Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (241)

Search Parameters:
Keywords = air cooler

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3081 KiB  
Review
Surface Air-Cooled Oil Coolers (SACOCs) in Turbofan Engines: A Comprehensive Review of Design, Performance, and Optimization
by Wiktor Hoffmann and Magda Joachimiak
Energies 2025, 18(15), 4052; https://doi.org/10.3390/en18154052 - 30 Jul 2025
Viewed by 266
Abstract
Surface Air-Cooled Oil Coolers (SACOCs) can become a critical component in managing the increasing thermal loads of modern turbofan engines. Installed within the bypass duct, SACOCs utilize high-mass flow bypass air for convective heat rejection, reducing reliance on traditional Fuel-Oil Heat Exchangers. This [...] Read more.
Surface Air-Cooled Oil Coolers (SACOCs) can become a critical component in managing the increasing thermal loads of modern turbofan engines. Installed within the bypass duct, SACOCs utilize high-mass flow bypass air for convective heat rejection, reducing reliance on traditional Fuel-Oil Heat Exchangers. This review explores SACOC design principles, integration challenges, aerodynamic impacts, and performance trade-offs. Emphasis is placed on the balance between thermal efficiency and aerodynamic penalties such as pressure drop and flow distortion. Experimental techniques, including wind tunnel testing, are discussed alongside numerical methods, and Conjugate Heat Transfer modeling. Presented studies mostly demonstrate the impact of fin geometry and placement on both heat transfer and drag. Optimization strategies and Additive Manufacturing techniques are also covered. SACOCs are positioned to play a central role in future propulsion systems, especially in ultra-high bypass ratio and hybrid-electric architectures, where traditional cooling strategies are insufficient. This review highlights current advancements, identifies limitations, and outlines research directions to enhance SACOC efficiency in aerospace applications. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

16 pages, 3079 KiB  
Article
Optimized Solar-Powered Evaporative-Cooled UFAD System for Sustainable Thermal Comfort: A Case Study in Riyadh, KSA
by Mohamad Kanaan, Semaan Amine and Mohamed Hmadi
Thermo 2025, 5(3), 26; https://doi.org/10.3390/thermo5030026 - 30 Jul 2025
Viewed by 333
Abstract
Evaporative cooling (EC) offers an energy-efficient alternative to direct expansion (DX) cooling but suffers from high water consumption. This limitation can be mitigated by pre-cooling incoming fresh air using cooler exhaust air via energy recovery. This study presents and optimizes a solar-driven EC [...] Read more.
Evaporative cooling (EC) offers an energy-efficient alternative to direct expansion (DX) cooling but suffers from high water consumption. This limitation can be mitigated by pre-cooling incoming fresh air using cooler exhaust air via energy recovery. This study presents and optimizes a solar-driven EC system integrated with underfloor air distribution (UFAD) to enhance thermal comfort and minimize water use in a temporary office in Riyadh’s arid climate. A 3D CFD model was developed and validated against published data to simulate indoor airflow, providing data for thermal comfort evaluation using the predicted mean vote model in cases with and without energy recovery. A year-round hourly energy analysis revealed that the solar-driven EC-UFAD system reduces grid power consumption by 93.5% compared to DX-based UFAD under identical conditions. Energy recovery further cuts annual EC water usage by up to 31.3%. Operational costs decreased by 84% without recovery and 87% with recovery versus DX-UFAD. Full article
Show Figures

