Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (726)

Search Parameters:
Keywords = agricultural water-saving

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 706 KiB  
Article
Study on the Effects of Irrigation Amount on Spring Maize Yield and Water Use Efficiency Under Different Planting Patterns in Xinjiang
by Ruxiao Bai, Haixiu He, Xinjiang Zhang and Qifeng Wu
Agriculture 2025, 15(15), 1710; https://doi.org/10.3390/agriculture15151710 (registering DOI) - 7 Aug 2025
Abstract
Planting patterns and irrigation amounts are key factors affecting maize yield. This study adopted a two-factor experimental design, with planting pattern as the main plot and irrigation amount as the subplot, to investigate the effects of irrigation levels under different planting patterns (including [...] Read more.
Planting patterns and irrigation amounts are key factors affecting maize yield. This study adopted a two-factor experimental design, with planting pattern as the main plot and irrigation amount as the subplot, to investigate the effects of irrigation levels under different planting patterns (including uniform row spacing and alternating wide-narrow row spacing) on spring maize yield and water use efficiency in Xinjiang. Through this approach, the study examined the mechanisms by which planting pattern and irrigation amount influence maize growth, yield formation, and water use efficiency. Experiments conducted at the Agricultural Science Research Institute of the Ninth Division of Xinjiang Production and Construction Corps demonstrated that alternating wide-narrow row spacing combined with moderate irrigation (5400 m3/hm2) significantly optimized maize root distribution, improved water use efficiency, and increased leaf area index and net photosynthetic rate, thereby promoting dry matter accumulation and yield enhancement. In contrast, uniform row spacing under high irrigation levels increased yield but resulted in lower water use efficiency. The study also found that alternating wide-narrow row spacing enhanced maize nutrient absorption from the soil, particularly phosphorus utilization efficiency, by improving canopy structure and root expansion. This pattern exhibited comprehensive advantages in resource utilization, providing a theoretical basis and technical pathway for achieving water-saving and high-yield maize production in arid regions, which holds significant importance for promoting sustainable agricultural development. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

22 pages, 6699 KiB  
Article
Research on Grain Production Services in the Hexi Corridor Based on the Link Relationship of “Water–Soil–Carbon–Grain”
by Baiyang Li, Fuping Zhang, Qi Feng, Yongfen Wei, Guangwen Li and Zhiyuan Song
Land 2025, 14(8), 1542; https://doi.org/10.3390/land14081542 - 27 Jul 2025
Viewed by 307
Abstract
Elucidating the trade-offs and synergies among ecosystem services is crucial for effective ecosystem management and the promotion of sustainable development in specific regions. The Hexi Corridor, a vital agricultural hub in Northwest China, is instrumental in both ecological conservation and socioeconomic advancement throughout [...] Read more.
Elucidating the trade-offs and synergies among ecosystem services is crucial for effective ecosystem management and the promotion of sustainable development in specific regions. The Hexi Corridor, a vital agricultural hub in Northwest China, is instrumental in both ecological conservation and socioeconomic advancement throughout the area. Utilizing an integrated “water–soil–carbon–grain” framework, this study conducted a quantitative assessment of four essential ecosystem services within the Hexi Corridor from 2000 to 2020: water yield, soil conservation, vegetation carbon sequestration, and grain production. Our research thoroughly explores the equilibrium and synergistic interactions between grain production and other ecosystem services, while also exploring potential strategies to boost grain yields through the precise management of these services. The insights garnered are invaluable for strategic regional development and will contribute to the revitalization efforts in Northwest China. Key findings include the following: (1) between 2000 and 2020, grain production exhibited a steady increase, alongside rising trends in water yields, soil conservation, and carbon sequestration, all of which demonstrated significant synergies with agricultural productivity; (2) in areas identified as grain production hotspots, there were stronger positive correlations between grain output and carbon sequestration services, soil conservation, and water yields than the regional averages, suggesting more pronounced mutual benefits; (3) the implementation of strategic initiatives such as controlling soil erosion, expanding afforestation efforts, and enhancing water-saving irrigation infrastructure could simultaneously boost ecological services and agricultural productivity. These results significantly enhance our comprehension of the interplay between ecosystem services in the Hexi Corridor and present practical approaches for the optimization of regional agricultural systems. Full article
Show Figures

