Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (14,659)

Search Parameters:
Keywords = agricultural system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 16782 KiB  
Article
Response of Grain Yield to Extreme Precipitation in Major Grain-Producing Areas of China Against the Background of Climate Change—A Case Study of Henan Province
by Keding Sheng, Rui Li, Fengqiuli Zhang, Tongde Chen, Peng Liu, Yanan Hu, Bingyin Li and Zhiyuan Song
Water 2025, 17(15), 2342; https://doi.org/10.3390/w17152342 - 6 Aug 2025
Abstract
Based on the panel data of daily meteorological stations and winter wheat yield in Henan Province from 2000 to 2023, this study comprehensively used the Mann–Kendall trend test, wavelet coherence analysis (WTC), and other methods to reveal the temporal and spatial evolution of [...] Read more.
Based on the panel data of daily meteorological stations and winter wheat yield in Henan Province from 2000 to 2023, this study comprehensively used the Mann–Kendall trend test, wavelet coherence analysis (WTC), and other methods to reveal the temporal and spatial evolution of extreme precipitation and its multi-scale stress mechanism on grain yield. The results showed the following: (1) Extreme precipitation showed the characteristics of ‘frequent fluctuation-gentle trend-strong spatial heterogeneity’, and the maximum daily precipitation in spring (RX1DAY) showed a significant uplift. The increase in rainstorm events (R95p/R99p) in the southern region during the summer is particularly prominent; at the same time, the number of consecutive drought days (CDDs > 15 d) in the middle of autumn was significantly prolonged. It was also found that 2010 is a significant mutation node. Since then, the synergistic effect of ‘increasing drought days–increasing rainstorm frequency’ has begun to appear, and the short-period coherence of super-strong precipitation (R99p) has risen to more than 0.8. (2) The spatial pattern of winter wheat in Henan is characterized by the three-level differentiation of ‘stable core area, sensitive transition zone and shrinking suburban area’, and the stability of winter wheat has improved but there are still local risks. (3) There is a multi-scale stress mechanism of extreme precipitation on winter wheat yield. The long-period (4–8 years) drought and flood events drive the system risk through a 1–2-year lag effect (short-period (0.5–2 years) medium rainstorm intensity directly impacted the production system). This study proposes a ‘sub-scale governance’ strategy, using a 1–2-year lag window to establish a rainstorm warning mechanism, and optimizing drainage facilities for high-risk areas of floods in the south to improve the climate resilience of the agricultural system against the background of climate change. Full article
(This article belongs to the Special Issue Soil Erosion and Soil and Water Conservation, 2nd Edition)
Show Figures