Figure 1

28 pages, 3635 KiB  
Article
Optimizing Energy Performance of Phase-Change Material-Enhanced Building Envelopes Through Novel Performance Indicators
by Abrar Ahmad and Shazim Ali Memon
Buildings 2025, 15(15), 2678; https://doi.org/10.3390/buildings15152678 - 29 Jul 2025
Viewed by 797
Abstract
Over recent decades, phase-change materials (PCMs) have gained prominence as latent-heat thermal energy storage systems in building envelopes because of their high energy density. However, only PCMs that complete a full daily charge–discharge cycle can deliver meaningful energy and carbon-emission savings. This simulation [...] Read more.
Over recent decades, phase-change materials (PCMs) have gained prominence as latent-heat thermal energy storage systems in building envelopes because of their high energy density. However, only PCMs that complete a full daily charge–discharge cycle can deliver meaningful energy and carbon-emission savings. This simulation study introduces a methodology that simultaneously optimizes PCM integration for storage efficiency, indoor thermal comfort, and energy savings. Two new indicators are proposed: overall storage efficiency (ECn), which consolidates heating and cooling-efficiency ratios into a single value, and the performance factor (PF), which quantifies the PCM’s effectiveness in maintaining thermal comfort. Using EnergyPlus v8.9 coupled with DesignBuilder, a residential ASHRAE 90.1 mid-rise apartment was modeled in six warm-temperate (Cfb) European cities for the summer period from June 1 to August 31. Four paraffin PCMs (RT-22/25/28/31 HC, 20 mm thickness) were tested under natural and controlled ventilation strategies, with windows opening 50% when outdoor air was at least 2 °C cooler than indoors. Simulation outputs were validated against experimental cubicle data, yielding a mean absolute indoor temperature error ≤ 4.5%, well within the ±5% tolerance commonly accepted for building thermal simulations. The optimum configuration—RT-25 HC with temperature-controlled ventilation—achieved PF = 1.0 (100% comfort compliance) in all six cities and delivered summer cooling-energy savings of up to 3376 kWh in Paris, the highest among the locations studied. Carbon-emission reductions reached 2254 kg CO2-e year−1, and static payback periods remained below the assumed 50-year building life at a per kg PCM cost of USD 1. The ECn–PF framework, therefore, provides a transparent basis for selecting cost-effective, energy-efficient, and low-carbon PCM solutions in warm-temperate buildings. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

19 pages, 2720 KiB  
Article
Application of Ice Slurry as a Phase Change Material in Mine Air Cooling System—A Case Study
by Łukasz Mika, Karol Sztekler and Ewelina Radomska
Energies 2025, 18(14), 3782; https://doi.org/10.3390/en18143782 - 17 Jul 2025
Viewed by 309
Abstract
Fossil fuels, including coal, are a basis of energy systems in many countries worldwide. However, coal mining is associated with several difficulties, which include high temperatures within the coal mining area. It causes a need for cooling for safety reasons and also for [...] Read more.
Fossil fuels, including coal, are a basis of energy systems in many countries worldwide. However, coal mining is associated with several difficulties, which include high temperatures within the coal mining area. It causes a need for cooling for safety reasons and also for the comfort of miners’ work. Typical cooling systems in mines are based on central systems, in which chilled water is generated in the compressor or absorption coolers on the ground and transported via pipelines to the air coolers in the areas of mining. The progressive mining operation causes a gradual increase in the distance between chilled water generators and air coolers, causing a decrease in the efficiency of the entire system and insufficient cooling capacity. As a result, it is necessary to increase the diameter of the chilled water pipelines and increase the cooling capacity of the chillers, which is associated with additional investment and technical problems. One solution to this problem may be the use of so-called ice slurry instead of chilled water in the existing mine cooling system. This article presents the cooling system, located in the mine LW Bogdanka S.A., based on ice slurry. The structure of the system and its key parameters are presented. The results show that switching from cooling water to ice slurry allowed the cooling capacity of the entire system to increase by 50% while maintaining the existing piping. This demonstrates the very high potential for the use of ice slurry, not only in mines, but wherever further increases in piping diameters to maintain the required cooling capacity are not possible or cost-effective. Full article
Show Figures

Figure 1

13 pages, 2415 KiB  
Article
Thermophysiological Comfort Assessment of a Skirt Made from Bio-Based Material Derived from Pineapple Leaves
by Marija Pešić, Ineta Nemeša, Danka Đurđić and Dijamanta Salihi
Materials 2025, 18(14), 3249; https://doi.org/10.3390/ma18143249 - 10 Jul 2025
Viewed by 238
Abstract
The purpose of this paper is to evaluate the thermophysiological comfort of pineapple bio-based nonwoven material as a sustainable alternative to natural leather and synthetic polymer-coated materials by analyzing both the objective parameters of the material and subjective user feedback by wearing a [...] Read more.
The purpose of this paper is to evaluate the thermophysiological comfort of pineapple bio-based nonwoven material as a sustainable alternative to natural leather and synthetic polymer-coated materials by analyzing both the objective parameters of the material and subjective user feedback by wearing a skirt made from the same material. Considering the increasing demand for sustainable materials alternatives, the study aims to determine whether this material can offer acceptable comfort during wear. The research included two commercially available pineapple, bio-based, nonwoven materials that differed in their finishing. Sample S1 contained 5% Bio-PU and 5% conventional PU, and sample S2 contained 10% conventional PU. Objective parameters such as thermal resistance (Rct), water vapor resistance (Ret) and air permeability were measured. For the subjective evaluation, ten female subjects wore the pineapple bio-based material skirts under controlled environmental conditions. Sample S1 showed lower Rct values and slightly lower Ret combined with higher air permeability, which correlated with better subjective comfort evaluation. Although both samples showed high Ret values (S1 = 60.57 Pa2/W; S2 = 84.80 m2K/W) indicating limited vapor transfer, sample S1 was perceived as more comfortable, which was effected by better air permeability (S1 = 11.3 mm/s; S2 = 2.65 mm/s). Overall, S1 is more suitable for indoor use and for a shorter wear duration, while S2 may be better for cooler outdoor environments. Full article
(This article belongs to the Special Issue Leather, Textiles and Bio-Based Materials)
Show Figures