Figure 1

23 pages, 3140 KiB  
Article
Socioeconomic and Environmental Dimensions of Agriculture, Livestock, and Fisheries: A Network Study on Carbon and Water Footprints in Global Food Trade
by Murilo Mazzotti Silvestrini, Thiago Joel Angrizanes Rossi and Flavia Mori Sarti
Standards 2025, 5(3), 19; https://doi.org/10.3390/standards5030019 - 25 Jul 2025
Viewed by 242
Abstract
Agriculture, livestock, and fisheries significantly impact socioeconomic, environmental, and health dimensions at global level, ensuring food supply for growing populations whilst promoting economic welfare through international trade, employment, and income. Considering that bilateral food exchanges between countries represent exchanges of natural resources involved [...] Read more.
Agriculture, livestock, and fisheries significantly impact socioeconomic, environmental, and health dimensions at global level, ensuring food supply for growing populations whilst promoting economic welfare through international trade, employment, and income. Considering that bilateral food exchanges between countries represent exchanges of natural resources involved in food production (i.e., food imports are equivalent to savings of natural resources), the purpose of the study is to investigate the evolution of carbon and water footprints corresponding to the global food trade networks between 1986 and 2020. The research aims to identify potential associations between carbon and water footprints embedded in food trade and countries’ economic welfare. Complex network analysis was used to map countries’ positions within annual food trade networks, and countries’ metrics within networks were used to identify connections between participation in global trade of carbon and water footprints and economic welfare. The findings of the study show an increase in carbon and water footprints linked to global food exchanges between countries during the period. Furthermore, a country’s centrality within the network was linked to economic welfare, showing that countries with higher imports of carbon and water through global food trade derive economic benefits from participating in global trade. Global efforts towards transformations of food systems should prioritize sustainable development standards to ensure continued access to healthy sustainable diets for populations worldwide. Full article
(This article belongs to the Special Issue Sustainable Development Standards)
Show Figures

Figure 1

20 pages, 5790 KiB  
Article
Irrigation and Planting Density Effects on Apple–Peanut Intercropping System
by Feiyang Yu, Ruoshui Wang, Xueying Zhang, Huiying Zheng, Lisha Wang, Sanzheng Jin, Qingqing Ren, Bohao Zhang and Chaolong Xing
Agronomy 2025, 15(8), 1798; https://doi.org/10.3390/agronomy15081798 - 25 Jul 2025
Viewed by 329
Abstract
The western Shanxi Loess region, as a typical semi-arid ecologically fragile zone, faces severe soil and water resource constraints. The apple–peanut intercropping system can significantly improve water productivity and economic benefits through complementary resource utilization, representing an effective approach for sustainable agricultural development [...] Read more.
The western Shanxi Loess region, as a typical semi-arid ecologically fragile zone, faces severe soil and water resource constraints. The apple–peanut intercropping system can significantly improve water productivity and economic benefits through complementary resource utilization, representing an effective approach for sustainable agricultural development in the region. This study took the apple–peanut intercropping system as the research object (apple variety: ‘Yanfu 8’; peanut variety: ‘Huayu 38’), setting three peanut planting densities (D1: 27,500 plants/ha; D2: 18,333 plants/ha; D3: 10,833 plants/ha) and two water regulation measures—W1 (irrigation upper limit at 85% of field capacity, FC) and W2 (65% FC), with non-irrigated controls (CK) at different planting densities for comparison. This study systematically analyzed the synergistic regulation effects of intercropping density and water management on system water use and comprehensive benefits. Results showed that medium planting density combined with medium irrigation (W2D2 treatment) could maximize intercropping advantages, effectively improving the intercropping system’s soil water content (SWC), yield (GY), and water use efficiency (WUE). This research provides a theoretical basis for precision irrigation in fruit–crop intercropping systems in semi-arid regions. However, based on the significant water-saving and yield-increasing effects observed in the current experimental year, follow-up studies should verify its stability through multi-year fixed-position observation data. Full article
Show Figures