Figure 1

31 pages, 4260 KiB  
Article
Analysis of Spatiotemporal Characteristics of Global TCWV and AI Hybrid Model Prediction
by Longhao Xu, Kebiao Mao, Zhonghua Guo, Jiancheng Shi, Sayed M. Bateni and Zijin Yuan
Hydrology 2025, 12(8), 206; https://doi.org/10.3390/hydrology12080206 - 6 Aug 2025
Abstract
Extreme precipitation events severely impact agriculture, reducing yields and land use efficiency. The spatiotemporal distribution of Total Column Water Vapor (TCWV), the primary gaseous form of water, directly influences sustainable agricultural management. This study, through multi-source data fusion, employs methods including the Mann–Kendall [...] Read more.
Extreme precipitation events severely impact agriculture, reducing yields and land use efficiency. The spatiotemporal distribution of Total Column Water Vapor (TCWV), the primary gaseous form of water, directly influences sustainable agricultural management. This study, through multi-source data fusion, employs methods including the Mann–Kendall test, sliding change-point detection, wavelet transform, pixel-scale trend estimation, and linear regression to analyze the spatiotemporal dynamics of global TCWV from 1959 to 2023 and its impacts on agricultural systems, surpassing the limitations of single-method approaches. Results reveal a global TCWV increase of 0.0168 kg/m2/year from 1959–2023, with a pivotal shift in 2002 amplifying changes, notably in tropical regions (e.g., Amazon, Congo Basins, Southeast Asia) where cumulative increases exceeded 2 kg/m2 since 2000, while mid-to-high latitudes remained stable and polar regions showed minimal content. These dynamics escalate weather risks, impacting sustainable agricultural management with irrigation and crop adaptation. To enhance prediction accuracy, we propose a novel hybrid model combining wavelet transform with LSTM, TCN, and GRU deep learning models, substantially improving multidimensional feature extraction and nonstationary trend capture. Comparative analysis shows that WT-TCN performs the best (MAE = 0.170, R2 = 0.953), demonstrating its potential for addressing climate change uncertainties. These findings provide valuable applications for precision agriculture, sustainable water resource management, and disaster early warning. Full article
25 pages, 1470 KiB  
Article
A Hybrid Path Planning Algorithm for Orchard Robots Based on an Improved D* Lite Algorithm
by Quanjie Jiang, Yue Shen, Hui Liu, Zohaib Khan, Hao Sun and Yuxuan Huang
Agriculture 2025, 15(15), 1698; https://doi.org/10.3390/agriculture15151698 - 6 Aug 2025
Abstract
Due to the complex spatial structure, dense tree distribution, and narrow passages in orchard environments, traditional path planning algorithms often struggle with large path deviations, frequent turning, and reduced navigational safety. In order to overcome these challenges, this paper proposes a hybrid path [...] Read more.
Due to the complex spatial structure, dense tree distribution, and narrow passages in orchard environments, traditional path planning algorithms often struggle with large path deviations, frequent turning, and reduced navigational safety. In order to overcome these challenges, this paper proposes a hybrid path planning algorithm based on improved D* Lite for narrow forest orchard environments. The proposed approach enhances path feasibility and improves the robustness of the navigation system. The algorithm begins by constructing a 2D grid map reflecting the orchard layout and inflates the tree regions to create safety buffers for reliable path planning. For global path planning, an enhanced D* Lite algorithm is used with a cost function that jointly considers centerline proximity, turning angle smoothness, and directional consistency. This guides the path to remain close to the orchard row centerline, improving structural adaptability and path rationality. Narrow passages along the initial path are detected, and local replanning is performed using a Hybrid A* algorithm that accounts for the kinematic constraints of a differential tracked robot. This generates curvature-continuous and directionally stable segments that replace the original narrow-path portions. Finally, a gradient descent method is applied to smooth the overall path, improving trajectory continuity and execution stability. Field experiments in representative orchard environments demonstrate that the proposed hybrid algorithm significantly outperforms traditional D* Lite and KD* Lite-B methods in terms of path accuracy and navigational safety. The average deviation from the centerline is only 0.06 m, representing reductions of 75.55% and 38.27% compared to traditional D* Lite and KD* Lite-B, respectively, thereby enabling high-precision centerline tracking. Moreover, the number of hazardous nodes, defined as path points near obstacles, was reduced to five, marking decreases of 92.86% and 68.75%, respectively, and substantially enhancing navigation safety. These results confirm the method’s strong applicability in complex, constrained orchard environments and its potential as a foundation for efficient, safe, and fully autonomous agricultural robot operation. Full article
