Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,781)

Search Parameters:
Keywords = air protection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 19279 KiB  
Article
Smart Hydroponic Cultivation System for Lettuce (Lactuca sativa L.) Growth Under Different Nutrient Solution Concentrations in a Controlled Environment
by Raul Herrera-Arroyo, Juan Martínez-Nolasco, Enrique Botello-Álvarez, Víctor Sámano-Ortega, Coral Martínez-Nolasco and Cristal Moreno-Aguilera
Appl. Syst. Innov. 2025, 8(4), 110; https://doi.org/10.3390/asi8040110 - 7 Aug 2025
Abstract
The inclusion of the Internet of Things (IoT) in indoor agricultural systems has become a fundamental tool for improving cultivation systems by providing key information for decision-making in pursuit of better performance. This article presents the design and implementation of an IoT-based agricultural [...] Read more.
The inclusion of the Internet of Things (IoT) in indoor agricultural systems has become a fundamental tool for improving cultivation systems by providing key information for decision-making in pursuit of better performance. This article presents the design and implementation of an IoT-based agricultural system installed in a plant growth chamber for hydroponic cultivation under controlled conditions. The growth chamber is equipped with sensors for air temperature, relative humidity (RH), carbon dioxide (CO2) and photosynthetically active photon flux, as well as control mechanisms such as humidifiers, full-spectrum Light Emitting Diode (LED) lamps, mini split air conditioner, pumps, a Wi-Fi surveillance camera, remote monitoring via a web application and three Nutrient Film Technique (NFT) hydroponic systems with a capacity of ten plants each. An ATmega2560 microcontroller manages the smart system using the MODBUS RS-485 communication protocol. To validate the proper functionality of the proposed system, a case study was conducted using lettuce crops, in which the impact of different nutrient solution concentrations (50%, 75% and 100%) on the phenotypic development and nutritional content of the plants was evaluated. The results obtained from the cultivation experiment, analyzed through analysis of variance (ANOVA), show that the treatment with 75% nutrient concentration provides an appropriate balance between resource use and nutritional quality, without affecting the chlorophyll content. This system represents a scalable and replicable alternative for protected agriculture. Full article
(This article belongs to the Special Issue Smart Sensors and Devices: Recent Advances and Applications Volume II)
Show Figures

Figure 1

7 pages, 337 KiB  
Proceeding Paper
Exposure to PM2.5 While Walking in the City Center
by Anna Mainka, Witold Nocoń, Aleksandra Malinowska, Julia Pfajfer, Edyta Komisarczyk and Pawel Wargocki
Environ. Earth Sci. Proc. 2025, 34(1), 2; https://doi.org/10.3390/eesp2025034002 - 6 Aug 2025
Abstract
This study investigates personal exposure to fine particulate matter (PM2.5) during walking commutes in Gliwice, Poland—a city characterized by elevated levels of air pollution. Data from a low-cost air quality sensor were compared with a municipal monitoring station and the Silesian [...] Read more.
This study investigates personal exposure to fine particulate matter (PM2.5) during walking commutes in Gliwice, Poland—a city characterized by elevated levels of air pollution. Data from a low-cost air quality sensor were compared with a municipal monitoring station and the Silesian University of Technology laboratory. PM2.5 concentrations recorded by the low-cost sensor (7.3 µg/m3) were lower than those reported by the stationary monitoring sites. The findings suggest that low-cost sensors may offer valuable insights into short-term peaks in PM2.5 exposure to serve as a practical tool for increasing public awareness of personal exposure risks to protect respiratory health. Full article
Show Figures