Figure 1

21 pages, 3463 KiB  
Article
Apple Rootstock Cutting Drought-Stress-Monitoring Model Based on IMYOLOv11n-Seg
by Xu Wang, Hongjie Liu, Pengfei Wang, Long Gao and Xin Yang
Agriculture 2025, 15(15), 1598; https://doi.org/10.3390/agriculture15151598 - 24 Jul 2025
Viewed by 291
Abstract
To ensure the normal water status of apple rootstock softwood cuttings during the initial stage of cutting, a drought stress monitoring model was designed. The model is optimized based on the YOLOv11n-seg instance segmentation model, using the leaf curl degree of cuttings as [...] Read more.
To ensure the normal water status of apple rootstock softwood cuttings during the initial stage of cutting, a drought stress monitoring model was designed. The model is optimized based on the YOLOv11n-seg instance segmentation model, using the leaf curl degree of cuttings as the classification basis for drought-stress grades. The backbone structure of the IMYOLOv11n-seg model is improved by the C3K2_CMUNeXt module and the multi-head self-attention (MHSA) mechanism module. The neck part is optimized by the KFHA module (Kalman filter and Hungarian algorithm model), and the head part enhances post-processing effects through HIoU-SD (hierarchical IoU–spatial distance filtering algorithm). The IMYOLOv11-seg model achieves an average inference speed of 33.53 FPS (frames per second) and the mean intersection over union (MIoU) value of 0.927. The average recognition accuracies for cuttings under normal water status, mild drought stress, moderate drought stress, and severe drought stress are 94.39%, 93.27%, 94.31%, and 94.71%, respectively. The IMYOLOv11n-seg model demonstrates the best comprehensive performance in ablation and comparative experiments. The automatic humidification system equipped with the IMYOLOv11n-seg model saves 6.14% more water than the labor group. This study provides a design approach for an automatic humidification system in protected agriculture during apple rootstock cutting propagation. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

12 pages, 933 KiB  
Article
Foliar Application of Zinc Improves Safflower Yields More than Glycine Betaine
by Jianglong Liu, Guiqing Hu, Wentai Zhang, Jinghu Wu and Qingyun Geng
Agronomy 2025, 15(8), 1770; https://doi.org/10.3390/agronomy15081770 - 23 Jul 2025
Viewed by 281
Abstract
In arid regions, yields from safflower plants are appreciably lower than normal. Foliar application of zinc or glycine betaine has been reported to increase yields in other grown crops. A field experiment was conducted to compare the specific effects and mechanisms of foliar-applied [...] Read more.
In arid regions, yields from safflower plants are appreciably lower than normal. Foliar application of zinc or glycine betaine has been reported to increase yields in other grown crops. A field experiment was conducted to compare the specific effects and mechanisms of foliar-applied zinc or glycine betaine on safflower yield in this study. Seven foliar spraying treatments were implemented, including a control (spraying water), three concentrations of zinc sulfate (Zn1: 0.6 g L−1, Zn2: 0.8 g L−1, Zn3: 1.0 g L−1), and three concentrations of glycine betaine (GB1: 0.23 g L−1, GB2: 0.47 g L−1, GB3: 0.70 g L−1). Results showed that Zn1 treatment had the highest grain yield at 2197 kg ha−1, which was 45.4% higher than the control. GB3 treatment resulted in a grain yield at 2127 kg ha−1, which was 40.8% higher than the control. The yield increase mechanism for the zinc treatment was primarily due to optimized plant morphology and improved photosynthetic performance, while glycine betaine improved yield mainly through antioxidant regulation. This study has important implications for water-saving and sustainable agriculture development in arid regions. Full article
(This article belongs to the Special Issue Role of Mineral Nutrition in Alleviation of Abiotic Stress in Crops)
Show Figures

