Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = algal nanotechnology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
64 pages, 5373 KiB  
Review
Harmful Algal Blooms in Eutrophic Marine Environments: Causes, Monitoring, and Treatment
by Jiaxin Lan, Pengfei Liu, Xi Hu and Shanshan Zhu
Water 2024, 16(17), 2525; https://doi.org/10.3390/w16172525 - 5 Sep 2024
Cited by 55 | Viewed by 18212
Abstract
Marine eutrophication, primarily driven by nutrient over input from agricultural runoff, wastewater discharge, and atmospheric deposition, leads to harmful algal blooms (HABs) that pose a severe threat to marine ecosystems. This review explores the causes, monitoring methods, and control strategies for eutrophication in [...] Read more.
Marine eutrophication, primarily driven by nutrient over input from agricultural runoff, wastewater discharge, and atmospheric deposition, leads to harmful algal blooms (HABs) that pose a severe threat to marine ecosystems. This review explores the causes, monitoring methods, and control strategies for eutrophication in marine environments. Monitoring techniques include remote sensing, automated in situ sensors, modeling, forecasting, and metagenomics. Remote sensing provides large-scale temporal and spatial data, while automated sensors offer real-time, high-resolution monitoring. Modeling and forecasting use historical data and environmental variables to predict blooms, and metagenomics provides insights into microbial community dynamics. Control treatments encompass physical, chemical, and biological treatments, as well as advanced technologies like nanotechnology, electrocoagulation, and ultrasonic treatment. Physical treatments, such as aeration and mixing, are effective but costly and energy-intensive. Chemical treatments, including phosphorus precipitation, quickly reduce nutrient levels but may have ecological side effects. Biological treatments, like biomanipulation and bioaugmentation, are sustainable but require careful management of ecological interactions. Advanced technologies offer innovative solutions with varying costs and sustainability profiles. Comparing these methods highlights the trade-offs between efficacy, cost, and environmental impact, emphasizing the need for integrated approaches tailored to specific conditions. This review underscores the importance of combining monitoring and control strategies to mitigate the adverse effects of eutrophication on marine ecosystems. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

24 pages, 2396 KiB  
Review
Review of Harmful Algal Blooms (HABs) Causing Marine Fish Kills: Toxicity and Mitigation
by Jae-Wook Oh, Suraj Shiv Charan Pushparaj, Manikandan Muthu and Judy Gopal
Plants 2023, 12(23), 3936; https://doi.org/10.3390/plants12233936 - 22 Nov 2023
Cited by 32 | Viewed by 8842
Abstract
Extensive growth of microscopic algae and cyanobacteria results in harmful algal blooms (HABs) in marine, brackish, and freshwater environments. HABs can harm humans and animals through their toxicity or by producing ecological conditions such as oxygen depletion, which can kill fish and other [...] Read more.
Extensive growth of microscopic algae and cyanobacteria results in harmful algal blooms (HABs) in marine, brackish, and freshwater environments. HABs can harm humans and animals through their toxicity or by producing ecological conditions such as oxygen depletion, which can kill fish and other economically or ecologically important organisms. This review summarizes the reports on various HABs that are able to bring about marine fish kills. The predominant HABs, their toxins, and their effects on fishes spread across various parts of the globe are discussed. The mechanism of HAB-driven fish kills is discussed based on the available reports, and existing mitigation methods are presented. Lapses in the large-scale implementation of mitigation methods demonstrated under laboratory conditions are projected. Clay-related technologies and nano-sorption-based nanotechnologies, although proven to make significant contributions, have not been put to use in real-world conditions. The gaps in the technology transfer of the accomplished mitigation prototypes are highlighted. Further uses of remote sensing and machine learning state-of-the-art techniques for the detection and identification of HABs are recommended. Full article
(This article belongs to the Special Issue Bioactive Compounds from Marine Plants and Related Sources)
Show Figures

