Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (134)

Search Parameters:
Keywords = alkali activated cement mortar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4487 KiB  
Article
Recycling Volcanic Lapillus as a Supplementary Cementitious Material in Sustainable Mortars
by Fabiana Altimari, Luisa Barbieri, Andrea Saccani and Isabella Lancellotti
Recycling 2025, 10(4), 153; https://doi.org/10.3390/recycling10040153 - 1 Aug 2025
Viewed by 135
Abstract
This study investigates the feasibility of using volcanic lapillus as a supplementary cementitious material (SCM) in mortar production to improve the sustainability of the cement industry. Cement production is one of the main sources of CO2 emissions, mainly due to clinker production. [...] Read more.
This study investigates the feasibility of using volcanic lapillus as a supplementary cementitious material (SCM) in mortar production to improve the sustainability of the cement industry. Cement production is one of the main sources of CO2 emissions, mainly due to clinker production. Replacing clinker with SCMs, such as volcanic lapillus, can reduce the environmental impact while maintaining adequate mechanical properties. Experiments were conducted to replace up to 20 wt% of limestone Portland cement with volcanic lapillus. Workability, compressive strength, microstructure, resistance to alkali-silica reaction (ASR), sulfate, and chloride penetration were analyzed. The results showed that up to 10% replacement had a minimal effect on mechanical properties, while higher percentages resulted in reduced strength but still improved some durability features. The control sample cured 28 days showed a compressive strength of 43.05 MPa compared with 36.89 MPa for the sample containing 10% lapillus. After 90 days the respective values for the above samples were 44.76 MPa and 44.57 MPa. Scanning electron microscopy (SEM) revealed good gel–aggregate adhesion, and thermogravimetric analysis (TGA) confirmed reduced calcium hydroxide content, indicating pozzolanic activity. Overall, volcanic lapillus shows promise as a sustainable SCM, offering CO2 reduction and durability benefits, although higher replacement rates require further optimization. Full article
Show Figures

Figure 1

18 pages, 3365 KiB  
Article
Novel Methodology to Assess Salt Movement Between Mortar and Stones from Heritage in Spain
by Linde Pollet, Andrea Antolín-Rodríguez, Josep Gisbert-Aguilar, Gabriel Búrdalo-Salcedo, Andrés Juan-Valdés, César García-Álvarez, Angel Raga-Martín, Wouter Schroeyers, Víctor Calvo and María Fernández-Raga
Materials 2025, 18(14), 3340; https://doi.org/10.3390/ma18143340 - 16 Jul 2025
Viewed by 340
Abstract
The development of sustainable cementitious materials is crucial to reduce the environmental footprint of the construction industry. Alkali-activated materials (AAMs) have emerged as promising environmentally friendly alternatives; however, their compatibility with natural stone in heritage structures remains poorly understood, especially regarding salt migration [...] Read more.
The development of sustainable cementitious materials is crucial to reduce the environmental footprint of the construction industry. Alkali-activated materials (AAMs) have emerged as promising environmentally friendly alternatives; however, their compatibility with natural stone in heritage structures remains poorly understood, especially regarding salt migration and related damage to stones. This study presents a novel methodology for assessing salt movement in solid materials between two types of stones—Boñar and Silos—and two types of binders: blended Portland cement (BPC) and an AAM. The samples underwent capillarity and immersion tests to evaluate water absorption, salt transport, and efflorescence behavior. The capillarity of the Silos stone was 0.148 kg·m−2·t−0.5, whereas this was 0.0166 kg·m−2·t−0.5 for the Boñar stone, a ninefold difference. Conductivity mapping and XRD analysis revealed that AAM-based mortars exhibit a significantly higher release of salts, primarily sodium sulfate, which may pose a risk to adjacent porous stones. In contrast, BPC showed lower salt mobility and different salt compositions. These findings highlight the importance of evaluating the compatibility between alternative binders and heritage stones. The use of AAMs may pose significant risks due to their tendency to release soluble salts. Although, in the current experiments, no pore damage or mechanical degradation was observed, additional studies are required to confirm this. A thorough understanding of salt transport mechanisms is therefore essential to ensure that sustainable restoration materials do not inadvertently accelerate the deterioration of structures, a process more problematic when the deterioration affects heritage monuments. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