Figure 1

13 pages, 1373 KiB  
Article
A Comparative Plant Growth Study of a Sprayable, Degradable Polyester–Urethane–Urea Mulch and Two Commercial Plastic Mulches
by Cuyler Borrowman, Karen Little, Raju Adhikari, Kei Saito, Stuart Gordon and Antonio F. Patti
Agriculture 2025, 15(15), 1581; https://doi.org/10.3390/agriculture15151581 - 23 Jul 2025
Viewed by 332
Abstract
The practice in agriculture of spreading polyethylene (PE) film over the soil surface as mulch is a common, global practice that aids in conserving water, increasing crop yields, suppressing weed growth, and decreasing growing time. However, these films are typically only used for [...] Read more.
The practice in agriculture of spreading polyethylene (PE) film over the soil surface as mulch is a common, global practice that aids in conserving water, increasing crop yields, suppressing weed growth, and decreasing growing time. However, these films are typically only used for a single growing season, and thus, their use and non-biodegradability come with some serious environmental consequences due to their persistence in the soil and potential for microplastic pollution, particularly when retrieval and disposal options are poor. On the microscale, particles < 5 mm from degraded films have been observed to disrupt soil structure, impede water and nutrient cycling, and affect soil organisms and plant health. On the macroscale, there are obvious and serious environmental consequences associated with the burning of plastic film and its leakage from poorly managed landfills. To maintain the crop productivity afforded by mulching with PE film while avoiding the environmental downsides, the development and use of biodegradable polymer technologies is being explored. Here, the efficacy of a newly developed, water-dispersible, sprayable, and biodegradable polyester–urethane–urea (PEUU)-based polymer was compared with two commercial PE mulches, non-degradable polyethylene (NPE) and OPE (ox-degradable polyethylene), in a greenhouse tomato growth trial. Water savings and the effects on plant growth and soil characteristics were studied. It was found that PEUU provided similar water savings to the commercial PE-based mulches, up to 30–35%, while showing no deleterious effects on plant growth. The results should be taken as preliminary indications that the sprayable, biodegradable PEUU shows promise as a replacement for PE mulch, with further studies under outside field conditions warranted to assess its cost effectiveness in improving crop yields and, importantly, its longer-term impacts on soil and terrestrial fauna. Full article
Show Figures

Figure 1

17 pages, 2649 KiB  
Article
Effect of Low-Temperature Preheating on the Physicochemical Properties and Energy Quality of Pine Sawdust
by Tingzhou Lei, Yang Mei, Yuanna Li, Yunbo Wang, Suyang Liu and Yantao Yang
Energies 2025, 18(14), 3875; https://doi.org/10.3390/en18143875 - 21 Jul 2025
Cited by 1 | Viewed by 268
Abstract
The advantages of torrefaction preheating, including the production of a hydrophobic solid product, improved particle size distribution, enhanced fuel properties with fewer environmental issues, decreased moisture content, and reduced volatile content. In order to meet the technical requirements of biomass oriented value-added and [...] Read more.
The advantages of torrefaction preheating, including the production of a hydrophobic solid product, improved particle size distribution, enhanced fuel properties with fewer environmental issues, decreased moisture content, and reduced volatile content. In order to meet the technical requirements of biomass oriented value-added and energy saving and emission reduction, pine sawdust (PS) was taken as the research object, and the physicochemical properties of the PS samples preheated at a low temperature were analyzed by synchronous thermal analysis (TG-DSC), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), and organic element analyzer (EA). The effect of preheating at a lower temperature on the physicochemical properties of PS was discussed. The results showed that, under the preheating condition of 200 °C, compared with PS, the water content of PS-200 decreased by 3.23%, the volatile content decreased by 3.69%, the fixed carbon increased by 6.81%, the calorific value increased by 6.90%, the equilibrium water content decreases from 7.06% to 4.46%, and the hydrophobicity increases. This research, based on the improvement of the quality of agricultural and forestry waste and the promotion of the strategy of converting waste into energy, has contributed to the advancement of sustainable energy production. Full article
Show Figures