Figure 1

12 pages, 1858 KiB  
Article
Botanical Studies Based on Textual Evidence in Eastern Asia and Its Implications for the Ancient Climate
by Haiming Liu, Huijia Song, Fei Duan and Liang Shen
Atmosphere 2025, 16(7), 824; https://doi.org/10.3390/atmos16070824 - 7 Jul 2025
Viewed by 217
Abstract
Understanding morphological descriptions of plants documented by ancient peoples over 1000 years ago and identifying the species they described are critical for reconstructing the natural geographic distribution of plant taxa, tracking taxonomic variations, and inferring historical climate dynamics. Analyzing shifts in plant communities [...] Read more.
Understanding morphological descriptions of plants documented by ancient peoples over 1000 years ago and identifying the species they described are critical for reconstructing the natural geographic distribution of plant taxa, tracking taxonomic variations, and inferring historical climate dynamics. Analyzing shifts in plant communities and climatic conditions during this period is essential to unravel the interplay among floristic composition, climate fluctuations, and anthropogenic impacts. However, research in this field remains limited, with greater emphasis placed on plant taxa from hundreds of millions of years ago. Investigations into flora and climate during the last two millennia are sparse, and pre-millennial climatic conditions remain poorly characterized. In this study, a historical text written 1475 years ago was analyzed to compile plant names and morphological features, followed by taxonomic identification. The research identified three gymnosperm species (one in Pinaceae, two in Cupressaceae), 1 Tamaricaceae species (dicotyledon), and 19 dicotyledon species. However, three plant groups could only be identified at the genus level. Using textual analysis and woody plant coexistence methods, the climate of 1475 years ago in western Henan Province, located in the middle-lower Yellow River basin in East Asia, was reconstructed. Results indicate that the mean temperature of the coldest month (MTCM) was approximately 1.3 °C higher than modern values. In comparison, the mean temperature of the warmest month (MTWM) and mean annual temperature (MAT) were lower than present-day levels. This suggests slightly cooler overall conditions with milder seasonal extremes in ancient Luoyang—a finding supported by contemporaneous studies. Furthermore, annual precipitation (AP), precipitation of the warmest quarter (PWQ), and precipitation of the coldest quarter (PCQ) in the Luoyang region 1475 years ago exceeded modern measurements, despite the area’s monsoonal climate. This suggests significantly higher atmospheric moisture content in ancient air masses compared to today. This study provides floristic and climatic baseline data for advancing our understanding of global climate variability at millennial scales. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

23 pages, 2593 KiB  
Article
Thermal Decoupling May Promote Cooling and Avoid Heat Stress in Alpine Plants
by Loreto V. Morales, Angela Sierra-Almeida, Catalina Sandoval-Urzúa and Mary T. K. Arroyo
Plants 2025, 14(13), 2023; https://doi.org/10.3390/plants14132023 - 2 Jul 2025
Viewed by 385
Abstract
In alpine ecosystems, where low temperatures predominate, prostrate growth forms play a crucial role in thermal resistance by enabling thermal decoupling from ambient conditions, thereby creating a warmer microclimate. However, this strategy may be maladaptive during frequent heatwaves driven by climate change. This [...] Read more.
In alpine ecosystems, where low temperatures predominate, prostrate growth forms play a crucial role in thermal resistance by enabling thermal decoupling from ambient conditions, thereby creating a warmer microclimate. However, this strategy may be maladaptive during frequent heatwaves driven by climate change. This study combined microclimatic and plant characterization, infrared thermal imaging, and leaf photoinactivation to evaluate how thermal decoupling (TD) affects heat resistance (LT50) in six alpine species from the Nevados de Chillán volcano complex in the Andes of south-central Chile. Results showed that plants’ temperatures increased with solar radiation, air, and soil temperatures, but decreased with increasing humidity. Most species exhibited negative TD, remaining 6.7 K cooler than the air temperature, with variation across species, time of day, and growth form; shorter, rounded plants showed stronger negative TD. Notably, despite negative TD, all species exhibited high heat resistance (Mean LT50 = 46 °C), with LT50 positively correlated with TD in shrubs. These findings highlight the intricate relationships between thermal decoupling, environmental factors, and plant traits in shaping heat resistance. This study provides insights into how alpine plants may respond to the increasing heat stress associated with climate change, emphasizing the adaptive significance of thermal decoupling in these environments. Full article
Show Figures