Figure 1

16 pages, 370 KiB  
Article
Mysticism and Sovereignty: From Katechontic to Mystical Political Theology
by Vassilios Paipais and Theo Poward
Religions 2025, 16(8), 1012; https://doi.org/10.3390/rel16081012 - 5 Aug 2025
Viewed by 21
Abstract
This paper juxtaposes the katechontic political theology of modern sovereignty that sacrifices life in the name of its protection with a paradigm of mystical sovereignty whose purpose is to serve the power of life. Reclaiming the power and politicality not only of theology [...] Read more.
This paper juxtaposes the katechontic political theology of modern sovereignty that sacrifices life in the name of its protection with a paradigm of mystical sovereignty whose purpose is to serve the power of life. Reclaiming the power and politicality not only of theology but also of an overlooked and denigrated discourse, such as mysticism, serves two purposes: it restores the true content of mystery and elucidates the political dimension of theology. Mysticism has been either unduly dismissed in secular modernity as obscurantist, or its meaning has been abused by modern sovereignty for the purpose of investing power with an air of transcendent legitimacy. The proper restoration of the meaning of mysticism may eventually help us reconstruct an alternative conception of sovereignty, one that inverses the attributes Schmitt associates with sovereign power: mastery, supreme potency, legitimate exercise of arbitrary violence. Such an alternative conception of sovereignty, as vulnerability, sacrifice, service, and potent powerlessness may then enable us to appreciate the resources mystical theology can contribute to rethinking the nature of the political and the political nature of theology. Full article
(This article belongs to the Special Issue Divine and Secular Sovereignty: Interpretations)
9 pages, 281 KiB  
Article
Decolourisation of a Mixture of Dyes from Different Classes Using a Bioreactor with Immobilised Pleurotus ostreatus Mycelium
by Wioletta Przystaś
Water 2025, 17(15), 2314; https://doi.org/10.3390/w17152314 - 4 Aug 2025
Viewed by 131
Abstract
Dyes are widely used in various industries, but their removal from wastewater remains a challenge due to their resistance to biodegradation. While substantial research exists regarding the removal of individual dyes, there is much less about the removal of their mixtures. The aim [...] Read more.
Dyes are widely used in various industries, but their removal from wastewater remains a challenge due to their resistance to biodegradation. While substantial research exists regarding the removal of individual dyes, there is much less about the removal of their mixtures. The aim of the research was to determine the possibility of using the immobilised mycelium of Pleurotus ostreatus strains to remove three-component mixtures of dyes from different classes. Efficiency of the removal in the continuously aerated reactor was similar to that obtained in a periodically aerated reactor and was over 90% at the end of each cycle. Despite the addition of subsequent portions of dyes, no increase in the toxicity of post-process samples was observed, and even a decrease in zootoxicity was noticed. The results of the study therefore indicate that an immobilised biomass can be used to remove the dyes, without the need to constantly inject air into the reactor. Full article
Show Figures

Graphical abstract

16 pages, 24404 KiB  
Article
Oxidation of HfB2-HfO2-SiC Ceramics Modified with Ti2AlC Under Subsonic Dissociated Airflow
by Elizaveta P. Simonenko, Aleksey V. Chaplygin, Nikolay P. Simonenko, Ilya V. Lukomskii, Semen S. Galkin, Anton S. Lysenkov, Ilya A. Nagornov, Artem S. Mokrushin, Tatiana L. Simonenko, Anatoly F. Kolesnikov and Nikolay T. Kuznetsov
Corros. Mater. Degrad. 2025, 6(3), 35; https://doi.org/10.3390/cmd6030035 - 1 Aug 2025
Viewed by 187
Abstract
Ultrahigh-temperature ceramic composites based on hafnium diboride have a wide range of applications, including as components for high-speed aircraft and energy generation and storage devices. Consequently, developing methodologies for their fabrication and studying their properties are of paramount importance, in particular in using [...] Read more.
Ultrahigh-temperature ceramic composites based on hafnium diboride have a wide range of applications, including as components for high-speed aircraft and energy generation and storage devices. Consequently, developing methodologies for their fabrication and studying their properties are of paramount importance, in particular in using them as an electrode material for energy storage devices with increased oxidation resistance. This study investigates the behavior of ceramic composites based on the HfB2-HfO2-SiC system, obtained using 15 vol% Ti2AlC MAX-phase as a sintering component, under the influence of subsonic flow of dissociated air. It was determined that incorporating the modifying component (Ti2AlC) altered the composition of the silicate melt formed on the surface during ceramic oxidation. This modification led to the observation of a protective antioxidant function. Consequently, liquation was observed in the silicate melt layer, resulting in the formation of spherical phase inhomogeneities in its volume with increased content of titanium, aluminum, and hafnium. It is hypothesized that the increase in the high-temperature viscosity of this melt prevents it from being carried away in the form of drops, even at a surface temperature of ~1900–2000 °C. Despite the established temperature, there is no sharp increase in its values above 2400–2500 °C. This is due to the evaporation of silicate melt from the surface. In addition, the electrochemical behavior of the obtained material in a liquid electrolyte medium (KOH, 3 mol/L) was examined, and it was shown that according to the value of electrical conductivity and specific capacitance, it is a promising electrode material for supercapacitors. Full article
Show Figures