(This article belongs to the Special Issue Perception, Decision-Making, and Control of Agricultural Robots)
19 pages, 19033 KiB  
Article
Multi-Strategy Fusion RRT-Based Algorithm for Optimizing Path Planning in Continuous Cherry Picking
by Yi Zhang, Xinying Miao, Yifei Sun, Zhipeng He, Tianwen Hou, Zhenghan Wang and Qiuyan Wang
Agriculture 2025, 15(15), 1699; https://doi.org/10.3390/agriculture15151699 - 6 Aug 2025
Abstract
Automated cherry harvesting presents a significant opportunity to overcome the high costs and inefficiencies of manual labor in modern agriculture. However, robotic harvesting in dense canopies requires sophisticated path planning to navigate cluttered branches and selectively pick target fruits. This paper introduces a [...] Read more.
Automated cherry harvesting presents a significant opportunity to overcome the high costs and inefficiencies of manual labor in modern agriculture. However, robotic harvesting in dense canopies requires sophisticated path planning to navigate cluttered branches and selectively pick target fruits. This paper introduces a complete robotic harvesting solution centered on a novel path-planning algorithm: the Multi-Strategy Integrated RRT for Continuous Harvesting Path (MSI-RRTCHP) algorithm. Our system first employs a machine vision system to identify and locate mature cherries, distinguishing them from unripe fruits, leaves, and branches, which are treated as obstacles. Based on this visual data, the MSI-RRTCHP algorithm generates an optimal picking trajectory. Its core innovation is a synergistic strategy that enables intelligent navigation by combining probability-guided exploration, goal-oriented sampling, and adaptive step size adjustments based on the obstacle’s density. To optimize the picking sequence for multiple targets, we introduce an enhanced traversal algorithm (σ-TSP) that accounts for obstacle interference. Field experiments demonstrate that our integrated system achieved a 90% picking success rate. Compared with established algorithms, the MSI-RRTCHP algorithm reduced the path length by up to 25.47% and the planning time by up to 39.06%. This work provides a practical and efficient framework for robotic cherry harvesting, showcasing a significant step toward intelligent agricultural automation. Full article
(This article belongs to the Section Agricultural Technology)
17 pages, 1097 KiB  
Review
Natural Feed Additives in Sub-Saharan Africa: A Systematic Review of Efficiency and Sustainability in Ruminant Production
by Zonaxolo Ntsongota, Olusegun Oyebade Ikusika and Thando Conference Mpendulo
Ruminants 2025, 5(3), 36; https://doi.org/10.3390/ruminants5030036 - 6 Aug 2025
Abstract
Ruminant livestock production plays a crucial role in the agricultural systems of Sub-Saharan Africa, significantly supporting rural livelihoods through income generation, improved nutrition, and employment opportunities. Despite its importance, the sector continues to face substantial challenges, such as low feed quality, seasonal feed [...] Read more.
Ruminant livestock production plays a crucial role in the agricultural systems of Sub-Saharan Africa, significantly supporting rural livelihoods through income generation, improved nutrition, and employment opportunities. Despite its importance, the sector continues to face substantial challenges, such as low feed quality, seasonal feed shortages, and climate-related stresses, all of which limit productivity and sustainability. Considering these challenges, the adoption of natural feed additives has emerged as a promising strategy to enhance animal performance, optimise nutrient utilisation, and mitigate environmental impacts, including the reduction of enteric methane emissions. This review underscores the significant potential of natural feed additives such as plant extracts, essential oils, probiotics, and mineral-based supplements such as fossil shell flour as sustainable alternatives to conventional growth promoters in ruminant production systems across the region. All available documented evidence on the topic from 2000 to 2024 was collated and synthesised through standardised methods of systematic review protocol—PRISMA. Out of 319 research papers downloaded, six were included and analysed directly or indirectly in this study. The results show that the addition of feed additives to ruminant diets in all the studies reviewed significantly (p < 0.05) improved growth parameters such as average daily growth (ADG), feed intake, and feed conversion ratio (FCR) compared to the control group. However, no significant (p > 0.05) effect was found on cold carcass weight (CCW), meat percentage, fat percentage, bone percentage, or intramuscular fat (IMF%) compared to the control. The available evidence indicates that these additives can provide tangible benefits, including improved growth performance, better feed efficiency, enhanced immune responses, and superior meat quality, while also supporting environmental sustainability by reducing nitrogen excretion and decreasing dependence on antimicrobial agents. Full article
Show Figures