Figure 1

26 pages, 1934 KiB  
Article
Multi-Objective Optimization of Gas Storage Compressor Units Based on NSGA-II
by Lianbin Zhao, Lilin Fan, Jun Lu, Mingmin He, Su Qian, Qingsong Wei, Guijiu Wang, Haoze Bai, Hu Zhou, Yongshuai Liu and Cheng Chang
Energies 2025, 18(13), 3377; https://doi.org/10.3390/en18133377 - 27 Jun 2025
Viewed by 346
Abstract
This study addresses the parallel operation of multiple compressor units in the gas injection process of gas storage facilities. A multi-objective optimization model based on the NSGA-II algorithm is proposed to maximize gas injection volume while minimizing energy consumption. Thermodynamic models of compressors [...] Read more.
This study addresses the parallel operation of multiple compressor units in the gas injection process of gas storage facilities. A multi-objective optimization model based on the NSGA-II algorithm is proposed to maximize gas injection volume while minimizing energy consumption. Thermodynamic models of compressors and flow–heat transfer models of air coolers are established. The influence of key factors, including inlet and outlet pressures, temperatures, and natural gas composition, on compressor performance is analyzed using the control variable method. The results indicate that the first-stage inlet pressure has the most significant impact on gas throughput, and higher compression ratios lead to increased specific energy consumption. The NSGA-II algorithm is applied to optimize compressor start–stop strategies and air cooler speed matching under high, medium, and low compression ratio conditions. This study reveals that reducing the compression ratio significantly enhances the energy-saving potential. Under the investigated conditions, adjusting air cooler speed can achieve approximately 2% energy savings at high compression ratios, whereas at low compression ratios, the energy-saving potential reaches up to 8%. This research provides theoretical guidance and technical support for the efficient operation of gas storage compressor units. Full article
Show Figures

Figure 1

21 pages, 3571 KiB  
Article
An Experimental Study of Wind-Driven Ventilation with Double Skin Facade During Transition Seasons
by Guoqing He, Zhewen Fan, Yuan Meng, Linfeng Yao and Changqing Ye
Energies 2025, 18(13), 3249; https://doi.org/10.3390/en18133249 - 21 Jun 2025
Viewed by 354
Abstract
Double skin facade (DSF) is an energy-efficient solution for glazing facades. However, previous studies have reported inconsistent findings regarding thermal comfort in naturally ventilated DSF buildings. To examine this issue, this study evaluated airflow velocities in naturally ventilated DSF buildings during transition seasons [...] Read more.
Double skin facade (DSF) is an energy-efficient solution for glazing facades. However, previous studies have reported inconsistent findings regarding thermal comfort in naturally ventilated DSF buildings. To examine this issue, this study evaluated airflow velocities in naturally ventilated DSF buildings during transition seasons through a comparative study approach. A full-scale box-type DSF room and a traditional window-wall room were simultaneously monitored in a laboratory building under real climatic conditions, with indoor environmental parameters recorded for 10 days. Airflow sensation surveys complemented the physical measurements to evaluate perceived comfort. The results showed that the DSF room consistently exhibited lower air velocities (≤0.2 m/s) compared to the traditional room, demonstrating minimal response to wind conditions related to its small openings (opening ratio of 4.7%) and increased flow resistance from the dual-layer structure of the DSF. Under unfavorable wind conditions, the DSF room demonstrated higher ventilation rates due to the enhanced stack effect. However, this advantage had a negligible effect on the thermal comfort vote for the indoor temperature range (26 °C to 28 °C). These findings highlight the climate-dependent performance of DSFs: while advantageous for thermal comfort in cooler climates, they may lead to reduced thermal comfort in warm and hot climates due to low indoor airflow velocities. Future work could include the optimization of DSF opening configurations to enhance wind-driven ventilation while maintaining stack ventilation benefits. Full article
(This article belongs to the Special Issue Energy Efficiency and Energy Performance in Buildings—2nd Edition)
Show Figures