21 pages, 4376 KiB  
Article
Hybrid Binders Through Alkaline Activation of Fine Construction and Demolition Waste
by Manuel Retamal-Rojas, Diego Aponte, William Valencia-Saavedra, Rafael Robayo-Salazar and Marilda Barra-Bizinotto
Materials 2025, 18(14), 3227; https://doi.org/10.3390/ma18143227 - 8 Jul 2025
Viewed by 376
Abstract
The use of construction and demolition waste (CDW) as an alternative binder to ordinary Portland cement presents a promising solution through alkaline activation. This study evaluates the physical, mechanical, and microstructural behaviour of pastes and mortars produced with CDW—specifically concrete (RH) and ceramic [...] Read more.
The use of construction and demolition waste (CDW) as an alternative binder to ordinary Portland cement presents a promising solution through alkaline activation. This study evaluates the physical, mechanical, and microstructural behaviour of pastes and mortars produced with CDW—specifically concrete (RH) and ceramic (RC) waste—activated with NaOH and Na2SiO3 (SS) solutions. Mortars were prepared with NaOH/SS ratios of 0.2 and 0.3 and an activator-to-precursor (AA/P) ratio of 0.2. Results showed that higher NaOH content accelerated alkaline activation, reducing setting times from 6.2 h to 3.7 h for RC and from 4.6 h to 3.2 h for RH. Conversely, increasing Na2SiO3 content led to greater drying shrinkage, from −0.42% to −0.49% in RC and from −0.46% to −0.52% in RH. Compressive strength values at 28 days ranged from 7.6 to 8.2 MPa. X-ray diffraction (XRD) revealed the presence of non-reactive crystalline phases in both precursors, while Fourier transform infrared (FTIR) spectroscopy indicated the formation of CASH, CSH, and/or (N)CASH gels. This study highlights the potential of CDW as a sustainable alternative binder and the usefulness of the proposed method for optimising alkali-activated systems, contributing to circular economy strategies in the construction sector. Full article
Show Figures

Figure 1

24 pages, 5049 KiB  
Article
Sustainable Mortar with Waste Glass and Fly Ash: Impact of Glass Aggregate Size and Life-Cycle Assessment
by Vimukthi Fernando, Weena Lokuge, Hannah Seligmann, Hao Wang and Chamila Gunasekara
Recycling 2025, 10(4), 133; https://doi.org/10.3390/recycling10040133 - 4 Jul 2025
Viewed by 363
Abstract
This study investigates the use of Glass Fine Aggregate (GFA) and Fly Ash (FA) in mortar for Alkali–Silica Reaction (ASR) mitigation through a multidimensional evaluation. GFA was used to replace river sand in 20% increments up to 100%, while FA replaced cement at [...] Read more.
This study investigates the use of Glass Fine Aggregate (GFA) and Fly Ash (FA) in mortar for Alkali–Silica Reaction (ASR) mitigation through a multidimensional evaluation. GFA was used to replace river sand in 20% increments up to 100%, while FA replaced cement at 10%, 20%, and 30%. Three GFA size ranges were considered: <1.18 mm, 1.18–4.75 mm, and a combined fraction of <4.75 mm. At 100% replacement, <1.18 mm GFA reduced ASR expansion to 0.07%, compared to 0.2% for <4.75 mm and 0.46% for 1.18–4.75 mm GFA. It also improved long-term strength by 25% from 28 days to 6 months due to pozzolanic activity. However, refining GFA to below 1.18 mm increased environmental impacts and resulted in a 4.2% increase in energy demand due to the additional drying process. Incorporating 10% FA reduced ASR expansion to 0.044%, had no significant effect on strength, and decreased key environmental burdens such as toxicity by up to 18.2%. These findings indicate that FA utilisation offers greater benefits for ASR mitigation and environmental sustainability than further refining GFA size. Therefore, combining <4.75 mm GFA with 10% FA is identified as the optimal strategy for producing durable and sustainable mortar with recycled waste glass. Full article
Show Figures

