Thermophysiological Comfort Assessment of a Skirt Made from Bio-Based Material Derived from Pineapple Leaves
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
- Pinatex Original (S1), a non-woven textile material of 72% PALF 18% PLA, 5% BIO PU, 5% PU;
- Pinatex Metallic (S2), a non-woven textile material of 72% PALF, 18% PLA, 10% PU.
2.2. Tested Garment
3. Methods
3.1. Objective Methods of Determining the Thermophysiological Comfort of Clothing
3.2. Subjective Methods of Evaluating Thermophysiological Comfort of Clothing
3.2.1. Test Subjects in the Evaluation of Subjective Thermophysiological Comfort
3.2.2. Experimental Conditions for the Assessment of Subjective Thermophysiological Comfort
3.2.3. Questionnaire for Assessing Subjective Thermophysiological Comfort
- A: How would you rate your current sensation of warmth?
- B: How would you describe your current level of thermal comfort?
- C: What change in the thermal environment would you prefer?
- D: In your opinion, how acceptable is the current thermal environment?
- E: How well are you tolerating the current thermal conditions?
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lobus, N.V.; Knyazeva, M.A.; Popova, A.F.; Kulikovskiy, M.S. Carbon Footprint Reduction and Climate Change Mitigation: A Review of the Approaches, Technologies, and Implementation Challenges. C 2023, 9, 120. [Google Scholar] [CrossRef]
- Eryuruk, S.H. Greening of the Textile and Clothing Industry. Fibres Text. East. Eur. 2012, 20, 22–27. [Google Scholar]
- Rinaldi, F.R. Fashion Industry 2030: Reshaping the Future Through Sustainability and Responsible Innovation; Bocconi University Press: Milano, Italy, 2019. [Google Scholar]
- Schiaroli, V.; Fraccascia, L.; Dangelico, R.M. How Can Consumers Behave Sustainably in the Fashion Industry? A Systematic Literature Review of Determinants, Drivers, and Barriers across the Consumption Phases. J. Clean. Prod. 2024, 483, 144232. [Google Scholar] [CrossRef]
- Akkan, S. Evaluating the Sustainability of Vegan Leather as an Eco-Friendly and Ethical Alternative to Animal-Derived Leather. Master’s Thesis, Technical University of Munich, Munich, Germany, 2024. [Google Scholar] [CrossRef]
- Dhanda, V.; Arsalan, S.; Shubham; Kaushal, S. Revolutionizing Material: The Rise of Bio Leather as an Eco-Friendly and Sustainable Approach. Int. J. Res. Agron. 2024, 7, 121–128. [Google Scholar] [CrossRef]
- Malabadi, R.B.; Kolkar, K.P.; Chalannavar, R.K.; Baijnath, H. Plant-Based Leather Production: An Update. World J. Adv. Eng. Technol. Sci. 2025, 14, 31–59. [Google Scholar] [CrossRef]
- Kalayci, E.; Avinc, O.O.; Bozkurt, A.; Yavas, A. Tarımsal Atıklardan Elde Edilen Sürdürülebilir Tekstil Lifleri: Ananas Yaprağı Lifleri. Sak. Üniversitesi Fen Bilim. Dergisi. 2016, 20, 203–221. [Google Scholar] [CrossRef]
- Jose, S.; Salim, R.; Ammayappan, L. An overview on production, properties, and value addition of pinapple leaf fibers (PALF). J. Nat. Fibers 2016, 13, 362–373. [Google Scholar] [CrossRef]
- Vassalo, A.L.; Marques, C.G.; Simões, J.T.; Fernandes, M.M.; Domingos, S. Sustainability in the Fashion Industry in Relation to Consumption in a Digital Age. Sustainability 2024, 16, 5303. [Google Scholar] [CrossRef]
