Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (295)

Search Parameters:
Keywords = agricultural robot technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 11970 KB  
Review
Sensor-Centric Intelligent Systems for Soybean Harvest Mechanization in Challenging Agro-Environments of China: A Review
by Xinyang Gu, Zhong Tang and Bangzhui Wang
Sensors 2025, 25(21), 6695; https://doi.org/10.3390/s25216695 - 2 Nov 2025
Abstract
Soybean–corn intercropping in the hilly–mountainous regions of Southwest China poses unique challenges to mechanized harvesting because of complex topography and agronomic constraints. Addressing the soybean-harvesting bottleneck in these fields requires advanced sensing and perception rather than purely mechanical redesigns. Prior reviews emphasized flat-terrain [...] Read more.
Soybean–corn intercropping in the hilly–mountainous regions of Southwest China poses unique challenges to mechanized harvesting because of complex topography and agronomic constraints. Addressing the soybean-harvesting bottleneck in these fields requires advanced sensing and perception rather than purely mechanical redesigns. Prior reviews emphasized flat-terrain machinery or single-crop systems, leaving a gap in sensor-centric solutions for intercropping on steep, irregular plots. This review analyzes how sensors enable the next generation of intelligent harvesters by linking field constraints to perception and control. We frame the core failures of conventional machines—instability, inconsistent cutting, and low efficiency—as perception problems driven by low pod height, severe slope effects, and header–row mismatches. From this perspective, we highlight five fronts: (1) terrain-profiling sensors integrated with adaptive headers; (2) IMUs and inclination sensors for chassis stability and traction on slopes; (3) multi-sensor fusion of LiDAR and machine vision with AI for crop identification, navigation, and obstacle avoidance; (4) vision and spectral sensing for selective harvesting and impurity pre-sorting; and (5) acoustic/vibration sensing for low-damage, high-efficiency threshing and cleaning. We conclude that compact, intelligent machinery powered by sensing, data fusion, and real-time control is essential, while acknowledging technological and socio-economic barriers to deployment. This review outlines a sensor-driven roadmap for sustainable, efficient soybean harvesting in challenging terrains. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

67 pages, 5859 KB  
Review
A Comprehensive Review of Sensing, Control, and Networking in Agricultural Robots: From Perception to Coordination
by Chijioke Leonard Nkwocha, Adeayo Adewumi, Samuel Oluwadare Folorunsho, Chrisantus Eze, Pius Jjagwe, James Kemeshi and Ning Wang
Robotics 2025, 14(11), 159; https://doi.org/10.3390/robotics14110159 - 29 Oct 2025
Viewed by 294
Abstract
This review critically examines advancements in sensing, control, and networking technologies for agricultural robots (AgRobots) and their impact on modern farming. AgRobots—including Unmanned Aerial Vehicles (UAVs), Unmanned Ground Vehicles (UGVs), Unmanned Surface Vehicles (USVs), and robotic arms—are increasingly adopted to address labour shortages, [...] Read more.
This review critically examines advancements in sensing, control, and networking technologies for agricultural robots (AgRobots) and their impact on modern farming. AgRobots—including Unmanned Aerial Vehicles (UAVs), Unmanned Ground Vehicles (UGVs), Unmanned Surface Vehicles (USVs), and robotic arms—are increasingly adopted to address labour shortages, sustainability challenges, and rising food demand. This paper reviews sensing technologies such as cameras, LiDAR, and multispectral sensors for navigation, object detection, and environmental perception. Control approaches, from classical PID (Proportional-Integral-Derivative) to advanced nonlinear and learning-based methods, are analysed to ensure precision, adaptability, and stability in dynamic agricultural settings. Networking solutions, including ZigBee, LoRaWAN, 5G, and emerging 6G, are evaluated for enabling real-time communication, multi-robot coordination, and data management. Swarm robotics and hybrid decentralized architectures are highlighted for efficient collective operations. This review is based on the literature published between 2015 and 2025 to identify key trends, challenges, and future directions in AgRobots. While AgRobots promise enhanced productivity, reduced environmental impact, and sustainable practices, barriers such as high costs, complex field conditions, and regulatory limitations remain. This review is expected to provide a foundation for guiding research and development toward innovative, integrated solutions for global food security and sustainable agriculture. Full article
(This article belongs to the Special Issue Smart Agriculture with AI and Robotics)
Show Figures