Figure 1

20 pages, 11251 KiB  
Article
Bioactive Extracts of Spirulina platensis Inhibit Colletotrichum orchidearum and Fusarium nirenbergiae: A Green Approach to Hydroponic Lettuce Protection
by Leticia Eduarda Bender, Emily da Luz Monteiro, José Luís Trevizan Chiomento and Luciane Maria Colla
Processes 2025, 13(8), 2483; https://doi.org/10.3390/pr13082483 - 6 Aug 2025
Abstract
The growing demand for food and the environmental impact of conventional agriculture have prompted the search for sustainable alternatives. Phycocyanin (PC) and total phenolic compounds (TPC) extracted from Spirulina platensis have shown potential for the biological control of phytopathogens. The extraction method directly [...] Read more.
The growing demand for food and the environmental impact of conventional agriculture have prompted the search for sustainable alternatives. Phycocyanin (PC) and total phenolic compounds (TPC) extracted from Spirulina platensis have shown potential for the biological control of phytopathogens. The extraction method directly influences the yield and stability of these compounds. This study aimed to establish an efficient extraction protocol for PC and TPC and to evaluate their antimicrobial efficacy in vitro against Colletotrichum orchidearum, Fusarium nirenbergiae, and Alternaria sp. isolated from hydroponically grown lettuce. The phytopathogens were identified based on phylogenetic analyses using sequences from the ITS, EF1-α, GAPDH, and RPB2 gene regions. This is the first report of C. orchidearum in hydroponic lettuce culture in Brazil, expanding its known host range. Extracts were obtained using hydroalcoholic solvents and phosphate buffer (PB), combined with ultrasound-assisted extraction (bath and probe). The extracts were tested for in vitro antifungal activity. Data were analyzed by ANOVA (p < 0.05), followed by Tukey’s test. The combination of the PB and ultrasound probe resulted in the highest PC (95.6 mg·g−1 biomass) and TPC (21.9 mg GAE·g−1) yields, using 10% (w/v) biomass. After UV sterilization, the extract retained its PC and TPC content. The extract inhibited C. orchidearum by up to 53.52% after three days and F. nirenbergiae by 54.17% on the first day. However, it promoted the growth of Alternaria sp. These findings indicate that S. platensis extracts are a promising alternative for the biological control of C. orchidearum and F. nirenbergiae in hydroponic systems. Full article
Show Figures

Figure 1

30 pages, 9692 KiB  
Article
Integrating GIS, Remote Sensing, and Machine Learning to Optimize Sustainable Groundwater Recharge in Arid Mediterranean Landscapes: A Case Study from the Middle Draa Valley, Morocco
by Adil Moumane, Abdessamad Elmotawakkil, Md. Mahmudul Hasan, Nikola Kranjčić, Mouhcine Batchi, Jamal Al Karkouri, Bojan Đurin, Ehab Gomaa, Khaled A. El-Nagdy and Youssef M. Youssef
Water 2025, 17(15), 2336; https://doi.org/10.3390/w17152336 - 6 Aug 2025
Abstract
Groundwater plays a crucial role in sustaining agriculture and livelihoods in the arid Middle Draa Valley (MDV) of southeastern Morocco. However, increasing groundwater extraction, declining rainfall, and the absence of effective floodwater harvesting systems have led to severe aquifer depletion. This study applies [...] Read more.
Groundwater plays a crucial role in sustaining agriculture and livelihoods in the arid Middle Draa Valley (MDV) of southeastern Morocco. However, increasing groundwater extraction, declining rainfall, and the absence of effective floodwater harvesting systems have led to severe aquifer depletion. This study applies and compares six machine learning (ML) algorithms—decision trees (CART), ensemble methods (random forest, LightGBM, XGBoost), distance-based learning (k-nearest neighbors), and support vector machines—integrating GIS, satellite data, and field observations to delineate zones suitable for groundwater recharge. The results indicate that ensemble tree-based methods yielded the highest predictive accuracy, with LightGBM outperforming the others by achieving an overall accuracy of 0.90. Random forest and XGBoost also demonstrated strong performance, effectively identifying priority areas for artificial recharge, particularly near ephemeral streams. A feature importance analysis revealed that soil permeability, elevation, and stream proximity were the most influential variables in recharge zone delineation. The generated maps provide valuable support for irrigation planning, aquifer conservation, and floodwater management. Overall, the proposed machine learning–geospatial framework offers a robust and transferable approach for mapping groundwater recharge zones (GWRZ) in arid and semi-arid regions, contributing to the achievement of Sustainable Development Goals (SDGs))—notably SDG 6 (Clean Water and Sanitation), by enhancing water-use efficiency and groundwater recharge (Target 6.4), and SDG 13 (Climate Action), by supporting climate-resilient aquifer management. Full article
Show Figures