Figure 1

19 pages, 950 KiB  
Article
How the Adoption of EVs in Developing Countries Can Be Effective: Indonesia’s Case
by Ida Nyoman Basmantra, Ngurah Keshawa Satya Santiarsa, Regina Dinanti Widodo and Caren Angellina Mimaki
World Electr. Veh. J. 2025, 16(8), 428; https://doi.org/10.3390/wevj16080428 - 1 Aug 2025
Viewed by 213
Abstract
Indonesia’s worsening air pollution and traffic emissions have thrust electric vehicles (EVs) into the spotlight, but what really drives Indonesians to make the switch? This study integrates Protection Motivation Theory with green branding and policy frameworks to explain electric vehicle (EV) adoption in [...] Read more.
Indonesia’s worsening air pollution and traffic emissions have thrust electric vehicles (EVs) into the spotlight, but what really drives Indonesians to make the switch? This study integrates Protection Motivation Theory with green branding and policy frameworks to explain electric vehicle (EV) adoption in Indonesia. Using a nationwide survey (n = 986) and partial-least-squares structural-equation modeling, we test how environmental awareness, consumer expectancy, threat appraisal, and coping appraisal shape adoption both directly and through green brand image (GBI), while perceived policy incentives moderate the GBI–adoption link. The model accounts for 54% of the variance in adoption intention. These findings highlight that combining public awareness campaigns, compelling green brand messaging, and carefully calibrated policy incentives is essential for accelerating Indonesia’s transition to cleaner transport. Full article
Show Figures

Figure 1

17 pages, 4098 KiB  
Article
The Influence of the Annealing Process on the Mechanical Properties of Chromium Nitride Thin Films
by Elena Chițanu, Iulian Iordache, Mirela Maria Codescu, Virgil Emanuel Marinescu, Gabriela Beatrice Sbârcea, Delia Pătroi, Leila Zevri and Alexandra Cristiana Nadolu
Materials 2025, 18(15), 3605; https://doi.org/10.3390/ma18153605 - 31 Jul 2025
Viewed by 204
Abstract
In recent years, significant attention has been directed toward the development of coating materials capable of tailoring surface properties for various functional applications. Transition metal nitrides, in particular, have garnered interest due to their superior physical and chemical properties, including high hardness, excellent [...] Read more.
In recent years, significant attention has been directed toward the development of coating materials capable of tailoring surface properties for various functional applications. Transition metal nitrides, in particular, have garnered interest due to their superior physical and chemical properties, including high hardness, excellent wear resistance, and strong corrosion resistance. In this study, a fabrication process for CrN-based thin films was developed by combining reactive direct current magnetron sputtering (dcMS) with post-deposition annealing in air. CrN coatings were deposited by reactive dcMS using different argon-nitrogen (Ar:N2) gas ratios (4:1, 3:1, 2:1, and 1:1), followed by annealing at 550 °C for 1.5 h in ambient air. XRD and EDS analysis revealed that this treatment results in the formation of a composite phase comprising CrN and Cr2O3. The resulting coating exhibited favorable mechanical and tribological properties, including a maximum hardness of 12 GPa, a low wear coefficient of 0.254 and a specific wear rate of 7.05 × 10−6 mm3/N·m, making it a strong candidate for advanced protective coating applications. Full article
Show Figures

