |
Physiological factor | 0.03 | −0.25 | −0.22 | 13.25 | |
Morphological factor | 0.65 | N.A. | 0.65 | 39.16 | |
s1 | Photosynthetic factor | 0.37 | 0.37 | 0.74 | 47.74 |
Physiological factor | 0.08 | −0.3 | −0.22 | 14.19 | |
s2 | Morphological factor | 0.59 | N.A. | 0.59 | 38.06 |
Photosynthetic factor | 0.4 | 0.26 | 0.66 | 38.37 | |
Physiological factor | −0.13 | −0.32 | −0.45 | 26.16 | |
Morphological factor | 0.61 | N.A. | 0.61 | 35.47 | |
s3 | Photosynthetic factor | 0.59 | 0.1 | 0.69 | 43.13 |
Physiological factor | −0.32 | −0.22 | −0.54 | 33.75 |
Seed Color | Crop Variety |
---|---|
White | Qingli No.1 |
White | Qingli No.8 |
Red | Gongza No.4 |
Black | Black quinoa |
Treatment Group | Irrigation Level | Salinity Level |
---|---|---|
w1s0 | 30% FC | 0 mmol/L |
w1s1 | 30% FC | 100 mmol/L |
w1s2 | 30% FC | 200 mmol/L |
w1s3 | 30% FC | 300 mmol/L |
w2s0 | 80% FC | 0 mmol/L |
w2s1 | 80% FC | 100 mmol/L |
w2s2 | 80% FC | 200 mmol/L |
w2s3 | 80% FC | 300 mmol/L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Feng, L.; Hao, J.; Zhang, Y.; Li, R. Water Use Enhancement and Root Function Compensatory Regulation of Biomass Accumulation in Quinoa Under Salt Stress by Photosynthetic Drive Advantage. Plants 2025, 14, 1615. https://doi.org/10.3390/plants14111615
Xu H, Feng L, Hao J, Zhang Y, Li R. Water Use Enhancement and Root Function Compensatory Regulation of Biomass Accumulation in Quinoa Under Salt Stress by Photosynthetic Drive Advantage. Plants. 2025; 14(11):1615. https://doi.org/10.3390/plants14111615
Chicago/Turabian StyleXu, Hao, Lingzheng Feng, Jia Hao, Yongkun Zhang, and Runjie Li. 2025. "Water Use Enhancement and Root Function Compensatory Regulation of Biomass Accumulation in Quinoa Under Salt Stress by Photosynthetic Drive Advantage" Plants 14, no. 11: 1615. https://doi.org/10.3390/plants14111615
APA StyleXu, H., Feng, L., Hao, J., Zhang, Y., & Li, R. (2025). Water Use Enhancement and Root Function Compensatory Regulation of Biomass Accumulation in Quinoa Under Salt Stress by Photosynthetic Drive Advantage. Plants, 14(11), 1615. https://doi.org/10.3390/plants14111615