Graphical abstract

41 pages, 2786 KB  
Review
Research Status and Development Trends of Artificial Intelligence in Smart Agriculture
by Chuang Ge, Guangjian Zhang, Yijie Wang, Dandan Shao, Xiangjin Song and Zhaowei Wang
Agriculture 2025, 15(21), 2247; https://doi.org/10.3390/agriculture15212247 - 28 Oct 2025
Viewed by 501
Abstract
Artificial Intelligence (AI) is a key technological enabler for the transition of agricultural production and management from experience-driven to data-driven, continuously advancing modern agriculture toward smart agriculture. This evolution ultimately aims to achieve a precise agricultural production model characterized by low resource consumption, [...] Read more.
Artificial Intelligence (AI) is a key technological enabler for the transition of agricultural production and management from experience-driven to data-driven, continuously advancing modern agriculture toward smart agriculture. This evolution ultimately aims to achieve a precise agricultural production model characterized by low resource consumption, high safety, high quality, high yield, and stable, sustainable development. Although machine learning, deep learning, computer vision, Internet of Things, and other AI technologies have made significant progress in numerous agricultural production applications, most studies focus on singular agricultural scenarios or specific AI algorithm research, such as object detection, navigation, agricultural machinery maintenance, and food safety, resulting in relatively limited coverage. To comprehensively elucidate the applications of AI in agriculture and provide a valuable reference for practitioners and policymakers, this paper reviews relevant research by investigating the entire agricultural production process—including planting, management, and harvesting—covering application scenarios such as seed selection during the cultivation phase, pest and disease identification and intelligent management during the growth phase, and agricultural product grading during the harvest phase, as well as agricultural machinery and devices like fault diagnosis and predictive maintenance of agricultural equipment, agricultural robots, and the agricultural Internet of Things. It first analyzes the fundamental principles and potential advantages of typical AI technologies, followed by a systematic and in-depth review of the latest progress in applying these core technologies to smart agriculture. The challenges faced by existing technologies are also explored, such as the inherent limitations of AI models—including poor generalization capability, low interpretability, and insufficient real-time performance—as well as the complex agricultural operating environments that result in multi-source, heterogeneous, and low-quality, unevenly annotated data. Furthermore, future research directions are discussed, such as lightweight network models, transfer learning, embodied intelligent agricultural robots, multimodal perception technologies, and large language models for agriculture. The aim is to provide meaningful insights for both theoretical research and practical applications of AI technologies in agriculture. Full article
(This article belongs to the Special Issue Perception, Decision-Making, and Control of Agricultural Robots)
Show Figures

Figure 1

24 pages, 5577 KB  
Review
Intelligent Batch Harvesting of Trellis-Grown Fruits with Application to Kiwifruit Picking Robots
by Yuxin Yang, Mei Zhang, Wei Ma and Yongsong Hu
Agronomy 2025, 15(11), 2499; https://doi.org/10.3390/agronomy15112499 - 28 Oct 2025
Viewed by 240
Abstract
This study aims to help researchers quickly understand the latest research status of kiwifruit picking robots to expand their research ideas. The centralized picking of kiwifruit is confronted with challenges such as high labor intensity and labor shortage. A series of social issues [...] Read more.
This study aims to help researchers quickly understand the latest research status of kiwifruit picking robots to expand their research ideas. The centralized picking of kiwifruit is confronted with challenges such as high labor intensity and labor shortage. A series of social issues including the decline in agricultural population and population aging have further increased the cost of its harvest. Therefore, intelligent picking robots replacing manual operations is an effective solution. This paper, through literature review and organization, analyzes and evaluates the performance characteristics of various current kiwifruit picking robots. It summarizes the key technologies of kiwifruit picking robots, from the aspects of robot vision systems, mechanical arms, and the end effector. At the same time, it conducts an in-depth analysis of the problems existing in automatic kiwifruit harvesting technology in modern agriculture. Finally, it is concluded that in the future, research should be carried out in aspects such as kiwifruit cluster recognition algorithms, picking efficiency, and damage cost and universality to enhance the operational performance and market promotion potential of kiwifruit picking robots. The significance of this review lies in addressing the imminent labor crisis in agricultural production and steering agriculture toward intelligent and precise transformation. Its contributions are reflected in greatly advancing robotic technology in complex agricultural settings, generating substantial technical achievements, injecting new vitality into related industries and academic fields, and ultimately delivering sustainable economic benefits and stable agricultural supply to society. Full article
(This article belongs to the Special Issue Digital Twins in Precision Agriculture)
Show Figures