Figure 1

23 pages, 1447 KiB  
Article
Heat Risk Perception and Vulnerability in Puerto Rico: Insights for Climate Adaptation in the Caribbean
by Brenda Guzman-Colon, Zack Guido, Claudia P. Amaya-Ardila, Laura T. Cabrera-Rivera and Pablo A. Méndez-Lázaro
Int. J. Environ. Res. Public Health 2025, 22(8), 1197; https://doi.org/10.3390/ijerph22081197 - 31 Jul 2025
Viewed by 236
Abstract
Extreme heat poses growing health risks in tropical regions, yet public perception of this threat remains understudied in the Caribbean. This study examines how residents in Puerto Rico perceived heat-related health risks and how these perceptions relate to vulnerability and protective behaviors during [...] Read more.
Extreme heat poses growing health risks in tropical regions, yet public perception of this threat remains understudied in the Caribbean. This study examines how residents in Puerto Rico perceived heat-related health risks and how these perceptions relate to vulnerability and protective behaviors during the extreme heat events of the summer of 2020. We conducted a cross-sectional telephone survey of 500 adults across metropolitan and non-metropolitan areas of Puerto Rico, using stratified probability sampling. The questionnaire assessed heat risk perception, sociodemographic characteristics, health status, prior heat exposure, and heat-related behaviors. While most participants expressed concern about climate change and high temperatures, fewer than half perceived heat as a high level of personal health risk. Higher levels of risk perception were significantly associated with being male, aged 50–64, unemployed, and in fair health, having multiple chronic conditions, and prior experience with heat-related symptoms. Those with symptoms were nearly five times more likely to report high levels of risk perception (OR = 4.94, 95% CI: 2.93–8.34). In contrast, older adults (65+), despite their higher level of vulnerability, reported lower levels of risk perception and fewer symptoms. Nighttime heat exposure was widespread and strongly associated with heat-related symptoms. Common coping strategies included the use of fans and air conditioning, though economic constraints and infrastructure instability limited access. The findings highlight the disparity between actual and perceived vulnerability, particularly among older adults. Public health strategies should focus on risk communication tailored to vulnerable groups and address barriers to heat adaptation. Strengthening heat resilience in Puerto Rico requires improved infrastructure, equitable access to cooling, and targeted outreach. Full article
Show Figures

Figure 1

15 pages, 9440 KiB  
Proceeding Paper
Mold Flow Analysis and Method of Injection Molding Technology of Safety Belt Outlet Cover
by Hao Jia, Yang Yang, Yi Li, Chengsi Shu and Jie You
Eng. Proc. 2025, 98(1), 42; https://doi.org/10.3390/engproc2025098042 - 30 Jul 2025
Viewed by 167
Abstract
We have improved the efficiency of the protection of occupants of cars by effectively reducing the injury and mortality rate caused by accidents when using safety belts. To ensure the protection efficiency of the safety belt outlet cover, we tested and adjusted the [...] Read more.
We have improved the efficiency of the protection of occupants of cars by effectively reducing the injury and mortality rate caused by accidents when using safety belts. To ensure the protection efficiency of the safety belt outlet cover, we tested and adjusted the following parameters: the filling time, flow-front temperature and switching pressure, injection position pressure, locking force, shear rate, shear force, air hole, melting mark, material flow freezing-layer factor, volume shrinkage rate during jacking out, coolant temperature and flow rate in the cooling stage, part temperature, mold temperature difference, deflection stage, warping deformation analysis, differential cooling, differential shrinkage, and directional effect. Full article
Show Figures