Figure 1

21 pages, 2406 KiB  
Review
Application of Nanomaterials in the Production of Biomolecules in Microalgae: A Review
by Xiaolong Yuan, Xiang Gao, Chang Liu, Wensheng Liang, Huidan Xue, Zhengke Li and Haojie Jin
Mar. Drugs 2023, 21(11), 594; https://doi.org/10.3390/md21110594 - 16 Nov 2023
Cited by 15 | Viewed by 4348
Abstract
Nanomaterials (NMs) are becoming more commonly used in microalgal biotechnology to empower the production of algal biomass and valuable metabolites, such as lipids, proteins, and exopolysaccharides. It provides an effective and promising supplement to the existing algal biotechnology. In this review, the potential [...] Read more.
Nanomaterials (NMs) are becoming more commonly used in microalgal biotechnology to empower the production of algal biomass and valuable metabolites, such as lipids, proteins, and exopolysaccharides. It provides an effective and promising supplement to the existing algal biotechnology. In this review, the potential for NMs to enhance microalgal growth by improving photosynthetic utilization efficiency and removing reactive oxygen species is first summarized. Then, their positive roles in accumulation, bioactivity modification, and extraction of valuable microalgal metabolites are presented. After the application of NMs in microalgae cultivation, the extracted metabolites, particularly exopolysaccharides, contain trace amounts of NM residues, and thus, the impact of these residues on the functional properties of the metabolites is also evaluated. Finally, the methods for removing NM residues from the extracted metabolites are summarized. This review provides insights into the application of nanotechnology for sustainable production of valuable metabolites in microalgae and will contribute useful information for ongoing and future practice. Full article
(This article belongs to the Special Issue Characterization of Bioactive Components in Edible Algae 3rd Edition)
Show Figures

Figure 1

17 pages, 1796 KiB  
Review
Algal Nanoparticles and Their Antibacterial Activity: Current Research Status and Future Prospectives
by Maheswari Behera, Prateek Ranjan Behera, Prajna Paramita Bhuyan, Lakshmi Singh and Biswajita Pradhan
Drugs Drug Candidates 2023, 2(3), 554-570; https://doi.org/10.3390/ddc2030029 - 6 Jul 2023
Cited by 16 | Viewed by 5098
Abstract
Green nanotechnology is a promising technology that has a wide range of applications in pharmaceuticals today because they offer a higher surface-area-to-volume ratio. Algal-based nanoparticles (NPs) are the subject of intense research interest today for their potential to treat and prevent infections caused [...] Read more.
Green nanotechnology is a promising technology that has a wide range of applications in pharmaceuticals today because they offer a higher surface-area-to-volume ratio. Algal-based nanoparticles (NPs) are the subject of intense research interest today for their potential to treat and prevent infections caused by infectious microorganisms that are antibiotic resistant. Algae contain a variety of therapeutically potential bioactive ingredients, including chlorophyll, phycobilin, phenolics, flavonoids, glucosides, tannins, and saponins. As a result, NPs made from algae could be used as therapeutic antimicrobials. Due to their higher surface-area-to-volume ratios compared to their macroscopic components, metallic nanoparticles are more reactive and have toxic effects on their therapy. For pharmaceutical and biomedical applications, green synthesis restricts the use of physical and chemical methods of metallic nanoparticle synthesis, and it can be carried out in an environmentally friendly and relatively low-cost manner. The majority of macroalgae and some microalgae have latent antimicrobial activity and are used in the synthesis of metallic nanoparticles. A potential application in the field of nanomedicine and the establishment of a potential pharmacophore against microorganisms may result from the synthesis of algal-based NPs. Only a few studies have been done on the potential antimicrobial, antifungal, and antibacterial activity of algae-based NPs. As a result, the study will concentrate on the environmentally friendly synthesis of various NPs and their therapeutic potential, with a focus on their antibacterial activity. Thus, the aim of this study is to review all the literature available on the synthesis and characterization of the algal nanoparticles and their potential application as an antibacterial agent. Full article
(This article belongs to the Section Drug Candidates from Natural Sources)
Show Figures