Figure 1

24 pages, 5022 KiB  
Article
Aging-Invariant Sheep Face Recognition Through Feature Decoupling
by Suhui Liu, Chuanzhong Xuan, Zhaohui Tang, Guangpu Wang, Xinyu Gao and Zhipan Wang
Animals 2025, 15(15), 2299; https://doi.org/10.3390/ani15152299 - 6 Aug 2025
Abstract
Precise recognition of individual ovine specimens plays a pivotal role in implementing smart agricultural platforms and optimizing herd management systems. With the development of deep learning technology, sheep face recognition provides an efficient and contactless solution for individual sheep identification. However, with the [...] Read more.
Precise recognition of individual ovine specimens plays a pivotal role in implementing smart agricultural platforms and optimizing herd management systems. With the development of deep learning technology, sheep face recognition provides an efficient and contactless solution for individual sheep identification. However, with the growth of sheep, their facial features keep changing, which poses challenges for existing sheep face recognition models to maintain accuracy across the dynamic changes in facial features over time, making it difficult to meet practical needs. To address this limitation, we propose the lifelong biometric learning of the sheep face network (LBL-SheepNet), a feature decoupling network designed for continuous adaptation to ovine facial changes, and constructed a dataset of 31,200 images from 55 sheep tracked monthly from 1 to 12 months of age. The LBL-SheepNet model addresses dynamic variations in facial features during sheep growth through a multi-module architectural framework. Firstly, a Squeeze-and-Excitation (SE) module enhances discriminative feature representation through adaptive channel-wise recalibration. Then, a nonlinear feature decoupling module employs a hybrid channel-batch attention mechanism to separate age-related features from identity-specific characteristics. Finally, a correlation analysis module utilizes adversarial learning to suppress age-biased feature interference, ensuring focus on age-invariant identifiers. Experimental results demonstrate that LBL-SheepNet achieves 95.5% identification accuracy and 95.3% average precision on the sheep face dataset. This study introduces a lifelong biometric learning (LBL) mechanism to mitigate recognition accuracy degradation caused by dynamic facial feature variations in growing sheep. By designing a feature decoupling network integrated with adversarial age-invariant learning, the proposed method addresses the performance limitations of existing models in long-term individual identification. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Figure 1

30 pages, 20265 KiB  
Article
From Fields to Finance: Dynamic Connectedness and Optimal Portfolio Strategies Among Agricultural Commodities, Oil, and Stock Markets
by Xuan Tu and David Leatham
Int. J. Financial Stud. 2025, 13(3), 143; https://doi.org/10.3390/ijfs13030143 - 6 Aug 2025
Abstract
In this study, we investigate the return propagation mechanism, hedging effectiveness, and portfolio performance across several common agricultural commodities, crude oil, and S&P 500 index, ranging from July 2000 to June 2024 by using a time-varying parameter vector autoregression (TVP-VAR) connectedness approach and [...] Read more.
In this study, we investigate the return propagation mechanism, hedging effectiveness, and portfolio performance across several common agricultural commodities, crude oil, and S&P 500 index, ranging from July 2000 to June 2024 by using a time-varying parameter vector autoregression (TVP-VAR) connectedness approach and three common multiple assets portfolio optimization strategies. The empirical results show that, the total connectedness peaked during the 2008 global financial crisis, followed by the European debt crisis and the COVID-19 pandemic, while it remained relatively lower at the onset of the Russia-Ukraine conflict. In the transmission mechanism, commodities and S&P 500 index exhibit distinct and dynamic characteristics as transmitters or receivers. Portfolio analysis reveals that, with exception of the COVID-19 pandemic, all three dynamic portfolios outperform the S&P 500 benchmark across major global crises. Additionally, the minimum correlation and minimum connectedness strategies are superior than transitional minimum variance method in most scenarios. Our findings have implications for policymakers in preventing systemic risk, for investors in managing portfolio risk, and for farmers and agribusiness enterprises in enhancing economic benefits. Full article
Show Figures