Figure 1

23 pages, 2642 KiB  
Article
Evaluating of Four Irrigation Depths on Soil Moisture and Temperature, and Seed Cotton Yield Under Film-Mulched Drip Irrigation in Northwest China
by Xianghao Hou, Wenhui Hu, Quanqi Li, Junliang Fan and Fucang Zhang
Agronomy 2025, 15(7), 1674; https://doi.org/10.3390/agronomy15071674 - 10 Jul 2025
Viewed by 267
Abstract
Soil mulching and irrigation are critical practices for alleviating water scarcity and enhancing crop yields in arid and semi-arid regions by regulating soil moisture and soil temperature. Clarifying the effects of various irrigation depths on soil moisture and temperature under mulched condition is [...] Read more.
Soil mulching and irrigation are critical practices for alleviating water scarcity and enhancing crop yields in arid and semi-arid regions by regulating soil moisture and soil temperature. Clarifying the effects of various irrigation depths on soil moisture and temperature under mulched condition is essential for optimizing irrigation strategies. This study investigated the effects of four irrigation depths based on crop evapotranspiration (ETc): 60, 80, 100, and 120% (W0.6, W0.8, W1.0, and W1.2, respectively) on the soil moisture content (SMC), soil temperature and seed cotton yield in mulched cotton fields. Results revealed that when the irrigation depth increased from 60%ETc to 120%ETc, seed cotton yield increased by 12.04% in 2018 and 17.00% in 2019 at the cost of irrigation water use efficiency (IWUE), which decreased from 2.53 kg m−3 to 1.54 kg m−3 in 2018 and 2.60 kg m−3 to 1.58 kg m−3 in 2019. Soil temperature exhibited a temporal trend of initial increase followed by decline, and it was positively affected by soil mulching. Notably, W0.6 treatment maintained significantly higher soil temperature than other treatments. Soil moisture content was positively affected by irrigation depth, while soil water storage first decreased and then increased over time, reaching the minimum at the flowering and boll setting stages during the two growing seasons. Higher irrigation amount reduced the total spatial variability (C0 + C) of soil but did not significantly alter the distribution characteristics of soil moisture, as indicated by stable coefficients of variation (CVs) and stratification ratios (SRs). The variability of soil moisture diminished with soil depth with the lowest CV obtained at a 60 cm soil layer across the growth stages. Correlation analysis results showed that the seed cotton yield was mainly affected by irrigation depth and soil water storage. Soil temperature at the flowering and boll setting stage negatively affected seed cotton yield and was inversely correlated with soil water storage. The structural equation model (SEM) further indicated that both soil water storage and soil temperature primarily influenced seed cotton yield boll weight rather than boll number. Furthermore, 100%ETc (W1.0) can be considered as the recommended irrigation depth based on the soil moisture and temperature, seed cotton yield and water use efficiency in this region. Full article
Show Figures

Figure 1

31 pages, 1513 KiB  
Article
From Online Markets to Green Fields: Unpacking the Impact of Farmers’ E-Commerce Participation on Green Production Technology Adoption
by Zhaoyu Li, Kewei Gao and Guanghua Qiao
Agriculture 2025, 15(14), 1483; https://doi.org/10.3390/agriculture15141483 - 10 Jul 2025
Viewed by 324
Abstract
Amid the global push for agricultural green transformation, sustainable agriculture requires not only technological innovation but also market mechanisms that effectively incentivize green practices. Agricultural e-commerce is increasingly viewed as a potential driver of green technology diffusion among farmers. However, the extent and [...] Read more.
Amid the global push for agricultural green transformation, sustainable agriculture requires not only technological innovation but also market mechanisms that effectively incentivize green practices. Agricultural e-commerce is increasingly viewed as a potential driver of green technology diffusion among farmers. However, the extent and mechanism of e-commerce’s influence on farmers’ green production remain underexplored. Using survey data from 346 rural households in Inner Mongolia, China, this study develops a conceptual framework of “e-commerce participation–green cognition–green adoption” and employs propensity score matching (PSM) combined with mediation analysis to evaluate the impact of e-commerce participation on green technology adoption. The empirical results yield four main findings: (1) E-commerce participation significantly promotes the adoption of green production technologies, with an estimated 29.52% increase in adoption. (2) Participation has a strong positive effect on water-saving irrigation and pest control technologies at the 5% significance level, a moderate effect on straw incorporation at the 10% level, and no statistically significant impact on plastic film recycling or organic fertilizer use. (3) Compared to third-party sales, the direct e-commerce model more effectively promotes green technology adoption, with an increase of 21.64% at the 5% significance level. (4) Green cognition serves as a mediator in the relationship between e-commerce and green adoption behavior. This study makes contributions by introducing e-commerce participation as a novel explanatory pathway for green technology adoption, going beyond traditional policy-driven and resource-based perspectives. It further highlights the role of cognitive mechanisms in shaping adoption behaviors. The study recommends that policymakers subsidize farmers’ participation in e-commerce, invest in green awareness programs, and support differentiated e-commerce models to enhance their positive impact on sustainable agricultural practices. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