Figure 1

13 pages, 2414 KiB  
Article
In Silico Characterization of Molecular Interactions of Aviation-Derived Pollutants with Human Proteins: Implications for Occupational and Public Health
by Chitra Narayanan and Yevgen Nazarenko
Atmosphere 2025, 16(8), 919; https://doi.org/10.3390/atmos16080919 - 29 Jul 2025
Viewed by 298
Abstract
Combustion of aviation jet fuel emits a complex mixture of pollutants linked to adverse health outcomes among airport personnel and nearby communities. While epidemiological studies showed the detrimental effects of aviation-derived air pollutants on human health, the molecular mechanisms of the interactions of [...] Read more.
Combustion of aviation jet fuel emits a complex mixture of pollutants linked to adverse health outcomes among airport personnel and nearby communities. While epidemiological studies showed the detrimental effects of aviation-derived air pollutants on human health, the molecular mechanisms of the interactions of these pollutants with cellular biomolecules like proteins that drive the adverse health effects remain poorly understood. In this study, we performed molecular docking simulations of 272 pollutant–protein complexes using AutoDock Vina 1.2.7 to characterize the binding strength of the pollutants with the selected proteins. We selected 34 aviation-derived pollutants that constitute three chemical categories of pollutants: volatile organic compounds (VOCs), polyaromatic hydrocarbons (PAHs), and organophosphate esters (OPEs). Each pollutant was docked to eight proteins that play critical roles in endocrine, metabolic, transport, and neurophysiological functions, where functional disruption is implicated in disease. The effect of binding of multiple pollutants was analyzed. Our results indicate that aliphatic and monoaromatic VOCs display low (<6 kcal/mol) binding affinities while PAHs and organophosphate esters exhibit strong (>7 kcal/mol) binding affinities. Furthermore, the binding strength of PAHs exhibits a positive correlation with the increasing number of aromatic rings in the pollutants, ranging from nearly 7 kcal/mol for two aromatic rings to more than 15 kcal/mol for five aromatic rings. Analysis of intermolecular interactions showed that these interactions are predominantly stabilized by hydrophobic, pi-stacking, and hydrogen bonding interactions. Simultaneous docking of multiple pollutants revealed the increased binding strength of the resulting complexes, highlighting the detrimental effect of exposure to pollutant mixtures found in ambient air near airports. We provide a priority list of pollutants that regulatory authorities can use to further develop targeted mitigation strategies to protect the vulnerable personnel and communities near airports. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Figure 1

16 pages, 2460 KiB  
Article
Continuous Chamber Gangue Storage for Sustainable Mining in Coal Mines: Principles, Methods, and Environmental Benefits
by Jinhai Liu, Yuanhang Wang, Jiajie Li, Desire Ntokoma, Zhengxing Yu, Sitao Zhu and Michael Hitch
Sustainability 2025, 17(15), 6865; https://doi.org/10.3390/su17156865 - 28 Jul 2025
Viewed by 277
Abstract
Coal gangue, a major by-product of coal mining, poses significant environmental challenges due to its large-scale accumulation, land occupation, and potential for air and water pollution. This manuscript presents a comprehensive overview of continuous chamber gangue storage technology as a sustainable mining solution [...] Read more.
Coal gangue, a major by-product of coal mining, poses significant environmental challenges due to its large-scale accumulation, land occupation, and potential for air and water pollution. This manuscript presents a comprehensive overview of continuous chamber gangue storage technology as a sustainable mining solution for coal mines. The principles of this approach emphasize minimizing disturbance to overlying strata, enabling uninterrupted mining operations, and reducing both production costs and environmental risks. By storing the surface or underground gangue in continuous chambers, the proposed method ensures the roof stability, maximizes the waste storage, and prevents the interaction between mining and waste management processes. Detailed storage sequences and excavation methods are discussed, including continuous and jump-back excavation strategies tailored to varying roof conditions. The process flows for both underground and ground-based chamber storage are described, highlighting the integration of gangue crushing, paste preparation, and pipeline transport for efficient underground storage. In a case study with annual storage of 500,000 t gangue, the annual economic benefit reached CNY 1,111,425,000. This technology not only addresses the urgent need for sustainable coal gangue management, but also aligns with the goals of resource conservation, ecological protection, and the advancement of green mining practices in the coal industry. Full article
Show Figures