Figure 1

34 pages, 3830 KiB  
Article
Ecosystem Services Provided by an Urban Green Space in Timișoara (Romania): Linking Urban Vegetation with Air Quality and Cooling Effects
by Alia Wokan and Mădălina Iordache
Sustainability 2025, 17(12), 5564; https://doi.org/10.3390/su17125564 - 17 Jun 2025
Viewed by 421
Abstract
This study was conducted in an urban park in a temperate-continental city of Europe (Timișoara, Romania) and aimed to investigate the contribution of urban vegetation in maintaining air quality and mitigating the heat in the analyzed city. The following air parameters were monitored: [...] Read more.
This study was conducted in an urban park in a temperate-continental city of Europe (Timișoara, Romania) and aimed to investigate the contribution of urban vegetation in maintaining air quality and mitigating the heat in the analyzed city. The following air parameters were monitored: fine particulate matter PM2.5, coarse particulate matter PM10, AQI (Air Quality Index) (resulted from PM2.5 and PM10), particle number, air temperature, relative air humidity, TVOC (total volatile organic compounds), and HCHO (formaldehyde). The results of this study show that urban vegetation remains a reliable factor in reducing PM2.5 and PM10 in city air and in keeping the AQI within the limits corresponding to good air quality, but also that relative air humidity counteracts the contribution of vegetation in achieving this goal. Inside the park, the HCHO concentration increased by up to 4–5 times compared to the outside, and this increase was not caused by vehicle traffic but rather by the photochemical reactions generating HCHO. Regarding the cooling effect on air temperature, the studied green space did not exhibit this effect, as the air temperature inside it increased by up to 1–6 °C compared to the outside. Our results contrast with the general perception that urban parks and green spaces are cooler islands within the cities and draw attention to the fact that having a green space in a city does not necessarily mean achieving environmental goals, such as reducing the heat risk of cities. Based on the results, we consider that the main limitations in achieving these objectives were the park’s small size (88 hectares) and its morphology and architecture resulting from the integration of the species that compose it. It follows from these data that it is not enough for an urban green space to be established, but its design must be combined with urban morphology strategies if the heat mitigation effect is to be achieved and the cooling benefits are to be maximized in cities. Full article
Show Figures

Figure 1

22 pages, 6213 KiB  
Article
Mechanistic Insights into Ammonium Chloride Particle Deposition in Hydrogenation Air Coolers: Experimental and CFD-DEM Analysis
by Haoyu Yin, Haozhe Jin, Xiaofei Liu, Chao Wang, Wei Chen, Fengguan Chen, Shuangqing Xu and Shuangquan Li
Processes 2025, 13(6), 1816; https://doi.org/10.3390/pr13061816 - 8 Jun 2025
Cited by 1 | Viewed by 654
Abstract
The operational reliability of industrial cooling systems is critically compromised by the crystallization of ammonium chloride (NH4Cl) in the terminal sections of heat exchangers and at air-cooler inlets. This study systematically investigated the deposition characteristics of NH4Cl particles in [...] Read more.
The operational reliability of industrial cooling systems is critically compromised by the crystallization of ammonium chloride (NH4Cl) in the terminal sections of heat exchangers and at air-cooler inlets. This study systematically investigated the deposition characteristics of NH4Cl particles in hydrogenation air coolers, along with the factors influencing this process, using a combination of experimental analyses and CFD-DEM coupled simulations. Numerical simulations indicated that gas velocity is the primary factor that governs the NH4Cl deposition behavior, whereas the NH4Cl particle size significantly affects the deposition propensity. Under turbulent conditions, larger particles (>300 μm) exhibit a greater deposition tendency due to increased inertial effects. A power-law equation (R2 > 0.75) fitted to the experimental data effectively predicts the variations in the deposition rates across tube bundles. This study offers a theoretical foundation and predictive framework for optimizing anti-clogging design and maintenance strategies in industrial air coolers. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