Figure 1

25 pages, 14244 KiB  
Article
Applying Silver Nanoparticles to Enhance Metabolite Accumulation and Biodiesel Production in New Algal Resources
by Maria Hasnain, Neelma Munir, Zainul Abideen, Daniel Anthony Dias, Farheen Aslam and Roberto Mancinelli
Agriculture 2023, 13(1), 73; https://doi.org/10.3390/agriculture13010073 - 26 Dec 2022
Cited by 24 | Viewed by 3887
Abstract
Biofuel generation from algae can be increased by using nanotechnology. The present study emphasizes the use of silver nanoparticles on algae for algal fuel generation along with the impact of nanoparticles on biomass, metabolites and lipid profile. Silver ion amassing was enhanced in [...] Read more.
Biofuel generation from algae can be increased by using nanotechnology. The present study emphasizes the use of silver nanoparticles on algae for algal fuel generation along with the impact of nanoparticles on biomass, metabolites and lipid profile. Silver ion amassing was enhanced in each algal species, but maximum phytoremediation was found in Ulothrix sp. Carbohydrates increased 3.2 times in Oedogonium sp., 3.3 times in Ulothrix sp., 3 times in Cladophora sp. and 2.7 times in Spirogyra sp. Additionally, the application of nanoparticles enhanced by 2 times the production of proteins in Oedogonium sp., 1.9 times in Ulothrix sp., 1.9 times in Cladophora sp. and 2.1 times in Spirogyra sp. Finally, the total lipid yield increased 60% DCW in Oedogonium sp., 56% DCW in Ulothrix sp., 58% DCW in Cladophora sp. and 63% DCW in Spirogyra sp. using 0.08 mg/L silver nanoparticle application. The lipids and fatty acid fractions from algae containing high concentrations of C16:0, C18:0 and C18:1 enhanced with silver nanoparticle addition were comparable with EN 14214 and ASTM 6751 biodiesel standards. This study indicates that the uptake of AgNPs can enhance the production of fatty acids and be commercialized as sustainable biodiesel. The algae Ulothrix sp. is evidenced as the best competent feedstock for biofuel production. Full article
Show Figures

Figure 1

18 pages, 1467 KiB  
Article
Application of Algal Nanotechnology for Leather Wastewater Treatment and Heavy Metal Removal Efficiency
by Sheza Ayaz Khilji, Neelma Munir, Irfan Aziz, Bareera Anwar, Maria Hasnain, Ali Murad Jakhar, Zahoor A. Sajid, Zainul Abideen, Muhammad Iftikhar Hussain, Abeer A. El-Habeeb and Hsi-Hsien Yang
Sustainability 2022, 14(21), 13940; https://doi.org/10.3390/su142113940 - 26 Oct 2022
Cited by 33 | Viewed by 4724
Abstract
Wastewater from tanneries may ruin agricultural fields by polluting them with trace metals. The synthesis of nanoparticles (NPs) from algal sources and their application could help in decreasing hazardous materials, for environmental safety. The potential of zinc oxide nanoparticles made from Oedogonium sp. [...] Read more.
Wastewater from tanneries may ruin agricultural fields by polluting them with trace metals. The synthesis of nanoparticles (NPs) from algal sources and their application could help in decreasing hazardous materials, for environmental safety. The potential of zinc oxide nanoparticles made from Oedogonium sp. was evaluated for removal of heavy metals from leather industrial wastewater. Synthesized algal nanoparticles (0 (control), 0.1, 0.5, and 1 mg) were applied to treat wastewater by using different concentrations of leather industrial effluents (0%, 5%, 10%, 15%, and 100%) for 15, 30, and 45 d. The wastewater collected was dark brown to black in color with very high pH (8.21), EC (23.08 μs/cm), and TDS, (11.54 mg/L), while the chloride content was 6750 mg/L. The values of biological oxygen demand (BOD) and chemical oxygen demand (COD) ranged between 420 mg/L and 1123 mg/L in the current study. Prior to the application of nanoparticles, Cr (310.1), Cd (210.5), and Pb (75.5 mg/L) contents were higher in the leather effluents. The removal efficiency of TDS, chlorides, Cr, Cd, and Pb was improved by 46.5%, 43.5%, 54%, 57.6%, and 59.3%, respectively, following treatment with 1 mg of nanoparticles after 45 d. Our results suggested that the green synthesis of ZnO nanoparticles is a useful and ecofriendly biotechnological tool for treating tannery effluents, before they are discharged into water bodies, thus making the soil environment clean. Full article
Show Figures