Figure 1

13 pages, 1634 KiB  
Article
Physico-Mechanical Properties of Geopolymers Based on Fly Ashes and Waste Broken Glass
by Krzysztof Cendrowski, Elżbieta Horszczaruk and Jarosław Strzałkowski
Appl. Sci. 2025, 15(13), 7495; https://doi.org/10.3390/app15137495 - 3 Jul 2025
Viewed by 232
Abstract
This paper presents the results of testing the insulation performance of geopolymers based on fly ashes with the addition of waste broken glass. The waste glass was dried and ground to a maximum of 1 mm grain size. The proportions of broken glass [...] Read more.
This paper presents the results of testing the insulation performance of geopolymers based on fly ashes with the addition of waste broken glass. The waste glass was dried and ground to a maximum of 1 mm grain size. The proportions of broken glass in the total binder’s mass were 0%, 10%, 20%, and 30%. Sodium hydroxide and sodium silicate were the activators of the alkaline reaction. The obtained geopolymer materials were characterised by determining the basic physico-mechanical properties. The chemical composition, density, and thermal conductivity coefficient were determined. The mechanical performance, including compressive and flexural strength, was investigated after 28 days of curing. The morphological analysis was also carried out using microphotographs obtained from optical and scanning microscopes. A significant effect of the waste glass on the tested geopolymers’ mechanical performance was observed. Proportions of 10% and 20% broken glass in the binder led to more than a four-fold increase in the compressive strength and a two-fold increase in the flexural strength compared to the geopolymer without the waste glass. All tested geopolymers had excellent insulation ability compared to the reference mortar (more than 80% higher than cement mortar). However, the problem is potential alkali–silica reaction, which can occur when the waste glass content is high. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

28 pages, 3461 KiB  
Article
The Plasticization of Alkali-Activated Cement System Na2O-CaO-Al2O3-SiO2-H2O: Problems and Decisions
by Pavlo Kryvenko, Igor Rudenko and Oleksandr Konstantynovskyi
Appl. Sci. 2025, 15(12), 6928; https://doi.org/10.3390/app15126928 - 19 Jun 2025
Viewed by 365
Abstract
The paper is devoted to the plasticization mechanisms of alkali-activated cement system Na2O-CaO-Al2O3-SiO2-H2O. The fundamentals and basic factors determining the effectiveness of plasticizing surfactants for alkali-activated cement materials are discussed. The factors under [...] Read more.
The paper is devoted to the plasticization mechanisms of alkali-activated cement system Na2O-CaO-Al2O3-SiO2-H2O. The fundamentals and basic factors determining the effectiveness of plasticizing surfactants for alkali-activated cement materials are discussed. The factors under consideration in the study were alkali-activated cement basicity (the content of granulated blast furnace slag), the anion of the alkaline component or activator, and the degree of dispersing of the cement particles in the system. The action effect of plasticizers was determined by finding the interrelation between the stability of its molecular structure, degree of adsorption, and molecular weight depending on mentioned basic factors. A systematic approach to the systematization of surfactants and their choice to be taken into consideration to control technology-related and physico-mechanical properties of alkali-activated cement-based heavyweight concretes, building mortars, and lightened grouts has been proposed. Full article
Show Figures