Figure 1

22 pages, 7705 KiB  
Article
Implementation of SLAM-Based Online Mapping and Autonomous Trajectory Execution in Software and Hardware on the Research Platform Nimbulus-e
by Thomas Schmitz, Marcel Mayer, Theo Nonnenmacher and Matthias Schmitz
Sensors 2025, 25(15), 4830; https://doi.org/10.3390/s25154830 - 6 Aug 2025
Abstract
This paper presents the design and implementation of a SLAM-based online mapping and autonomous trajectory execution system for the Nimbulus-e, a concept vehicle designed for agile maneuvering in confined spaces. The Nimbulus-e uses individual steer-by-wire corner modules with in-wheel motors at all four [...] Read more.
This paper presents the design and implementation of a SLAM-based online mapping and autonomous trajectory execution system for the Nimbulus-e, a concept vehicle designed for agile maneuvering in confined spaces. The Nimbulus-e uses individual steer-by-wire corner modules with in-wheel motors at all four corners. The associated eight joint variables serve as control inputs, allowing precise trajectory following. These control inputs can be derived from the vehicle’s trajectory using nonholonomic constraints. A LiDAR sensor is used to map the environment and detect obstacles. The system processes LiDAR data in real time, continuously updating the environment map and enabling localization within the environment. The inclusion of vehicle odometry data significantly reduces computation time and improves accuracy compared to a purely visual approach. The A* and Hybrid A* algorithms are used for trajectory planning and optimization, ensuring smooth vehicle movement. The implementation is validated through both full vehicle simulations using an ADAMS Car—MATLABco-simulation and a scaled physical prototype, demonstrating the effectiveness of the system in navigating complex environments. This work contributes to the field of autonomous systems by demonstrating the potential of combining advanced sensor technologies with innovative control algorithms to achieve reliable and efficient navigation. Future developments will focus on improving the robustness of the system by implementing a robust closed-loop controller and exploring additional applications in dense urban traffic and agricultural operations. Full article
Show Figures

Figure 1

20 pages, 312 KiB  
Article
Pimelea and Its Toxicity: A Survey of Landholder Experiences and Management Practices
by Rashid Saleem, Shane Campbell, Mary T. Fletcher, Sundaravelpandian Kalaipandian and Steve W. Adkins
Toxins 2025, 17(8), 393; https://doi.org/10.3390/toxins17080393 - 6 Aug 2025
Abstract
Pimelea is one of the highly toxic plants in Australia, particularly affecting cattle. It contains simplexin, a potent toxin that can cause Pimelea poisoning (St. George Disease) in livestock. A survey was conducted to assess the current impact of Pimelea on livestock production, [...] Read more.
Pimelea is one of the highly toxic plants in Australia, particularly affecting cattle. It contains simplexin, a potent toxin that can cause Pimelea poisoning (St. George Disease) in livestock. A survey was conducted to assess the current impact of Pimelea on livestock production, pasture systems, and financial losses among agricultural producers. In addition, information was also sought about the environmental conditions that facilitate its growth and the effectiveness of existing management strategies. The survey responses were obtained from producers affected by Pimelea across nine different Local Government Areas, through three States, viz., Queensland, New South Wales, and South Australia. Pimelea was reported to significantly affect animal production, with 97% of producers surveyed acknowledging its detrimental effects. Among livestock, cattle were the most severely affected (94%), when compared to sheep (13%), goats (3%), and horses (3%). The presence of Pimelea was mostly observed in spring (65%) and winter (48%), although 29% of respondents indicated that it could be present all year-round under favorable rainfall conditions. Germination was associated with light to moderate rainfall (52%), while only 24% linked it to heavy rainfall. Pimelea simplex F. Muell. was the most frequently encountered species (71%), followed by Pimelea trichostachya Lindl. (26%). Infestations were reported to occur annually by 47% of producers, with 41% noting occurrences every 2 to 5 years. Financially, producers estimated average annual losses of AUD 67,000, with 50% reporting an average of 26 cattle deaths per year, reaching up to 105 deaths in severe years. Some producers were spending up to AUD 2100 per annum to manage Pimelea. While chemical and physical controls were commonly employed, integrating competitive pastures and alternative livestock, such as sheep and goats, was considered as a potential management strategy. This study reiterates the need for further research on sustainable pasture management practices to reduce Pimelea-related risks to livestock and agricultural production systems. Full article
(This article belongs to the Special Issue Plant Toxin Emergency)
23 pages, 1627 KiB  
Article
Sugar Beet Profitability in Lubelskie Province, Poland
by Waldemar Samociuk, Zbigniew Krzysiak, Krzysztof Przystupa and Janusz Zarajczyk
Appl. Sci. 2025, 15(15), 8685; https://doi.org/10.3390/app15158685 (registering DOI) - 6 Aug 2025
Abstract
The work presents a comprehensive analysis and costing of sugar beet cultivation in 2020–2022, for individual farms of the Lublin region. About 120 farms were analyzed. Based on this analysis, the criteria for a model farm were determined and adopted for the calculation [...] Read more.
The work presents a comprehensive analysis and costing of sugar beet cultivation in 2020–2022, for individual farms of the Lublin region. About 120 farms were analyzed. Based on this analysis, the criteria for a model farm were determined and adopted for the calculation of sugar beet production costs. ARIMA process modeling was performed, based on which forecasts were determined for several selected parameters. Customs tariffs introduced by the USA have a drastic impact on the economy. The effects of the COVID19 pandemic may also have a significant impact on the current market situation. Forecasting in the current geopolitical situation is very difficult because of the lack of stationarity of parameters. The financial result obtained by growers is mainly influenced by indirect costs absorbing 61.31% of total costs in 2020. In 2021 and 2022, indirect costs were 61.16% and 59.61% of production income, respectively. Among this group of costs, the largest share is accounted for by the costs of sowing services, sugar beet harvesting, and soil liming amounting from 14.27% to 15.92%. During the analyzed period, sugar beet cultivation remained profitable, with a production profitability index of 1.31 in 2020 and 2021, and 1.10 in 2022. The unit cost of production increased every year. In 2020, it was 14.27% and in 2021, it increased to 15.19%. The unit cost of production in 2022 was the highest, at 23.41%. Sugar beet cultivation is one of the profitable activities in agricultural production, but it is characterized by high production costs, which increased during the years analyzed (2020 to 2022), topping out at 90.87% of total revenue. The information and data presented in this study will be used in the development of a farmer-oriented application and will support the creation of an expert system for sugar beet growers. Cost forecasting will enable farmers to plan their production more effectively. Full article
Show Figures