Figure 1

27 pages, 1711 KiB  
Review
Algal-Mediated Nanoparticles, Phycochar, and Biofertilizers for Mitigating Abiotic Stresses in Plants: A Review
by Zainul Abideen, Huma Waqif, Neelma Munir, Ali El-Keblawy, Maria Hasnain, Emanuele Radicetti, Roberto Mancinelli, Brent L. Nielsen and Ghulam Haider
Agronomy 2022, 12(8), 1788; https://doi.org/10.3390/agronomy12081788 - 29 Jul 2022
Cited by 53 | Viewed by 8943
Abstract
The excessive use of agrochemicals to ensure food security under the conditions of a growing population, global climate change, weather extremes, droughts, wasteful use of freshwater resources, and land degradation has created severe challenges for sustainable crop production. Since the frequent and abrupt [...] Read more.
The excessive use of agrochemicals to ensure food security under the conditions of a growing population, global climate change, weather extremes, droughts, wasteful use of freshwater resources, and land degradation has created severe challenges for sustainable crop production. Since the frequent and abrupt environmental changes are outcompeting the existing agricultural technologies of crop production systems to meet food security, the development and use of modern technologies and nature-based solutions are urgently needed. Nanotechnology has shown potential for revolutionizing agri-production and agri-business in terms of nanofertilizers and nanoparticles for crop protection. Furthermore, in the recent past, biochar has been identified as a negative emission technology for carbon sequestration and soil fertility improvement. However, supply chain issues for biochar, due to feedstock availability, challenges its worldwide use and acceptability. Meanwhile progress in algae research has indicated that, algae can be utilized for various agro-ecosystem services. Algae are considered an efficient biological species for producing biomass and phytochemicals because of their high photosynthetic efficiency and growth rate compared to terrestrial plants. In this context, various options for using algae as a nature-based solution have been investigated in this review; for instance, the possibilities of producing bulk algal biomass and algal-based biofertilizers and their role in nutrient availability and abiotic stress resistance in plants. The potential of algae for biochar production (hereafter “phycochar” because of algal feedstock), its elemental composition, and role in bioremediation is discussed. The potential role of agal nanoparticles’ in mitigating abiotic stress in crop plants was thoroughly investigated. This review has effectively investigated the existing literature and improved our understanding that, algae-based agro-solutions have huge potential for mitigating abiotic stresses and improving overall agricultural sustainability. However, a few challenges, such as microalgae production on a large scale and the green synthesis of nanoparticle methodologies, still need further mechanistic investigation. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