Figure 1

23 pages, 5352 KiB  
Article
Durability Performance of Alkali-Activated Natural Pozzolan and Limestone Powder Mortar in Sulfate Environments
by Adeshina Adewale Adewumi, Babatunde Abiodun Salami, Mohd Azreen Bin Mohd Ariffin, Moruf Olalekan Yusuf, Khaled A. Alawi Al-Sodani and Mohammed Ibrahim
Sustainability 2025, 17(12), 5611; https://doi.org/10.3390/su17125611 - 18 Jun 2025
Viewed by 377
Abstract
The pressing need for sustainable construction materials has identified alkali-activated materials (AAMs) as eco-friendly alternatives to conventional Portland cement. This study explores the synergistic performance of alkaline-activated natural pozzolan and limestone powder (AANL) blends against sulfate attack, evaluating mortar specimens immersed in sodium [...] Read more.
The pressing need for sustainable construction materials has identified alkali-activated materials (AAMs) as eco-friendly alternatives to conventional Portland cement. This study explores the synergistic performance of alkaline-activated natural pozzolan and limestone powder (AANL) blends against sulfate attack, evaluating mortar specimens immersed in sodium sulfate, magnesium sulfate, and a combined sulfate solution over 12 months. The samples were synthesized using natural pozzolan (NP) and limestone powder (LSP) in three distinct binder combinations to evaluate the influence of varying precursor ratios on the material’s performance, as follows: NP: LSP = 40:60 (AN40L60), 50:50 (AN50L50), and 60:40 (AN60L40). At the same time, the alkaline activators of 10 M NaOH(aq) and Na₂SiO3(aq) were combined in a ratio of 1:1 and cured at 75 °C. The research examines the weight variations of the samples, their residual compressive strength, and microstructural characteristics under exposure to magnesium sulfate, sodium sulfate, and a combined sulfate solution. In terms of weight change, samples exposed to Na2SO4 gained weight slightly, with AN40L60 recording the highest gain (3.2%) due to the ingress of sulfate ions and pore filling. Under MgSO4, AN60L40 had the lowest weight gain (29%), while AN40L60 reached 54%. In mixed sulfate, AN60L40 showed negligible weight gain (0.11%); whereas, AN50L50 and AN40L60 gained 2.43% and 1.81%, respectively. Compressive strength retention after one year indicated that mixes with higher NP content fared better. AN60L40 exhibited the highest residual strength across all solutions—16.12 MPa in Na2SO4, 12.5 MPa in MgSO4, and 19.45 MPa in the mixed solution. Conversely, AN40L60 showed the highest strength degradation, losing 47.22%, 58.11%, and 55.89%, respectively. SEM-EDS and FTIR analyses confirm that LSP’s vulnerability to sulfate attack diminishes with increased NP incorporation, highlighting a synergistic interaction that mitigates degradation and retains structural integrity. The combination of 60% NP and 40% LSP demonstrated superior resistance to all sulfate environments, as evidenced by visual durability, minimized weight gain, and retained compressive strength. This study highlights the potential of tailored NP-LSP combinations in developing durable and sustainable AAMs, paving the way for innovative solutions in sulfate-prone environments, while reducing environmental impact and promoting economic efficiency. Full article
Show Figures