- Tewari, S.; Reshamwala, S.M.S.; Bhatt, L.; Kale, R.D. Vegan Leather: A Sustainable Reality or a Marketing Gimmick? Environ. Sci. Pollut. Res. 2024, 31, 3361–3375. [Google Scholar] [CrossRef] [PubMed]
- Santulli, C.; Palanisamy, S.; Kalimuthu, M. Pineapple Fibers, Their Composites and Applications. In Plant Fibers, Their Composites, and Applications; The Textile Institute Book Series; Woodhead Publishing: Cambridge, UK, 2022; pp. 323–346. [Google Scholar] [CrossRef]
- Norisam, N.A.S.; Shaharuddin, P.S.; Kamal Azman, A.S.; Mat Sani, F.N.; Nasir, E. Physical and Mechanical Properties of Pineapple Bio-Leather. J. Acad. 2024, 12, 186–194. [Google Scholar]
- Kushwaha, A.; Chaudhary, K.; Prakash, C. A study on the mechanical properties of pineapple, bamboo, and cotton woven fabrics. Biomass Conv. Biorefin. 2024, 14, 16307–16318. [Google Scholar] [CrossRef]
- Sureshkumar, P.S.; Thanikaivelan, P.; Phebe, K.; Krishnaraj, K.; Jagadeeswaran, R.; Chandrasekaran, B. Investigations on structural, mechanical, and thermal properties of pineapple leaf fiber-based fabrics and cow softy leathers: An approach toward making amalgamated leather products. J. Nat. Fibers 2012, 9, 37–50. [Google Scholar] [CrossRef]
- Kannojiya, R.; Gaurav, K.; Ranjan, R.; Tiyer, N.; Pandey, K. Extraction of pineapple fibres for making commercial products. J. Environ. Res. Dev. 2013, 7, 1385. [Google Scholar]
- Celcar, D. Subjective Evaluation of the Thermal Comfort of Clothing Evaluated in Cold Environment. Glas. Hemičara Tehnol. Ekol. Repub. Srp. 2014, 10, 65–71. [Google Scholar] [CrossRef]
- Celcar, D. A Research of Subjective Evaluations of the Thermal Comfort of Business Clothing Evaluated in Warm and Slightly Cold Environment. Tekst. Ind. 2020, 4, 22–30. [Google Scholar] [CrossRef]
- Celcar, D. Thermo-Physiological Comfort of Business Clothing Incorporating Phase Change Materials in a Cold Environment. Int. J. Cloth. Sci. Technol. 2018, 30, 49–61. [Google Scholar] [CrossRef]
- Arens, E.; Zhang, H. The Skin’s Role in Human Thermoregulation and Comfort. In Thermal and Moisture Transport in Fibrous Materials; Pan, N., Gibson, P., Eds.; Woodhead Publishing: Cambridge, UK, 2006; pp. 561–602. ISBN 978-1-84569-057-1. [Google Scholar]
- Pesic, M.; Petrovic, V.; Ćirkovic, N.; Stepanovic, J. Analysis of Heat Transfer and Factors Affecting the Thermal Properties on Rib 1 × 1 Knitwear. Ind. Textila 2021, 72, 4. [Google Scholar] [CrossRef]
- Špelić, I.; Rogale, D.; Mihelić Bogdanić, A. The Study on Effects of Walking on the Thermal Properties of Clothing and Subjective Comfort. AUTEX Res. J. 2019, 20, 228–243. [Google Scholar] [CrossRef]
- Available online: https://www.ananas-anam.com/made-from-pinatex/ (accessed on 20 April 2025).
- Available online: https://evelinfink.com/products/silver-pinatex-skirt?_pos=2&_psq=pinatex&_ss=e&_v=1.0 (accessed on 20 April 2025).
- Strambi, L. University of Fashion. Available online: https://www.universityoffashion.com/blog/making-fashion-without-making-waste-amazing-textile-innovations-made-from-food-by-products/fashion-designer-laura-strambi-has-picked-up-on-the-wave-and-designed-a-coat-made-of-pinatexs-metallic-range-of-textiles/ (accessed on 20 April 2025).