Figure 1

18 pages, 4216 KiB  
Article
Screening and Application of Highly Efficient Rhizobia for Leguminous Green Manure Astragalus sinicus in Lyophilized Inoculants and Seed Coating
by Ding-Yuan Xue, Wen-Feng Chen, Guo-Ping Yang, You-Guo Li and Jun-Jie Zhang
Plants 2025, 14(15), 2431; https://doi.org/10.3390/plants14152431 - 6 Aug 2025
Abstract
Astragalus sinicus, a key leguminous green manure widely cultivated in Southern China’s rice-based cropping systems, plays a pivotal role in sustainable agriculture by enhancing soil organic matter sequestration, improving rice yield, and elevating grain quality. The symbiotic nitrogen-fixing association between A. sinicus [...] Read more.
Astragalus sinicus, a key leguminous green manure widely cultivated in Southern China’s rice-based cropping systems, plays a pivotal role in sustainable agriculture by enhancing soil organic matter sequestration, improving rice yield, and elevating grain quality. The symbiotic nitrogen-fixing association between A. sinicus and its matching rhizobia is fundamental to its agronomic value; however, suboptimal inoculant efficiency and field application methodologies constrain its full potential. To address these limitations, we conducted a multi-phase study involving (1) rhizobial strain screening under controlled greenhouse conditions, (2) an optimized lyophilization protocol evaluating cryoprotectant (trehalose, skimmed milk powder and others), and (3) seed pelleting trails with rhizobial viability and nodulation assessments over different storage periods. Our results demonstrate that Mesorhizobium huakuii CCBAU 33470 exhibits a superior nitrogen-fixing efficacy, significantly enhancing key traits in A. sinicus, including leaf chlorophyll content, tiller number, and aboveground biomass. Lyophilized inoculants prepared with cryoprotectants (20% trehalose or 20% skimmed milk powder) maintained >90% bacterial viability for 60 days and markedly improved nodulation capacity relative to unprotected formulations. The optimized seed pellets sustained high rhizobial loads (5.5 × 103 cells/seed) with an undiminished viability after 15 days of storage and nodulation ability after 40 days of storage. This integrated approach of rhizobial selection, inoculant formulation, and seed coating overcomes cultivation bottlenecks, boosting symbiotic nitrogen fixation for A. sinicus cultivation. Full article
(This article belongs to the Topic New Challenges on Plant–Microbe Interactions)
Show Figures