Figure 1

22 pages, 4653 KiB  
Article
Recycled Clay Brick Powder as a Dual-Function Additive: Mitigating the Alkali–Silica Reaction (ASR) and Enhancing Strength in Eco-Friendly Mortar with Hybrid Waste Glass and Clay Brick Aggregates
by Xue-Fei Chen, Xiu-Cheng Zhang and Ying Peng
Materials 2025, 18(12), 2838; https://doi.org/10.3390/ma18122838 - 16 Jun 2025
Viewed by 461
Abstract
The construction industry’s escalating environmental footprint, coupled with the underutilization of construction waste streams, necessitates innovative approaches to sustainable material design. This study investigates the dual functionality of recycled clay brick powder (RCBP) as both a supplementary cementitious material (SCM) and an alkali–silica [...] Read more.
The construction industry’s escalating environmental footprint, coupled with the underutilization of construction waste streams, necessitates innovative approaches to sustainable material design. This study investigates the dual functionality of recycled clay brick powder (RCBP) as both a supplementary cementitious material (SCM) and an alkali–silica reaction (ASR) inhibitor in hybrid mortar systems incorporating recycled glass (RG) and recycled clay brick (RCB) aggregates. Leveraging the pozzolanic activity of RCBP’s residual aluminosilicate phases, the research quantifies its influence on mortar durability and mechanical performance under varying substitution scenarios. Experimental findings reveal a nonlinear relationship between RCBP dosage and mortar properties. A 30% cement replacement with RCBP yields a 28-day activity index of 96.95%, confirming significant pozzolanic contributions. Critically, RCBP substitution ≥20% effectively mitigates ASRs induced by RG aggregates, with optimal suppression observed at 25% replacement. This threshold aligns with microstructural analyses showing RCBP’s Al3+ ions preferentially reacting with alkali hydroxides to form non-expansive gels, reducing pore solution pH and silica dissolution rates. Mechanical characterization reveals trade-offs between workability and strength development. Increasing RCBP substitution decreases mortar consistency and fluidity, which is more pronounced in RG-RCBS blends due to glass aggregates’ smooth texture. Compressively, both SS-RCBS and RG-RCBS mortars exhibit strength reduction with higher RCBP content, yet all specimens show accelerated compressive strength gain relative to flexural strength over curing time. Notably, 28-day water absorption increases with RCBP substitution, correlating with microstructural porosity modifications. These findings position recycled construction wastes and glass as valuable resources in circular economy frameworks, offering municipalities a pathway to meet recycled content mandates without sacrificing structural integrity. The study underscores the importance of waste synergy in advancing sustainable mortar technology, with implications for net-zero building practices and industrial waste valorization. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

11 pages, 5414 KiB  
Article
Alkali-Activated Slag Repair Mortar for Old Reinforced Concrete Structures Based on Ordinary Portland Cement
by Danutė Vaičiukynienė, Agnė Liudvinavičiūtė, Reda Bistrickaitė, Olha Boiko and Vilimantas Vaičiukynas
Materials 2025, 18(10), 2272; https://doi.org/10.3390/ma18102272 - 14 May 2025
Viewed by 441
Abstract
In this study, alkali-activated mortars were prepared using two different types of fine aggregates: natural sand and biomass bottom ash. These mortars were used as a repair material for structures constructed using old reinforced concrete structures based on Ordinary Portland cement (OPC). Experimental [...] Read more.
In this study, alkali-activated mortars were prepared using two different types of fine aggregates: natural sand and biomass bottom ash. These mortars were used as a repair material for structures constructed using old reinforced concrete structures based on Ordinary Portland cement (OPC). Experimental studies have shown that the alkali-activated slag mortar with biomass bottom ash (BBA) from the bubbling fluid bed meets the repair mortar class R1 according to EN 1504-3. The suitability of such repair mortar is determined by the good adhesion properties of the alkali-activated slag binder to old OPC concrete. The adhesion after 28 days was 0.31 MPa and the samples broke off at the repair matrix. The AAC/BBA repair mortar had a compressive strength of 18.69 MPa, the shrinkage due to drying deformations consisted of 0.1903% after 28 days. Alkali-activated slag mortars are effective in repairing, renewing and rebuilding damaged OPC concrete structures. Full article
(This article belongs to the Section Green Materials)
Show Figures