2 pages, 206 KiB  
Abstract
Green Nanotechnology for the Remediation of Cyanotoxins from Contaminated Waters
by Jesús M. González-Jartín, Amparo Alfonso, Rebeca Alvariño, Inés Rodríguez-Cañás, Mercedes R. Vieytes, Yolanda Piñeiro, Lisandra de Castro, Manuel González, Jose Rivas and Luis M. Botana
Biol. Life Sci. Forum 2022, 14(1), 12; https://doi.org/10.3390/blsf2022014012 - 19 Jul 2022
Viewed by 1123
Abstract
The presence of contaminants in water may involve a risk to human and animal health. Conventional water treatment methods such as coagulation, flocculation, and sedimentation are ineffective for cyanotoxin removal. In addition, high amounts of cyanotoxins can be released during those processes if [...] Read more.
The presence of contaminants in water may involve a risk to human and animal health. Conventional water treatment methods such as coagulation, flocculation, and sedimentation are ineffective for cyanotoxin removal. In addition, high amounts of cyanotoxins can be released during those processes if cells lyse. Thus, new mitigation strategies must be developed to ameliorate the consequences of harmful algal blooms. In this sense, nanotechnology has become a promising tool for the treatment of contaminated water. Several nanomaterials with specific chemical affinities can be combined into hybrid structures, leading to nanostructured agents with a large surface area and with the ability to absorb different contaminants. In addition, these structures can include magnetite, which enables separation from the detoxified substance by magnetic extraction, which is considered a green technique. This approach has been successfully applied to the removal of dyes, endocrine disruptors, and heavy metal ions. Recently, we have described the use of carbon nanoparticles to remove around 60% of microcystins from contaminated solutions, but with a low efficiency in the adsorption of anatoxin-a and cylindrospermopsin. In this work, a new set of biocompatible magnetic nanocomposites were tested using artificially contaminated water. The toxin content in solutions was determined before and after treatment by ultra-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS). With these new nanocomposites, cyanotoxin elimination was highly improved, reaching toxin removal rates of up 80%. Therefore, the implementation of the nanotechnology in water treatment could be a promising approach to reduce the presence of natural toxins in the water. Full article
22 pages, 13389 KiB  
Review
Green and Cost-Effective Synthesis of Metallic Nanoparticles by Algae: Safe Methods for Translational Medicine
by Bushra Uzair, Ayesha Liaqat, Haroon Iqbal, Bouzid Menaa, Anam Razzaq, Gobika Thiripuranathar, Nosheen Fatima Rana and Farid Menaa
Bioengineering 2020, 7(4), 129; https://doi.org/10.3390/bioengineering7040129 - 16 Oct 2020
Cited by 177 | Viewed by 13000
Abstract
Metal nanoparticles (NPs) have received much attention for potential applications in medicine (mainly in oncology, radiology and infectiology), due to their intriguing chemical, electronical, catalytical, and optical properties such as surface plasmon resonance (SPR) effect. They also offer ease in controlled synthesis and [...] Read more.
Metal nanoparticles (NPs) have received much attention for potential applications in medicine (mainly in oncology, radiology and infectiology), due to their intriguing chemical, electronical, catalytical, and optical properties such as surface plasmon resonance (SPR) effect. They also offer ease in controlled synthesis and surface modification (e.g., tailored properties conferred by capping/protecting agents including N-, P-, COOH-, SH-containing molecules and polymers such as thiol, disulfide, ammonium, amine, and multidentate carboxylate), which allows (i) tuning their size and shape (e.g., star-shaped and/or branched) (ii) improving their stability, monodispersity, chemical miscibility, and activity, (iii) avoiding their aggregation and oxidation over time, (iv) increasing their yield and purity. The bottom-up approach, where the metal ions are reduced in the NPs grown in the presence of capping ligands, has been widely used compared to the top-down approach. Besides the physical and chemical synthesis methods, the biological method is gaining much consideration. Indeed, several drawbacks have been reported for the synthesis of NPs via physical (e.g., irradiation, ultrasonication) and chemical (e.g., electrochemisty, reduction by chemicals such as trisodium citrate or ascorbic acid) methods (e.g., cost, and/ortoxicity due to use of hazardous solvents, low production rate, use of huge amount of energy). However, (organic or inorganic) eco-friendly NPs synthesis exhibits a sustainable, safe, and economical solution. Thereby, a relatively new trend for fast and valuable NPs synthesis from (live or dead) algae (i.e., microalgae, macroalgae and cyanobacteria) has been observed, especially because of its massive presence on the Earth’s crust and their unique properties (e.g., capacity to accumulate and reduce metallic ions, fast propagation). This article discusses the algal-mediated synthesis methods (either intracellularly or extracellularly) of inorganic NPs with special emphasis on the noblest metals, i.e., silver (Ag)- and gold (Au)-derived NPs. The key factors (e.g., pH, temperature, reaction time) that affect their biosynthesis process, stability, size, and shape are highlighted. Eventually, underlying molecular mechanisms, nanotoxicity and examples of major biomedical applications of these algal-derived NPs are presented. Full article
Show Figures