38 pages, 25146 KiB  
Article
Driplines Layout Designs Comparison of Moisture Distribution in Clayey Soils, Using Soil Analysis, Calibrated Time Domain Reflectometry Sensors, and Precision Agriculture Geostatistical Imaging for Environmental Irrigation Engineering
by Agathos Filintas
AgriEngineering 2025, 7(7), 229; https://doi.org/10.3390/agriengineering7070229 - 10 Jul 2025
Viewed by 428
Abstract
The present study implements novel innovative geostatistical imaging using precision agriculture (PA) under sugarbeet field conditions. Two driplines layout designs (d.l.d.) and soil water content (SWC)–irrigation treatments (A: d.l.d. = 1.00 m driplines spacing × 0.50 m emitters inline spacing; B: d.l.d. = [...] Read more.
The present study implements novel innovative geostatistical imaging using precision agriculture (PA) under sugarbeet field conditions. Two driplines layout designs (d.l.d.) and soil water content (SWC)–irrigation treatments (A: d.l.d. = 1.00 m driplines spacing × 0.50 m emitters inline spacing; B: d.l.d. = 1.50 m driplines spacing × 0.50 m emitters inline spacing) were applied, with two subfactors of clay loam and clay soils (laboratory soil analysis) for modeling (evaluation of seven models) TDR multi-sensor network measurements. Different sensor calibration methods [method 1(M1) = according to factory; method 2 (M2) = according to Hook and Livingston] were applied for the geospatial two-dimensional (2D) imaging of accurate GIS maps of rootzone soil moisture profiles, soil apparent dielectric Ka profiles, and granular and hydraulic parameters profiles, in multiple soil layers (0–75 cm depth). The modeling results revealed that the best-fitted geostatistical model for soil apparent dielectric Ka was the Gaussian model, while spherical and exponential models were identified to be the most appropriate for kriging modelling, and spatial and temporal imaging was used for accurate profile SWC θvTDR (m3·m−3) M1 and M2 maps using TDR sensors. The resulting PA profile map images depict the spatio-temporal soil water and apparent dielectric Ka variability at very high resolutions on a centimeter scale. The best geostatistical validation measures for the PA profile SWC θvTDR maps obtained were MPE = −0.00248 (m3·m−3), RMSE = 0.0395 (m3·m−3), MSPE = −0.0288, RMSSE = 2.5424, ASE = 0.0433, Nash–Sutcliffe model efficiency NSE = 0.6229, and MSDR = 0.9937. Based on the results, we recommend d.l.d. A and sensor calibration method 2 for the geospatial 2D imaging of PA GIS maps because these were found to be more accurate, with the lowest statistical and geostatistical errors, and the best validation measures for accurate profile SWC imaging were obtained for clay loam over clay soils. Visualizing sensors’ soil moisture results via geostatistical maps of rootzone profiles have practical implications that assist farmers and scientists in making informed, better and timely environmental irrigation engineering decisions, to save irrigation water, increase water use efficiency and crop production, optimize energy, reduce crop costs, and manage water resources sustainably. Full article
(This article belongs to the Section Sensors Technology and Precision Agriculture)
Show Figures

Figure 1

17 pages, 766 KiB  
Article
Water Rights Trading and Agricultural Water Use Efficiency: Evidence from China
by Yi Deng and Lezhu Zhang
Water 2025, 17(14), 2047; https://doi.org/10.3390/w17142047 - 8 Jul 2025
Viewed by 412
Abstract
Inefficient agricultural water use is a significant factor exacerbating global water scarcity. Water rights trading (WRT) offers a new governance paradigm to address this issue. Initiated by China in 2014, the WRT policy provides a case for researching formal water markets in developing [...] Read more.
Inefficient agricultural water use is a significant factor exacerbating global water scarcity. Water rights trading (WRT) offers a new governance paradigm to address this issue. Initiated by China in 2014, the WRT policy provides a case for researching formal water markets in developing countries. This paper uses a sample of 30 Chinese provinces from 2007 to 2022 and employs the difference-in-differences method to evaluate the impact of WRT on agricultural water use efficiency (AWUE). The findings suggest that AWUE in pilot areas increased by an average of 48.1% compared to non-pilot areas. Heterogeneity analysis reveals a stronger WRT impact on AWUE in regions with developed markets, abundant water, and high agricultural dependence. Subsequent analysis identifies that WRT enhances AWUE mainly by incentivizing water-saving innovation, promoting cross-industry factor mobility, and optimizing crop structures. This study thus offers empirical evidence supporting China’s water marketization reform and explores WRT policy as a pathway to enhance AWUE. Full article
Show Figures