Figure 1

14 pages, 21489 KiB  
Article
Study on Mechanical Strength and Chloride Corrosion Resistance of Composite Mortars Mixed with Steel Slag, Bayer Red Mud, and Phosphogypsum
by Cheng Hu, Qijie Wang, Weiheng Xiang, Tao Zhang, Yanguang Li and Ruhua Chen
Buildings 2025, 15(9), 1510; https://doi.org/10.3390/buildings15091510 - 30 Apr 2025
Viewed by 298
Abstract
Utilizing supplementary cementitious materials is an effective way to fabricate low-carbon cement-based materials. In this paper, the composite mortars with good properties were prepared by mixing them with basic oxygen furnace slag (BOFS), Bayer red mud (BRM), and phosphogypsum (PG). The influences of [...] Read more.
Utilizing supplementary cementitious materials is an effective way to fabricate low-carbon cement-based materials. In this paper, the composite mortars with good properties were prepared by mixing them with basic oxygen furnace slag (BOFS), Bayer red mud (BRM), and phosphogypsum (PG). The influences of the replacement amounts of BRM and PG on the mechanical properties, hydration characteristic, chloride corrosion resistance, and microstructure of the materials were investigated. The results showed that simply adding 10 wt% BRM slightly modified the properties of the composite mortars. With the increase in PG, the mechanical strength and corrosion resistance coefficient KC of the mortars first increased and then decreased, in contrast to the chloride migration coefficient DRCM and electric flux Q. Among the samples, sample S3, with 6 wt% BRM and 4 wt% PG, had the best properties, a flexural strength of 6.6 MPa, and a compressive strength of 43.5 MPa at a curing age of 28 d. And the values of DRCM and Q of the sample, respectively, decreased by 44.06% and 22.83% compared with the control sample, along with the value of KC corroded after 120 d increasing by 16.33%. The microstructure analysis indicated that the alkali activation of BRM promoted the generation of lamellar portlandite and reticular and granular C-S-H gel. The free aluminum in BRM could dissolve into C-S-H gel to induce the generation of C-A-S-H gel. Furthermore, the generated amount of ettringite increased by adding PG. The aforementioned improvement in mechanical properties is primarily attributed to BRM promoting the hydration of the composite mortars and inducing the transformation of the C-S-H gel into C-A-S-H gel, and PG promoting the generation of ettringite. Moreover, the filling effects of BRM and PG decreased the porosity and number of harmful pores. It increased the compactness of the microstructure to endow the composite mortars with excellent chloride corrosion resistance. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

28 pages, 1939 KiB  
Article
Durable Mortar Mixes Using 50% of Activated Volcanic Ash as A Binder
by Andrés Játiva, Andreu Corominas and Miren Etxeberria
Materials 2025, 18(8), 1777; https://doi.org/10.3390/ma18081777 - 13 Apr 2025
Viewed by 515
Abstract
Volcanic ash (VA) is an abundant resource in many world regions that can be used as a supplementary cementitious material (SCM). However, its low reactivity limits its applications as a replacement for Portland cement. In this study, the improvement of its reactivity was [...] Read more.
Volcanic ash (VA) is an abundant resource in many world regions that can be used as a supplementary cementitious material (SCM). However, its low reactivity limits its applications as a replacement for Portland cement. In this study, the improvement of its reactivity was evaluated through the calcination of VA (CVA) at 700 °C, alkali activation with Na2SiO3, CaCl2, and Na2CO3, as well as its combination with other SCMs (lime, fly ash, and blast-furnace slags). Additionally, the effect of curing was analysed under different regimes: standard moist curing and heat curing. The use of alkaline activators, especially 2% Na2SiO3 and 1% CaCl2, along with thermal curing (70 °C for 3 days) in mortars containing 50% VA, resulted in compressive strengths at 28 days, significantly higher than those obtained for mortars with non-activated VA or those cured under moist conditions. Furthermore, the addition of 10% fly ash (FA) and 5% slag (EC) to the mortars also led to the largest improvements in compressive strength. In addition, mortars cured at 70 °C exhibited lower shrinkage and improved resistance to acid attacks, particularly in those manufactured with CVA and 1% CaCl2. This study concludes that it is possible to optimise the design of mortars with 50% VA in replacement of ordinary cement based on activation and curing methods. These methods improve early-age strength, reduce shrinkage and water absorption, and enhance acid resistance. Full article
Show Figures