Figure 1

25 pages, 1849 KB  
Review
Key Technologies of Robotic Arms in Unmanned Greenhouse
by Songchao Zhang, Tianhong Liu, Xiang Li, Chen Cai, Chun Chang and Xinyu Xue
Agronomy 2025, 15(11), 2498; https://doi.org/10.3390/agronomy15112498 - 28 Oct 2025
Viewed by 401
Abstract
As a pioneering solution for precision agriculture, unmanned, robotics-centred greenhouse farms have become a key technological pathway for intelligent upgrades. The robotic arm is the core unit responsible for achieving full automation, and the level of technological development of this unit directly affects [...] Read more.
As a pioneering solution for precision agriculture, unmanned, robotics-centred greenhouse farms have become a key technological pathway for intelligent upgrades. The robotic arm is the core unit responsible for achieving full automation, and the level of technological development of this unit directly affects the productivity and intelligence of these farms. This review aims to systematically analyze the current applications, challenges, and future trends of robotic arms and their key technologies within unmanned greenhouse. The paper systematically classifies and compares the common types of robotic arms and their mobile platforms used in greenhouses. It provides an in-depth exploration of the core technologies that support efficient manipulator operation, focusing on the design evolution of end-effectors and the perception algorithms for plants and fruit. Furthermore, it elaborates on the framework for integrating individual robots into collaborative systems analyzing typical application cases in areas such as plant protection and fruit and vegetable harvesting. The review concludes that greenhouse robotic arm technology is undergoing a profound transformation evolving from single-function automation towards system-level intelligent integration. Finally, it discusses the future development directions highlighting the importance of multi-robot systems, swarm intelligence, and air-ground collaborative frameworks incorporating unmanned aerial vehicles (UAVs) in overcoming current limitations and achieving fully autonomous greenhouses. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

40 pages, 3599 KB  
Review
Advanced Triboelectric Nanogenerators for Smart Devices and Emerging Technologies: A Review
by Van-Long Trinh and Chen-Kuei Chung
Micromachines 2025, 16(11), 1203; https://doi.org/10.3390/mi16111203 - 23 Oct 2025
Viewed by 585
Abstract
Smart devices and emerging technologies are highly popular devices and technologies that considerably improve our daily living by reducing or replacing human workforces, treating disease, monitoring healthcare, enhancing service performance, improving quality, and protecting the natural environment, and promoting non-gas emissions, sustainable working, [...] Read more.
Smart devices and emerging technologies are highly popular devices and technologies that considerably improve our daily living by reducing or replacing human workforces, treating disease, monitoring healthcare, enhancing service performance, improving quality, and protecting the natural environment, and promoting non-gas emissions, sustainable working, green technologies, and renewable energy. Triboelectric nanogenerators (TENGs) have recently emerged as a type of advanced energy harvesting technology that is simple, green, renewable, flexible, and endurable as an energy resource. High-performance TENGs, denoted as advanced TENGs, have potential for use in many practical applications such as in self-powered sensors and sources, portable electric devices, power grid penetration, monitoring manufacturing processes for quality control, and in medical and healthcare applications that meet the criteria for smart devices and emerging technologies. Advanced TENGs are used as highly efficient energy harvesters that can convert many types of wasted mechanical energy into the electric energy used in a range of practical applications in our daily lives. This article reviews recently advanced TENGs and their potential for use with smart devices and emerging technology applications. The work encourages and strengthens motivation to develop new smart devices and emerging technologies to serve us in many fields of our daily living. When TENGs are introduced into smart devices and emerging technologies, they can be applied in a variety of practical applications such as the food processing industry, information and communication technology, agriculture, construction, transportation, marine technology, the energy sector, mechanical processing, manufacturing, self-powered sensors, Industry 4.0, drug safety, and robotics due to their sustainable and renewable energy, light weight, cost effectiveness, flexibility, and self-powered portable energy sources. Their advantages, disadvantages, and solutions are also discussed for further research. Full article
Show Figures