Figure 1

13 pages, 5115 KiB  
Article
Study the Effect of Heat Treatment on the Corrosion Resistance of AISI 347H Stainless Steel
by Yunyan Peng, Bo Zhao, Jianhua Yang, Fan Bai, Hongchang Qian, Bingxiao Shi and Luntao Wang
Materials 2025, 18(15), 3486; https://doi.org/10.3390/ma18153486 - 25 Jul 2025
Viewed by 249
Abstract
AISI 347H stainless steel is widely used in high-temperature environments due to its excellent creep strength and oxidation resistance; however, its corrosion performance remains highly sensitive to thermal oxidation, and the effects of thermal history on its passive film stability are not yet [...] Read more.
AISI 347H stainless steel is widely used in high-temperature environments due to its excellent creep strength and oxidation resistance; however, its corrosion performance remains highly sensitive to thermal oxidation, and the effects of thermal history on its passive film stability are not yet fully understood. This study addresses this knowledge gap by systematically investigating the influence of solution treatment on the corrosion and oxidation resistance of AISI 347H stainless steel. The specimens were subjected to solution heat treatment at 1050 °C, followed by air cooling, and then evaluated through electrochemical testing, high-temperature oxidation experiments at 550 °C, and multiscale surface characterization techniques. The solution treatment refined the austenitic microstructure by dissolving coarse Nb-rich precipitates, as confirmed by SEM and EBSD, and improved passive film integrity. The stabilizing effect of Nb also played a critical role in suppressing sensitization, thereby enhancing resistance to intergranular attack. Electrochemical measurements and EIS analysis revealed a lower corrosion current density and higher charge transfer resistance in the treated samples, indicating enhanced passivation behavior. ToF-SIMS depth profiling and oxide thickness analysis confirmed a slower parabolic oxide growth rate and reduced oxidation rate constant in the solution-treated condition. At 550 °C, oxidation was suppressed by the formation of compact, Cr-rich scales with dual-distributed Nb oxides, effectively limiting diffusion pathways and stabilizing the protective layer. These findings demonstrate that solution treatment is an effective strategy to improve the long-term corrosion and oxidation performance of AISI 347H stainless steel in harsh service environments. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

23 pages, 6081 KiB  
Article
A New Methodological Approach to the Reachability Analysis of Aerodynamic Interceptors
by Tuğba Bayoğlu Akalın, Gökcan Akalın and Ali Türker Kutay
Aerospace 2025, 12(8), 657; https://doi.org/10.3390/aerospace12080657 - 24 Jul 2025
Viewed by 258
Abstract
Advanced air defense methods are essential to address the growing complexity of aerial threats. The increasing number of targets necessitates better defensive coordination, and a promising strategy involves the use of interceptors together to protect a specific area. This task fundamentally depends on [...] Read more.
Advanced air defense methods are essential to address the growing complexity of aerial threats. The increasing number of targets necessitates better defensive coordination, and a promising strategy involves the use of interceptors together to protect a specific area. This task fundamentally depends on accurately predicting their kinematic envelopes, or reachable sets. This paper presents a novel approach to determine the boundaries of reachable sets for aerodynamic interceptors, accounting for energy loss from drag, energy gain from thrust, variable acceleration limits, and autopilot dynamics. The devised numerical method approximates reachable sets for nonlinear problems using a constrained model predictive programming concept. Results demonstrate that explicitly accounting for input constraints, such as acceleration limits, significantly impacts the shape and area of the reachable boundaries. Furthermore, a sensitivity analysis was conducted to demonstrate the impact of parameter variations on the reachable set. Revealing the reachable set’s sensitivity to variations in thrust and drag coefficients, this analysis serves as a framework for considering parameter uncertainty and enables the evaluation of these effects prior to embedding the reachability boundaries into an offline database for guidance applications. The resulting boundaries, representing minimum and maximum ranges for various initial parameters, can be stored offline, allowing interceptors to estimate their own or allied platforms’ kinematic capabilities for cooperative strategies. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