Figure 1

19 pages, 16344 KiB  
Article
Evaluation of the Efficiency of Alkali-Activated Material Consisting of Rice Husk Ash by Physical and Mechanical Characteristics
by Seunghyun Na and Wenyang Zhang
Constr. Mater. 2025, 5(2), 21; https://doi.org/10.3390/constrmater5020021 - 1 Apr 2025
Viewed by 839
Abstract
Reducing the large amounts of carbon dioxide emitted during cement processing is crucial to control the adverse effects of greenhouse gases. This study provides a promising alternative technology to reduce such carbon dioxide emissions and investigate physical and mechanical characteristics of alkali-activated materials [...] Read more.
Reducing the large amounts of carbon dioxide emitted during cement processing is crucial to control the adverse effects of greenhouse gases. This study provides a promising alternative technology to reduce such carbon dioxide emissions and investigate physical and mechanical characteristics of alkali-activated materials with rice husk ash (RHA). To this end, compressive strength, drying shrinkage, and water penetration resistance of mortar made with RHA, blast furnace slag (BFS), and alkaline activator (sodium carbonate, NC) are investigated. Two RHA particle sizes of 45 and 150 µm types are used, thereby varying the RHA replacement ratio of 0, 7.5, 15.0 wt.%. Based on adiabatic hydration temperature, Archimedes porosity, pH, ignition loss, scanning electron microscopy, and energy-dispersive X-ray spectroscopy and X-ray diffraction results of paste, the effect of RHA on mechanical characteristics is examined. Experimental investigation reveals that compressive strengths of mortar sample made with the RHA replacement ratio of 15 wt.% to BFS were recorded between 48 and 51 MPa. When the RHA replacement ratio of 15 wt.% 150 µm was used, the length change was 1147 × 10−6 and the moisture penetration depth was less than 11 mm. Notably, water penetration resistance significantly improves with increasing RHA content; however, at high replacement ratios, the particle-size effect is not prominent. Furthermore, increasing the RHA replacement ratio decreases the porosity but increases the ignition loss and produces C-S-H gel. Full article
Show Figures

Figure 1

27 pages, 2338 KiB  
Review
Strengthening of Masonry and Concrete Members with Textile-Reinforced Alkali-Activated Mortars: A Review on the Mechanical Performance
by Paraskevi D. Askouni, Panagiotis Kapsalis, Catherine G. Papanicolaou and Thanasis C. Triantafillou
Materials 2025, 18(7), 1517; https://doi.org/10.3390/ma18071517 - 28 Mar 2025
Viewed by 516
Abstract
Textile-reinforced alkali-activated mortar (TRAAM) is a composite material that is characterized by a strain- or deflection-hardening response under tension or flexure, respectively, as well as by a good bond with concrete and masonry substrates. Owing to comparable or even superior mechanical performance compared [...] Read more.
Textile-reinforced alkali-activated mortar (TRAAM) is a composite material that is characterized by a strain- or deflection-hardening response under tension or flexure, respectively, as well as by a good bond with concrete and masonry substrates. Owing to comparable or even superior mechanical performance compared to “conventional” cement- or lime-based textile-reinforced mortar (TRM) systems and its potentially eco-friendly energy and environmental performance, TRAAM has been incorporated to retrofitting schemes. The current article reviews the studies that investigate TRAAM as a strengthening overlay for masonry and concrete members. This article focuses on the mechanical performance of the strengthened members, which, where possible, is also compared with that of members strengthened with conventional TRM systems. It is concluded that TRAAM can enhance the flexural and shear capacity of masonry and concrete members, while it can also upgrade the compression strength and seismic response of concrete members. In addition, it is concluded that the effectiveness of TRAAM can be comparable with that of “conventional” TRM systems. The combination of TRAAM with thermal insulation boards has also been proposed for structural and energy upgrading of masonry walls. Furthermore, TRAAM can be a promising solution for increasing the fire resistance of strengthened masonry members. However, research on the long-term performance of TRAAM, including durability, creep, and shrinkage, is still limited. Finally, the lack of established standards for TRM retrofitting is more evident for TRAAM applications. Full article
Show Figures