Figure 1

23 pages, 4732 KiB  
Review
Two-Dimensional Layered Nanomaterial-Based Electrochemical Biosensors for Detecting Microbial Toxins
by Zhuheng Li, Xiaotong Li, Minghong Jian, Girma Selale Geleta and Zhenxin Wang
Toxins 2020, 12(1), 20; https://doi.org/10.3390/toxins12010020 - 31 Dec 2019
Cited by 41 | Viewed by 6376
Abstract
Toxin detection is an important issue in numerous fields, such as agriculture/food safety, environmental monitoring, and homeland security. During the past two decades, nanotechnology has been extensively used to develop various biosensors for achieving fast, sensitive, selective and on-site analysis of toxins. In [...] Read more.
Toxin detection is an important issue in numerous fields, such as agriculture/food safety, environmental monitoring, and homeland security. During the past two decades, nanotechnology has been extensively used to develop various biosensors for achieving fast, sensitive, selective and on-site analysis of toxins. In particular, the two dimensional layered (2D) nanomaterials (such as graphene and transition metal dichalcogenides (TMDs)) and their nanocomposites have been employed as label and/or biosensing transducers to construct electrochemical biosensors for cost-effective detection of toxins with high sensitivity and specificity. This is because the 2D nanomaterials have good electrical conductivity and a large surface area with plenty of active groups for conjugating 2D nanomaterials with the antibodies and/or aptamers of the targeted toxins. Herein, we summarize recent developments in the application of 2D nanomaterial-based electrochemical biosensors for detecting toxins with a particular focus on microbial toxins including bacterial toxins, fungal toxins and algal toxins. The integration of 2D nanomaterials with some existing antibody/aptamer technologies into electrochemical biosensors has led to an unprecedented impact on improving the assaying performance of microbial toxins, and has shown great promise in public health and environmental protection. Full article
Show Figures

Figure 1

13 pages, 3365 KiB  
Article
Virucidal Activity of Gold Nanoparticles Synthesized by Green Chemistry Using Garlic Extract
by Mayra A. Meléndez-Villanueva, Karla Morán-Santibañez, Juan J. Martínez-Sanmiguel, Raúl Rangel-López, Marco A. Garza-Navarro, Cristina Rodríguez-Padilla, Diana G. Zarate-Triviño and Laura M. Trejo-Ávila
Viruses 2019, 11(12), 1111; https://doi.org/10.3390/v11121111 - 30 Nov 2019
Cited by 140 | Viewed by 9570
Abstract
Measles virus (MeV) is a paramyxovirus that infects humans, principally children. Despite the existence of an effective and safe vaccine, the number of cases of measles has increased due to lack of vaccination coverage. The World Health Organization (WHO) reports that the number [...] Read more.
Measles virus (MeV) is a paramyxovirus that infects humans, principally children. Despite the existence of an effective and safe vaccine, the number of cases of measles has increased due to lack of vaccination coverage. The World Health Organization (WHO) reports that the number of cases worldwide multiplied fourfold between January and March 2019, to 112,000. Today, there is no treatment available for MeV. In recent years, it has been demonstrated that natural extracts (herbal or algal) with antiviral activity can also work as reducing agents that, in combination with nanotechnology, offer an innovative option to counteract viral infections. Here, we synthetized and evaluated the antiviral activity of gold nanoparticles using garlic extract (Allium sativa) as a reducing agent (AuNPs-As). These nanoparticles actively inhibited MeV replication in Vero cells at a 50% effective concentration (EC50) of 8.829 µg/mL, and the selectivity index (SI) obtained was 16.05. AuNPs-As likely inhibit viral infection by blocking viral particles directly, showing a potent virucidal effect. Gold nanoparticles may be useful as a promising strategy for treating and controlling the infection of MeV and other related enveloped viruses. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Graphical abstract

15 pages, 1023 KiB  
Review
Effects of Nanoparticles on Algae: Adsorption, Distribution, Ecotoxicity and Fate
by Feng Wang, Wen Guan, Ling Xu, Zhongyang Ding, Haile Ma, Anzhou Ma and Norman Terry
Appl. Sci. 2019, 9(8), 1534; https://doi.org/10.3390/app9081534 - 12 Apr 2019
Cited by 126 | Viewed by 10215
Abstract
With the rapid development of nanotechnology and widespread use of nanoproducts, the ecotoxicity of nanoparticles (NPs) and their potential hazards to the environment have aroused great concern. Nanoparticles have increasingly been released into aquatic environments through various means, accumulating in aquatic organisms through [...] Read more.
With the rapid development of nanotechnology and widespread use of nanoproducts, the ecotoxicity of nanoparticles (NPs) and their potential hazards to the environment have aroused great concern. Nanoparticles have increasingly been released into aquatic environments through various means, accumulating in aquatic organisms through food chains and leading to toxic effects on aquatic organisms. Nanoparticles are mainly classified into nano-metal, nano-oxide, carbon nanomaterials and quantum dots according to their components. Different NPs may have different levels of toxicity and effects on various aquatic organisms. In this paper, algae are used as model organisms to review the adsorption and distribution of NPs to algal cells, as well as the ecotoxicity of NPs on algae and fate in a water environment, systematically. Meanwhile, the toxic effects of NPs on algae are discussed with emphasis on three aspect effects on the cell membrane, cell metabolism and the photosynthesis system. Furthermore, suggestions and prospects are provided for future studies in this area. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