- ISO 3801:1977; Textiles—Woven fabrics—Determination of Mass per Unit Area. International Organization for Standardization: Geneva, Switzerland, 1977.
- ISO 5084:1996; Textiles—Determination of Thickness of Textiles. International Organization for Standardization: Geneva, Switzerland, 1996.
- ISO 139:2005; Textiles—Standard Atmospheres for Conditioning and Testing. International Organization for Standardization: Geneva, Switzerland, 2005.
- ISO 9237:1995; Textiles—Determination of the Permeability of Fabrics to Air. International Organization for Standardization: Geneva, Switzerland, 1995.
- Kawabata, S. Kawabata’s Evaluation System for Fabric, Manual; Kato Tech Co. Ltd.: Kyoto, Japan, 1972. [Google Scholar]
- ISO 11092:2014; Textiles—Physiological Effects—Measurement of Thermal and Water-Vapour Resistance Under Steady-State Conditions (Sweating Guarded-Hotplate Test). International Organization for Standardization: Geneva, Switzerland, 2014.
- ISO 7730:2005; Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. International Standard Organization: Geneva, Switzerland, 2005.
- ISO 10551:1995; Ergonomics of the Thermal Environment—Assessment of the Influence of the Thermal Environment Using Subjective Judgement Scales. International Organization for Standardization: Geneva, Switzerland, 1995.
- Sušnik, J. Toplotna Obremenitev in Obremenenost; Univerzitetni Zavod za Zdravstveno in Socialno Varstvo: Ljubljana, Slovenia, 1990. [Google Scholar]
- Çolak, S.M.; Özdil, N.; Ekinci, M.; Kaplan, Ö. Thermophysiological Comfort Properties of the Leathers Processed with Different Tanning Agents. Tekst. Konfeksiyon 2016, 26, 436–443. [Google Scholar]
Pinatex Original (S1) | Pinatex Metalic (S2) | |
---|---|---|
Composition | 72% PALF, 18% PLA, 5% bio-PU, 5% PU | 72% PALF, 18% PLA, 10% PU |
Surface mass, ISO 3801:1977 [26] | 392 g/m2 | 454 g/m2 |
Thickness, ISO 5084:1996 [27] | 1.6 mm | 1.2 mm |
No. | Age | ||||
---|---|---|---|---|---|
1. | 172 | 58 | 25 | 1.69 | 64.45 |
2. | 167 | 52 | 24 | 1.57 | 61.20 |
3. | 164 | 58 | 23 | 1.62 | 59.40 |
4. | 163 | 60 | 26 | 1.64 | 59.30 |
5. | 159 | 51 | 21 | 1.51 | 55.75 |
6. | 170 | 58 | 24 | 1.67 | 63.00 |
7. | 167 | 64 | 26 | 1.72 | 61.70 |
8. | 169 | 63 | 24 | 1.72 | 62.40 |
9. | 171 | 54 | 21 | 1.61 | 62.85 |
10. | 165 | 55 | 20 | 1.59 | 59.00 |
Tested Parameters | Symbol | Units | Pinatex Original (S1) | SD (S1) (%) | Pinatex Metalic (S2) | SD (S2) (%) |
---|---|---|---|---|---|---|
Air permeability, ISO 9237 | AR | [mm/s] | 11.3 | 28 | 2.65 | 28.73 |
Thermal conductivity coefficient | λ | ] | 0.016 | 13.57 | 0.012 | 14.42 |
Thermal resistance—ISO 11092 | Rct | 0.0106 | 17.54 | 0.0257 | 16.06 | |
Water vapor resistance—ISO 11092 | Ret | [Pa2/W] | 60.57 | 14.24 | 84.80 | 16.97 |
No. | Basal Metabolism [kJ/min] | Working Metabolism [kJ/min] | Total Metabolism | Heat Flux [W/m2] |
---|---|---|---|---|
1. | 3.184 | 7.691 | 10.875 | 107.269 |
2. | 2.994 | 7.243 | 10.237 | 108.695 |
3. | 3.168 | 7.613 | 10.781 | 110.938 |
4. | 3.236 | 7.798 | 11.034 | 112.157 |
5. | 2.841 | 7.178 | 10.019 | 110.607 |
6. | 3.263 | 7.683 | 10.946 | 109.263 |
7. | 2.456 | 6.876 | 9.332 | 90.444 |