Figure 1

14 pages, 5032 KiB  
Article
Optimization Using Central Composite Design of the Response Surface Methodology for the Compressive Strength of Alkali-Activated Material from Rice Husk Ash
by Seunghyun Na, Wenyang Zhang, Mai Kitagawa, Atsushi Hirooka and Masaya Komatsu
Constr. Mater. 2025, 5(1), 5; https://doi.org/10.3390/constrmater5010005 - 22 Jan 2025
Cited by 1 | Viewed by 1367
Abstract
Alkali-activated materials are promising alternatives to cement. This study investigated the effects of the silica content, particle size, and replacement ratio of rice husk ash (RHA) on the compressive strength and the optimization of these parameters. Seventeen mixtures with different materials were tested [...] Read more.
Alkali-activated materials are promising alternatives to cement. This study investigated the effects of the silica content, particle size, and replacement ratio of rice husk ash (RHA) on the compressive strength and the optimization of these parameters. Seventeen mixtures with different materials were tested to evaluate their compressive strengths. Three levels of particle size, silica content, and RHA replacement ratio were used. The effects of RHA characteristics on the compressive strength were investigated based on Archimedes porosity, pH, ignition loss, and X-ray diffraction. The experimental results reveal that the replacement ratio of RHA was p-values < 0.002, which affected the compressive strength compared with the particle size (p-values < 0.450) and silica content of the RHA (p-values < 0.017). It was confirmed that the optimum values of particle size, silica content, and replacement ratio of RHA were 50 µm, 90%, and 15 wt.%, respectively. After re-testing, the compressive strength of mortar made with the optimum values was 49.8 MPa. This increase in compressive strength was also found to be closely related to the porosity, pH, and ignition loss of the paste. It was confirmed that the replacement ratio of RHA increased with decreasing porosity and pH and increasing ignition loss, which was related to the formation of calcite and C-S-H. Full article
Show Figures

Figure 1

13 pages, 3555 KiB  
Article
Optimizing Construction Spoil Reactivity for Cementitious Applications: Effects of Thermal Treatment and Alkaline Activation
by Kai Wang and Xiaoxiong Zha
Buildings 2024, 14(9), 2954; https://doi.org/10.3390/buildings14092954 - 19 Sep 2024
Viewed by 1084
Abstract
Construction spoil (CS), a prevalent type of construction and demolition waste, is characterized by high production volumes and substantial stockpiles. It contaminates water, soil, and air, and it can also trigger natural disasters such as landslides and debris flows. With the advent of [...] Read more.
Construction spoil (CS), a prevalent type of construction and demolition waste, is characterized by high production volumes and substantial stockpiles. It contaminates water, soil, and air, and it can also trigger natural disasters such as landslides and debris flows. With the advent of alkali activation technology, utilizing CS as a precursor for alkali-activated materials (AAMs) or supplementary cementitious materials (SCMs) presents a novel approach for managing this waste. Currently, the low reactivity of CS remains a significant constraint to its high-value-added resource utilization in the field of construction materials. Researchers have attempted various methods to enhance its reactivity, including grinding, calcination, and the addition of fluxing agents. However, there is no consensus on the optimal calcination temperature and alkali concentration, which significantly limits the large-scale application of CS. This study investigates the effects of the calcination temperature and alkali concentration on the mechanical properties of CS–cement mortar specimens and the ion dissolution performance of CS in alkali solutions. Mortar strength tests and ICP ion dissolution tests are conducted to quantitatively assess the reactivity of CS. The results indicate that, compared to uncalcined CS, the ion dissolution performance of calcined CS is significantly enhanced. The dissolution amounts of active aluminum, silicon, and calcium are increased by up to 420.06%, 195.81%, and 256.00%, respectively. The optimal calcination temperature for CS is determined to be 750 °C, and the most suitable alkali concentration is found to be 6 M. Furthermore, since the Al O bond is weaker and more easily broken than the Si O bond, the dissolution amount and release rate of active aluminum components in calcined CS are substantially higher than those of active silicon components. This finding indicates significant limitations in using CS solely as a precursor, emphasizing that an adequate supply of silicon and calcium sources is essential when preparing CS-dominated AAMs. Full article
Show Figures

Figure 1

Back to TopTop