24 pages, 9236 KiB  
Article
Evaluating the Thermohydraulic Performance of Microchannel Gas Coolers: A Machine Learning Approach
by Shehryar Ishaque, Naveed Ullah, Sanghun Choi and Man-Hoe Kim
Energies 2025, 18(12), 3007; https://doi.org/10.3390/en18123007 - 6 Jun 2025
Viewed by 370
Abstract
In this study, a numerical model of a microchannel gas cooler was developed using a segment-by-segment approach for thermohydraulic performance evaluation. State-of-the-art heat transfer and pressure drop correlations were used to determine the air and refrigerant side heat transfer coefficients and friction factors. [...] Read more.
In this study, a numerical model of a microchannel gas cooler was developed using a segment-by-segment approach for thermohydraulic performance evaluation. State-of-the-art heat transfer and pressure drop correlations were used to determine the air and refrigerant side heat transfer coefficients and friction factors. The developed model was validated against a wide range of experimental data and was found to accurately predict the gas cooler capacity (Q) and pressure drop (ΔP) within an acceptable margin of error. Furthermore, advanced machine learning algorithms such as extreme gradient boosting (XGB), random forest (RF), support vector regression (SVR), k-nearest neighbors (KNNs), and artificial neural networks (ANNs) were employed to analyze their predictive capability. Over 11,000 data points from the numerical model were used, with 80% of the data for training and 20% for testing. The evaluation metrics, such as the coefficient of determination (R2, 0.99841–0.99836) and mean squared error values (0.09918–0.10639), demonstrated high predictive efficacy and accuracy, with only slight variations among the models. All models accurately predict the Q, with the XGB and ANN models showing superior performance in ΔP prediction. Notably, the ANN model emerges as the most accurate method for refrigerant and air outlet temperatures predictions. These findings highlight the potential of machine learning as a robust tool for optimizing thermal system performance and guiding the design of energy-efficient heat exchange technologies. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

19 pages, 3892 KiB  
Article
Impact of Fengyun-4A Atmospheric Motion Vector Data Assimilation on PM2.5 Simulation
by Kaiqiang Gu, Jinyan Wang, Shixiang Su, Jiangtao Zhu, Yu Zhang, Feifan Bian and Yi Yang
Remote Sens. 2025, 17(11), 1952; https://doi.org/10.3390/rs17111952 - 5 Jun 2025
Viewed by 373
Abstract
PM2.5 pollution poses significant risks to human health and the environment, underscoring the importance of accurate PM2.5 simulation. This study simulated a representative PM2.5 pollution event using the Weather Research and Forecasting model coupled with chemistry (WRF-Chem), incorporating the assimilation [...] Read more.
PM2.5 pollution poses significant risks to human health and the environment, underscoring the importance of accurate PM2.5 simulation. This study simulated a representative PM2.5 pollution event using the Weather Research and Forecasting model coupled with chemistry (WRF-Chem), incorporating the assimilation of infrared atmospheric motion vector (AMV) data from the Fengyun-4A (FY-4A) satellite. A comprehensive analysis was conducted to examine the meteorological characteristics of the event and their influence on PM2.5 concentration simulations. The results demonstrate that the assimilation of FY-4A infrared AMV data significantly enhanced the simulation performance of meteorological variables, particularly improving the wind field and capturing local and small-scale wind variations. Moreover, PM2.5 concentrations simulated with AMV assimilation showed improved spatial and temporal agreement with ground-based observations, reducing the root mean square error (RMSE) by 8.2% and the mean bias (MB) by 15.2 µg/m3 relative to the control (CTL) experiment. In addition to regional improvements, the assimilation notably enhanced PM2.5 simulation accuracy in severely polluted cities, such as Tangshan and Tianjin. Mechanistic analysis revealed that low wind speeds and weak atmospheric divergence restricted pollutant dispersion, resulting in higher near-surface concentrations. This was exacerbated by cooler nighttime temperatures and a lower planetary boundary layer height (PBLH). These findings underscore the utility of assimilating satellite-derived wind products to enhance regional air quality modeling and forecasting accuracy. This study highlights the potential of FY-4A infrared AMV data in improving regional pollution simulations, offering scientific support for the application of next-generation Chinese geostationary satellite data in numerical air quality forecasting. Full article
Show Figures