18 pages, 2943 KiB  
Article
Urban Precipitation Scavenging and Meteorological Influences on BTEX Concentrations: Implications for Environmental Quality
by Kristina Kalkan, Vitaly Efremov, Dragan Milošević, Mirjana Vukosavljev, Nikolina Novakov, Kristina Habschied, Kresimir Mastanjević and Brankica Kartalović
Chemosensors 2025, 13(8), 274; https://doi.org/10.3390/chemosensors13080274 - 24 Jul 2025
Viewed by 358
Abstract
This study provides an assessment of BTEX compounds—benzene, toluene, ethylbenzene, and xylene isomers—in urban precipitation collected in the city of Novi Sad, Republic of Serbia, during autumn and winter 2024, analyzed by gas chromatography-mass spectrometry (GC-MS). By combining chemical analysis with meteorological observations [...] Read more.
This study provides an assessment of BTEX compounds—benzene, toluene, ethylbenzene, and xylene isomers—in urban precipitation collected in the city of Novi Sad, Republic of Serbia, during autumn and winter 2024, analyzed by gas chromatography-mass spectrometry (GC-MS). By combining chemical analysis with meteorological observations and HYSPLIT backward trajectory modeling, the study considers the mechanisms of BTEX removal from the atmosphere via wet scavenging and highlights the role of local weather conditions and long-range atmospheric transport in pollutant concentrations. During the early observation period (September to late November), average concentrations were 0.45 µg/L benzene, 3.45 µg/L ethylbenzene, 4.0 µg/L p-xylene, 2.31 µg/L o-xylene, and 1.32 µg/L toluene. These values sharply dropped to near-zero levels in December for benzene, ethylbenzene, and xylenes, while toluene persisted at 1.12 µg/L. A pronounced toluene spike exceeding 6 µg/L on 28 November was likely driven by transboundary air mass transport from Central Europe, as confirmed by trajectory modeling. The environmental risks posed by BTEX deposition, especially from toluene and xylenes, underline the need for regulatory frameworks to include precipitation as a pathway for pollutant deposition. It should be clarified that the identified risk primarily concerns aquatic organisms, due to the potential for BTEX infiltration into surface waters and subsequent ecotoxicological impacts. Incorporating such monitoring into EU policies can improve protection of air, water, and ecosystems. Full article
Show Figures

Figure 1

30 pages, 9606 KiB  
Article
A Visualized Analysis of Research Hotspots and Trends on the Ecological Impact of Volatile Organic Compounds
by Xuxu Guo, Qiurong Lei, Xingzhou Li, Jing Chen and Chuanjian Yi
Atmosphere 2025, 16(8), 900; https://doi.org/10.3390/atmos16080900 - 24 Jul 2025
Viewed by 389
Abstract
With the ongoing advancement of industrialization and rapid urbanization, the emission of volatile organic compounds (VOCs) has increased significantly. As key precursors of PM2.5 and ozone formation, VOCs pose a growing threat to the health of ecosystems. Due to their complex and [...] Read more.
With the ongoing advancement of industrialization and rapid urbanization, the emission of volatile organic compounds (VOCs) has increased significantly. As key precursors of PM2.5 and ozone formation, VOCs pose a growing threat to the health of ecosystems. Due to their complex and dynamic transformation processes across air, water, and soil media, the ecological risks associated with VOCs have attracted increasing attention from both the scientific community and policy-makers. This study systematically reviews the core literature on the ecological impacts of VOCs published between 2005 and 2024, based on data from the Web of Science and Google Scholar databases. Utilizing three bibliometric tools (CiteSpace, VOSviewer, and Bibliometrix), we conducted a comprehensive visual analysis, constructing knowledge maps from multiple perspectives, including research trends, international collaboration, keyword evolution, and author–institution co-occurrence networks. The results reveal a rapid growth in the ecological impact of VOCs (EIVOCs), with an average annual increase exceeding 11% since 2013. Key research themes include source apportionment of air pollutants, ecotoxicological effects, biological response mechanisms, and health risk assessment. China, the United States, and Germany have emerged as leading contributors in this field, with China showing a remarkable surge in research activity in recent years. Keyword co-occurrence and burst analyses highlight “air pollution”, “exposure”, “health”, and “source apportionment” as major research hotspots. However, challenges remain in areas such as ecosystem functional responses, the integration of multimedia pollution pathways, and interdisciplinary coordination mechanisms. There is an urgent need to enhance monitoring technology integration, develop robust ecological risk assessment frameworks, and improve predictive modeling capabilities under climate change scenarios. This study provides scientific insights and theoretical support for the development of future environmental protection policies and comprehensive VOCs management strategies. Full article
Show Figures

Figure 1

Back to TopTop