9 pages, 1084 KiB  
Article
Biofouling Prevention of Ancient Brick Surfaces by TiO2-Based Nano-Coatings
by Lorenzo Graziani and Marco D'Orazio
Coatings 2015, 5(3), 357-365; https://doi.org/10.3390/coatings5030357 - 28 Jul 2015
Cited by 21 | Viewed by 6874
Abstract
Brick constitutes a significant part of the construction materials used in historic buildings around the world. This material was used in Architectural Heritage for structural scope, and even for building envelopes. Thus, components made of clay brick were subjected to weathering for a [...] Read more.
Brick constitutes a significant part of the construction materials used in historic buildings around the world. This material was used in Architectural Heritage for structural scope, and even for building envelopes. Thus, components made of clay brick were subjected to weathering for a long time, and this causes their deterioration. One of the most important causes for deterioration is biodeterioration caused by algae and cyanobacteria. It compromises the aesthetical properties, and, at a later stage, the integrity of the elements. In fact, traditional products used for the remediation/prevention of biofouling do not ensure long-term protection, and they need re-application over time. The use of nanotechnology, especially the use of photocatalytic products for the prevention of organic contamination of building façades is increasing. In this study, TiO2-based photocatalytic nano-coatings were applied to ancient brick, and its efficiency towards biofouling was studied. A composed suspension of algae and cyanobacteria was sprinkled on the bricks’ surface for a duration of twelve weeks. Digital Image Analysis and colorimetric measurements were carried out to evaluate algal growth on specimens’ surfaces. Results show that photocatalytic nano-coating was able to inhibit biofouling on bricks’ surfaces. In addition, substrata (their porosity and roughness) clearly influences the adhesion of algal cells. Full article
Show Figures

Figure 1

37 pages, 809 KiB  
Review
Diatom Milking: A Review and New Approaches
by Vandana Vinayak, Kalina M. Manoylov, Hélène Gateau, Vincent Blanckaert, Josiane Hérault, Gaëlle Pencréac'h, Justine Marchand, Richard Gordon and Benoît Schoefs
Mar. Drugs 2015, 13(5), 2629-2665; https://doi.org/10.3390/md13052629 - 29 Apr 2015
Cited by 111 | Viewed by 14129 | Correction
Abstract
The rise of human populations and the growth of cities contribute to the depletion of natural resources, increase their cost, and create potential climatic changes. To overcome difficulties in supplying populations and reducing the resource cost, a search for alternative pharmaceutical, nanotechnology, and [...] Read more.
The rise of human populations and the growth of cities contribute to the depletion of natural resources, increase their cost, and create potential climatic changes. To overcome difficulties in supplying populations and reducing the resource cost, a search for alternative pharmaceutical, nanotechnology, and energy sources has begun. Among the alternative sources, microalgae are the most promising because they use carbon dioxide (CO2) to produce biomass and/or valuable compounds. Once produced, the biomass is ordinarily harvested and processed (downstream program). Drying, grinding, and extraction steps are destructive to the microalgal biomass that then needs to be renewed. The extraction and purification processes generate organic wastes and require substantial energy inputs. Altogether, it is urgent to develop alternative downstream processes. Among the possibilities, milking invokes the concept that the extraction should not kill the algal cells. Therefore, it does not require growing the algae anew. In this review, we discuss research on milking of diatoms. The main themes are (a) development of alternative methods to extract and harvest high added value compounds; (b) design of photobioreactors; (c) biodiversity and (d) stress physiology, illustrated with original results dealing with oleaginous diatoms. Full article
Show Figures

Graphical abstract

Back to TopTop