Figure 1

28 pages, 5802 KB  
Review
AI and Robotics in Agriculture: A Systematic and Quantitative Review of Research Trends (2015–2025)
by Abderrachid Hamrani, Amin Allouhi, Fatma Zohra Bouarab and Krish Jayachandran
Crops 2025, 5(5), 75; https://doi.org/10.3390/crops5050075 - 21 Oct 2025
Viewed by 1487
Abstract
The swift integration of AI, robotics, and advanced sensing technologies has revolutionized agriculture into a data-centric, autonomous, and sustainable sector. This systematic study examines the interplay between artificial intelligence and agricultural robotics in intelligent farming systems. Artificial intelligence, machine learning, computer vision, swarm [...] Read more.
The swift integration of AI, robotics, and advanced sensing technologies has revolutionized agriculture into a data-centric, autonomous, and sustainable sector. This systematic study examines the interplay between artificial intelligence and agricultural robotics in intelligent farming systems. Artificial intelligence, machine learning, computer vision, swarm robotics, and generative AI are analyzed for crop monitoring, precision irrigation, autonomous harvesting, and post-harvest processing. Employing PRISMA to categorize more than 10,000 high-impact publications from Scopus, WoS, and IEEE. Drones and vision-based models predominate the industry, while IoT integration, digital twins, and generative AI are on the rise. Insufficient field validation rates, inadequate crop and regional representation, and the implementation of explainable AI continue to pose significant challenges. Inadequate model generalization, energy limitations, and infrastructural restrictions impede scalability. We identify solutions in federated learning, swarm robotics, and climate-smart agricultural artificial intelligence. This paper presents a framework for inclusive, resilient, and feasible AI-robotic agricultural systems. Full article
Show Figures

Figure 1

25 pages, 4025 KB  
Review
Precision Forestry Revisited
by Can Vatandaslar, Kevin Boston, Zennure Ucar, Lana L. Narine, Marguerite Madden and Abdullah Emin Akay
Remote Sens. 2025, 17(20), 3465; https://doi.org/10.3390/rs17203465 - 17 Oct 2025
Viewed by 635
Abstract
This review presents a synthesis of global research on precision forestry, a field that integrates advanced technologies to enhance—rather than replace—established tools and methods used in the operational forest management and the wood products industry. By evaluating 210 peer-reviewed publications indexed in Web [...] Read more.
This review presents a synthesis of global research on precision forestry, a field that integrates advanced technologies to enhance—rather than replace—established tools and methods used in the operational forest management and the wood products industry. By evaluating 210 peer-reviewed publications indexed in Web of Science (up to 2025), the study identifies six main categories and eight components of precision forestry. The findings indicate that “forest management and planning” is the most common category, with nearly half of the studies focusing on this topic. “Remote sensing platforms and sensors” emerged as the most frequently used component, with unmanned aerial vehicle (UAV) and light detection and ranging (LiDAR) systems being the most widely adopted tools. The analysis also reveals a notable increase in precision forestry research since the early 2010s, coinciding with rapid developments in small UAVs and mobile sensor technologies. Despite growing interest, robotics and real-time process control systems remain underutilized, mainly due to challenging forest conditions and high implementation costs. The research highlights geographical disparities, with Europe, Asia, and North America hosting the majority of studies. Italy, China, Finland, and the United States stand out as the most active countries in terms of research output. Notably, the review emphasizes the need to integrate precision forestry into academic curricula and support industry adoption through dedicated information and technology specialists. As the forestry workforce ages and technology advances rapidly, a growing skills gap exists between industry needs and traditional forestry education. Equipping the next generation with hands-on experience in big data analysis, geospatial technologies, automation, and Artificial Intelligence (AI) is critical for ensuring the effective adoption and application of precision forestry. Full article
(This article belongs to the Special Issue Digital Modeling for Sustainable Forest Management)
Show Figures