Figure 1

28 pages, 4089 KiB  
Article
Remote Sensing Identification of Major Crops and Trade-Off of Water and Land Utilization of Oasis in Altay Prefecture
by Gaowei Yan, Luguang Jiang and Ye Liu
Land 2025, 14(7), 1426; https://doi.org/10.3390/land14071426 - 7 Jul 2025
Viewed by 373
Abstract
The Altay oasis, located at the heart of the transnational ecological conservation zone shared by China, Kazakhstan, Russia, and Mongolia, is a region with tremendous potential for water resource utilization. However, with the continued expansion of agriculture, its ecological vulnerability has become increasingly [...] Read more.
The Altay oasis, located at the heart of the transnational ecological conservation zone shared by China, Kazakhstan, Russia, and Mongolia, is a region with tremendous potential for water resource utilization. However, with the continued expansion of agriculture, its ecological vulnerability has become increasingly pronounced. Within this fragile balance lies a critical opportunity: efficient water resource management could pave the way for sustainable development across the entire arid oasis regions. This study uses a decision tree model based on a feature threshold to map the spatial distribution of major crops in the Altay Prefecture oasis, assess their water requirements, and identify the coupling relationships between agricultural water and land resources. Furthermore, it proposed optimization planting structure strategies under three scenarios: water-saving irrigation, cash crop orientation, and forage crop orientation. In 2023, the total planting area of major crops in Altay Prefecture was 3368 km2, including spring wheat, spring maize, sunflower, and alfalfa, which consumed 2.68 × 109 m3 of water. Although this area accounted for only 2.85% of the land, it consumed 26.23% of regional water resources, with agricultural water use comprising as much as 82.5% of total consumption, highlighting inefficient agricultural water use as a critical barrier to sustainable agricultural development. Micro-irrigation technologies demonstrate significant water-saving potential. The adoption of such technologies could reduce water consumption by 14.5%, thereby significantly enhancing agricultural water-use efficiency. Cropping structure optimization analysis indicates that sunflower-based planting patterns offer notable water-saving benefits. Increasing the area of sunflower cultivation by one unit can unlock a water-saving potential of 25.91%. Forage crop combinations excluding soybean can increase livestock production by 30.2% under the same level of water consumption, demonstrating their superior effectiveness for livestock system expansion. This study provides valuable insights for achieving sustainable agricultural development in arid regions under different development scenarios. Full article
Show Figures