Graphical abstract

26 pages, 2906 KiB  
Article
Street-Scale Urban Air Temperatures Predicted by Simple High-Resolution Cover- and Shade-Weighted Surface Temperature Mosaics in a Variety of Residential Neighborhoods
by Katarina Kubiniec, Kevan B. Moffett and Kyle Blount
Remote Sens. 2025, 17(11), 1932; https://doi.org/10.3390/rs17111932 - 3 Jun 2025
Viewed by 1135
Abstract
A simple statistical model capturing the degree to which different patterns of urban development intensify urban heat islands (UHIs) and stress human health would be useful but has remained elusive. Accurately predicting street-level urban air temperatures from land cover and thermal data is [...] Read more.
A simple statistical model capturing the degree to which different patterns of urban development intensify urban heat islands (UHIs) and stress human health would be useful but has remained elusive. Accurately predicting street-level urban air temperatures from land cover and thermal data is difficult due to (1) the coarse scale of common remote sensing data, which do not observe the key environments beneath urban tree canopies, and, (2) conversely, the immense labor of intense, location-specific, ground-based survey campaigns. This work tested whether remotely sensed urban heat merged with land cover heterogeneity and shade/sun fractions, if combined at a sufficiently fine scale so as to be linearly additive, would enable simple and accurate statistical modeling of street-scale urban air temperatures with minimal empirical fitting. We used ground-based thermography of a sample of 12 residential streetscapes in Portland, Oregon, to characterize the land surface temperatures (LSTg) of eleven common urban surface cover types when sun-exposed and in shade. Surfaces were cooler in shade than sun, but with surface-specific differences not explained by greenery nor (im)perviousness. Also, surfaces on streetscapes with more canopy cover, even when sun-exposed at midday, remained significantly cooler than comparable sun-exposed surfaces on streets with less canopy cover, indicating the key significance of partial diurnal shading, not typically accounted for in urban thermal statistical models. We used high-resolution orthoimagery to quantify the area of each surface cover type within each streetscape and computed an area-weighted average surface temperature (Ts), accounting for sun/shade heterogeneity. The data revealed a significant, nearly 1:1 relationship between calculated Ts values and sun-shielded air temperatures (Ta). In contrast, relationships of Ta to tree coverage, impervious area, or the LSTg of dominant surface cover types were all statistically insignificant. These results suggest that statistical models may more reliably bridge the gap between remote sensing urban surface temperatures and reliable predictions of street-scale air temperatures if (1) analysis is at a sufficiently high resolution (e.g., <10 m) to avoid some of the known scale-dependence of urban thermal environments and enable simple weighted linear models, and (2) distinctions between thermal contributions of sunlit and shaded surfaces are included along with the influence of diurnal shading. Such models may provide effective and low-cost predictions of local UHIs and help inform effective street-level approaches to mitigating urban heat. Full article
Show Figures

Figure 1

19 pages, 3167 KiB  
Article
Numerical and Experimental Analysis of Cooling System Performance in Induction Hobs: A Comparison of Heatsink Designs
by Ayberk Salim Mayil and Cisil Timuralp
Appl. Sci. 2025, 15(11), 5995; https://doi.org/10.3390/app15115995 - 26 May 2025
Viewed by 375
Abstract
The increasing demand for induction hobs necessitates efficient cooling systems to ensure the safe operation of electronic cut-outs. This study investigates the thermal representation of three different ignition designs integrated into an induction hob cooling system. A simplified model consisting of a radial [...] Read more.
The increasing demand for induction hobs necessitates efficient cooling systems to ensure the safe operation of electronic cut-outs. This study investigates the thermal representation of three different ignition designs integrated into an induction hob cooling system. A simplified model consisting of a radial fan, a daughterboard, and the electronics installed in the systems is used for the maintenance of the system. Remote measurements of air velocities at the cooler outlets are compared with the results obtained through programmable system dynamics (CFD) operations using FloEFD v2021.1 software. The findings of the study using the k-ε turbulence model show that Type 1 temperature is resistant to the lowest surface temperature for both the closest (IGBT 1) and the farthest (IGBT 2) temperature to the fan. Conversely, Type 3 temperatures exhibited high temperatures. Air velocity comparisons showed a maximum error rate of 30%, which is acceptable considering the variability in Type 1. Measurement system evaluation and DOE study were continued to increase the experimental range. This study demonstrates the utility offered by heatsink design in optimizing the cooling system of induction hobs and provides valuable insights for integrating thermal management systems. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

Back to TopTop