Figure 1

28 pages, 2057 KiB  
Article
Design and Fabrication of a Cost-Effective, Remote-Controlled, Variable-Rate Sprayer Mounted on an Autonomous Tractor, Specifically Integrating Multiple Advanced Technologies for Application in Sugarcane Fields
by Pongpith Tuenpusa, Kiattisak Sangpradit, Mano Suwannakam, Jaturong Langkapin, Alongklod Tanomtong and Grianggai Samseemoung
AgriEngineering 2025, 7(8), 249; https://doi.org/10.3390/agriengineering7080249 - 5 Aug 2025
Abstract
The integration of a real-time image processing system using multiple webcams with a variable rate spraying system mounted on the back of an unmanned tractor presents an effective solution to the labor shortage in agriculture. This research aims to design and fabricate a [...] Read more.
The integration of a real-time image processing system using multiple webcams with a variable rate spraying system mounted on the back of an unmanned tractor presents an effective solution to the labor shortage in agriculture. This research aims to design and fabricate a low-cost, variable-rate, remote-controlled sprayer specifically for use in sugarcane fields. The primary method involves the modification of a 15-horsepower tractor, which will be equipped with a remote-control system to manage both the driving and steering functions. A foldable remote-controlled spraying arm is installed at the rear of the unmanned tractor. The system operates by using a webcam mounted on the spraying arm to capture high-angle images above the sugarcane canopy. These images are recorded and processed, and the data is relayed to the spraying control system. As a result, chemicals can be sprayed on the sugarcane accurately and efficiently based on the insights gained from image processing. Tests were conducted at various nozzle heights of 0.25 m, 0.5 m, and 0.75 m. The average system efficiency was found to be 85.30% at a pressure of 1 bar, with a chemical spraying rate of 36 L per hour and a working capacity of 0.975 hectares per hour. The energy consumption recorded was 0.161 kWh, while fuel consumption was measured at 6.807 L per hour. In conclusion, the development of the remote-controlled variable rate sprayer mounted on an unmanned tractor enables immediate and precise chemical application through remote control. This results in high-precision spraying and uniform distribution, ultimately leading to cost savings, particularly by allowing for adjustments in nozzle height from a minimum of 0.25 m to a maximum of 0.75 m from the target. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
27 pages, 14923 KiB  
Article
Multi-Sensor Flood Mapping in Urban and Agricultural Landscapes of the Netherlands Using SAR and Optical Data with Random Forest Classifier
by Omer Gokberk Narin, Aliihsan Sekertekin, Caglar Bayik, Filiz Bektas Balcik, Mahmut Arıkan, Fusun Balik Sanli and Saygin Abdikan
Remote Sens. 2025, 17(15), 2712; https://doi.org/10.3390/rs17152712 - 5 Aug 2025
Abstract
Floods stand as one of the most harmful natural disasters, which have become more dangerous because of climate change effects on urban structures and agricultural fields. This research presents a comprehensive flood mapping approach that combines multi-sensor satellite data with a machine learning [...] Read more.
Floods stand as one of the most harmful natural disasters, which have become more dangerous because of climate change effects on urban structures and agricultural fields. This research presents a comprehensive flood mapping approach that combines multi-sensor satellite data with a machine learning method to evaluate the July 2021 flood in the Netherlands. The research developed 25 different feature scenarios through the combination of Sentinel-1, Landsat-8, and Radarsat-2 imagery data by using backscattering coefficients together with optical Normalized Difference Water Index (NDWI) and Hue, Saturation, and Value (HSV) images and Synthetic Aperture Radar (SAR)-derived Grey Level Co-occurrence Matrix (GLCM) texture features. The Random Forest (RF) classifier was optimized before its application based on two different flood-prone regions, which included Zutphen’s urban area and Heijen’s agricultural land. Results demonstrated that the multi-sensor fusion scenarios (S18, S20, and S25) achieved the highest classification performance, with overall accuracy reaching 96.4% (Kappa = 0.906–0.949) in Zutphen and 87.5% (Kappa = 0.754–0.833) in Heijen. For the flood class F1 scores of all scenarios, they varied from 0.742 to 0.969 in Zutphen and from 0.626 to 0.969 in Heijen. Eventually, the addition of SAR texture metrics enhanced flood boundary identification throughout both urban and agricultural settings. Radarsat-2 provided limited benefits to the overall results, since Sentinel-1 and Landsat-8 data proved more effective despite being freely available. This study demonstrates that using SAR and optical features together with texture information creates a powerful and expandable flood mapping system, and RF classification performs well in diverse landscape settings. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Flood Forecasting and Monitoring)
Show Figures

Figure 1

Back to TopTop