Figure 1

31 pages, 19561 KiB  
Article
Geostatistics Precision Agriculture Modeling on Moisture Root Zone Profiles in Clay Loam and Clay Soils, Using Time Domain Reflectometry Multisensors and Soil Analysis
by Agathos Filintas
Hydrology 2025, 12(7), 183; https://doi.org/10.3390/hydrology12070183 - 7 Jul 2025
Cited by 1 | Viewed by 543
Abstract
Accurate measurement and understanding of the spatiotemporal distribution of soil water content (SWC) are crucial in various environmental and agricultural sectors. The present study implements a novel precision agriculture (PA) approach under sugarbeet field conditions of two moisture-irrigation treatments with two subfactors, clay [...] Read more.
Accurate measurement and understanding of the spatiotemporal distribution of soil water content (SWC) are crucial in various environmental and agricultural sectors. The present study implements a novel precision agriculture (PA) approach under sugarbeet field conditions of two moisture-irrigation treatments with two subfactors, clay loam (CL) and clay (C) soils, for geostatistics modeling (seven models’ evaluation) of time domain reflectometry (TDR) multisensor network measurements. Two different sensor calibration methods (M1 and M2) were trialed, as well as the results of laboratory soil analysis for geospatial two-dimensional (2D) imaging for accurate GIS maps of root zone moisture profiles, granular, and hydraulic profiles in multiple soil layers (0–75 cm depth). Modeling results revealed that the best-fitted semi-variogram models for the granular attributes were circular, exponential, pentaspherical, and spherical, while for hydraulic attributes were found to be exponential, circular, and spherical models. The results showed that kriging modeling, spatial and temporal imaging for accurate profile SWC θvTDR (m3·m−3) maps, the exponential model was identified as the most appropriate with TDR sensors using calibration M1, and the exponential and spherical models were the most appropriate when using calibration M2. The resulting PA profile maps depict spatiotemporal soil water variability with very high resolutions at the centimeter scale. The best validation measures of PA profile SWC θvTDR maps obtained were Nash-Sutcliffe model efficiency NSE = 0.6657, MPE = 0.00013, RMSE = 0.0385, MSPE = −0.0022, RMSSE = 1.6907, ASE = 0.0418, and MSDR = 0.9695. The sensor results using calibration M2 were found to be more valuable in environmental irrigation decision-making for a more accurate and timely decision on actual crop irrigation, with the lowest statistical and geostatistical errors. The best validation measures for accurate profile SWC θvTDR (m3·m−3) maps obtained for clay loam over clay soils. Visualizing the SWC results and their temporal changes via root zone profile geostatistical maps assists farmers and scientists in making informed and timely environmental irrigation decisions, optimizing energy, saving water, increasing water-use efficiency and crop production, reducing costs, and managing water–soil resources sustainably. Full article
(This article belongs to the Special Issue Hydrological Processes in Agricultural Watersheds)
Show Figures

Figure 1

21 pages, 3541 KiB  
Article
Drought Resistance Physiological Responses of Alfalfa to Alternate Partial Root-Zone Drying Irrigation
by Qunce Sun, Ying Wang, Shuzhen Zhang, Xianwei Peng, Xingyu Ge, Binghan Wen, Youping An, Guili Jin and Yingjun Zhang
Agriculture 2025, 15(13), 1446; https://doi.org/10.3390/agriculture15131446 - 4 Jul 2025
Viewed by 311
Abstract
In arid agricultural production, exploring suitable water-saving irrigation strategies and analyzing their water-saving mechanisms are of great significance. Alternating partial root-zone drying irrigation (APRI), a water-saving strategy, enhances the water use efficiency (WUE) of alfalfa (Medicago sativa L.) This paper aims to [...] Read more.
In arid agricultural production, exploring suitable water-saving irrigation strategies and analyzing their water-saving mechanisms are of great significance. Alternating partial root-zone drying irrigation (APRI), a water-saving strategy, enhances the water use efficiency (WUE) of alfalfa (Medicago sativa L.) This paper aims to clarify the physiological mechanisms by which the APRI method enhances the physiological WUE of alfalfa, as well as the differences between this water-saving irrigation strategy, conventional irrigation (CI), and their water deficit adjustments, in order to seek higher water use efficiency for alfalfa production in arid regions. In this experiment, alfalfa was used as the research subject, and three irrigation methods, CI, fixed partial root-zone drying (FPRI), and APRI, were set up, each paired with three decreasing moisture supply gradients of 90% water holding capacity (WHC) (W1), 70% WHC (W2), and 50% WHC (W3). Samples were taken and observed once after every three complete irrigation cycles. Through a comparative analysis of the growth status, leaf water status, antioxidant enzyme activity, and osmotic adjustment capabilities of alfalfa under different water supplies for the three irrigation strategies, the following conclusions were drawn: First, the APRI method, through artificially created periodic wet–dry cycles in the rhizosphere soil, provides pseudo-drought stress that enhances the osmotic adjustment capabilities and antioxidant enzyme activity of alfalfa leaves during the early to middle phases of irrigation treatment compared to CI and FPRI methods, resulting in healthier leaf water conditions. Secondly, the stronger drought tolerance and superior growth conditions of alfalfa under the APRI method due to reduced water availability are key factors in enhancing the water use efficiency of alfalfa under this strategy. Full article
(This article belongs to the Special Issue Innovative Conservation Cropping Systems and Practices—2nd Edition)
Show Figures

Figure 1

Back to TopTop