8. | 2.466 | 6.886 | 9.352 | 90.638 |
9. | 2.183 | 6.603 | 8.786 | 90.971 |
10. | 3.672 | 6.949 | 10.621 | 99.467 |
SD [%] | 14.73 | 5.52 | 7.42 | 8.47 |
Questions: | A | B | C | D | E | Dex | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Assessment Phase | B | M | E | B | M | E | B | M | E | B | M | E | B | M | E | Discomfort [%] | |
S1 | Person 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | −1 | 0 | 0 | 0 | 0 | 0 | 0 | 20 |
Person 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6.66 | |
Person 3 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | −1 | 0 | 0 | 0 | 0 | 0 | 0 | 20 | |
Person 4 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | −1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 26.66 | |
Person 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −1 | 0 | 0 | 0 | 0 | 0 | 0 | 6.66 | |
Person 6 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | −1 | −1 | 0 | 0 | 0 | 0 | 1 | 0 | 33.33 | |
Person 7 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | −1 | 0 | 0 | 0 | 0 | 0 | 0 | 20 | |
Person 8 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6.66 | |
Person 9 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6.66 | |
Person 10 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | −1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 33.33 | |
Dex = 17.99% | |||||||||||||||||
S2 | Person 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 26.66 |
Person 2 | 0 | 2 | 1 | 0 | 2 | 0 | 0 | −1 | −1 | 0 | 0 | 0 | 0 | 0 | 0 | 33.33 | |
Person 3 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 40.00 | |
Person 4 | 0 | 2 | 2 | 1 | 2 | 1 | 0 | −2 | −2 | 0 | 1 | 0 | 0 | 1 | 1 | 66.67 | |
Person 5 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 26.66 | |
Person 6 | 0 | 2 | 2 | 1 | 2 | 1 | 0 | −2 | −2 | 0 | 1 | 0 | 0 | 1 | 1 | 66.67 | |
Person 7 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 40.00 | |
Person 8 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 40.00 | |
Person 9 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 26.66 | |
Person 10 | 0 | 2 | 2 | 0 | 2 | 1 | 0 | −2 | −2 | 0 | 1 | 0 | 0 | 1 | 1 | 60.00 | |
Dex = 42.67% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pešić, M.; Nemeša, I.; Đurđić, D.; Salihi, D. Thermophysiological Comfort Assessment of a Skirt Made from Bio-Based Material Derived from Pineapple Leaves. Materials 2025, 18, 3249. https://doi.org/10.3390/ma18143249
Pešić M, Nemeša I, Đurđić D, Salihi D. Thermophysiological Comfort Assessment of a Skirt Made from Bio-Based Material Derived from Pineapple Leaves. Materials. 2025; 18(14):3249. https://doi.org/10.3390/ma18143249
Chicago/Turabian StylePešić, Marija, Ineta Nemeša, Danka Đurđić, and Dijamanta Salihi. 2025. "Thermophysiological Comfort Assessment of a Skirt Made from Bio-Based Material Derived from Pineapple Leaves" Materials 18, no. 14: 3249. https://doi.org/10.3390/ma18143249
APA StylePešić, M., Nemeša, I., Đurđić, D., & Salihi, D. (2025). Thermophysiological Comfort Assessment of a Skirt Made from Bio-Based Material Derived from Pineapple Leaves. Materials, 18(14), 3249. https://doi.org/10.3390/ma18143249