Figure 1

37 pages, 1690 KB  
Review
Advances in Crop Row Detection for Agricultural Robots: Methods, Performance Indicators, and Scene Adaptability
by Zhen Ma, Xinzhong Wang, Xuegeng Chen, Bin Hu and Jingbin Li
Agriculture 2025, 15(20), 2151; https://doi.org/10.3390/agriculture15202151 - 16 Oct 2025
Viewed by 656
Abstract
Crop row detection technology, as one of the key technologies for agricultural robots to achieve autonomous navigation and precise operations, is related to the precision and stability of agricultural machinery operations. Its research and development will also significantly determine the development process of [...] Read more.
Crop row detection technology, as one of the key technologies for agricultural robots to achieve autonomous navigation and precise operations, is related to the precision and stability of agricultural machinery operations. Its research and development will also significantly determine the development process of intelligent agriculture. The paper first summarizes the mainstream technical methods, performance evaluation systems, and adaptability analysis of typical agricultural scenes for crop row detection. The paper also summarizes and explains the technical principles and characteristics of traditional methods based on visual sensors, point cloud preprocessing based on LiDAR, line structure extraction and 3D feature calculation methods, and multi-sensor fusion methods. Secondly, a review was conducted on performance evaluation criteria such as accuracy, efficiency, robustness, and practicality, analyzing and comparing the applicability of different methods in typical scenarios such as open fields, facility agriculture, orchards, and special terrains. Based on the multidimensional analysis above, it is concluded that a single technology has specific environmental adaptability limitations. Multi-sensor fusion can help improve robustness in complex scenarios, and the fusion advantage will gradually increase with the increase in the number of sensors. Suggestions on the development of agricultural robot navigation technology are made based on the current status of technological applications in the past five years and the needs for future development. This review systematically summarizes crop row detection technology, providing a clear technical framework and scenario adaptation reference for research in this field, and striving to promote the development of precision and efficiency in agricultural production. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

19 pages, 3837 KB  
Article
RTK-GNSS Increment Prediction with a Complementary “RTK-SeqNet” Network: Exploring Hybridization with State-Space Systems
by Hassan Ali, Malik Muhammad Waqar, Ruihan Ma, Sang Cheol Kim, Yujun Baek, Jongrin Kim and Haksung Lee
Sensors 2025, 25(20), 6349; https://doi.org/10.3390/s25206349 - 14 Oct 2025
Viewed by 491
Abstract
Accurate and reliable localization is crucial for autonomous systems operating in dynamic and semi-structured environments, such as precision agriculture and outdoor robotics. Advances in Global Navigation Satellite System (GNSS) technologies, particularly Differential GPS (DGPS) and Real-Time Kinematic (RTK) positioning, have significantly enhanced position [...] Read more.
Accurate and reliable localization is crucial for autonomous systems operating in dynamic and semi-structured environments, such as precision agriculture and outdoor robotics. Advances in Global Navigation Satellite System (GNSS) technologies, particularly Differential GPS (DGPS) and Real-Time Kinematic (RTK) positioning, have significantly enhanced position estimation precision, achieving centimeter-level accuracy. However, GNSS-based localization continues to encounter inherent limitations due to signal degradation and intermittent data loss, known as GNSS outages. This paper proposes a novel complementary RTK-like position increment prediction model with the purpose of mitigating challenges posed by GNSS outages and RTK signal discontinuities. This model can be integrated with a Dual Extended Kalman Filter (Dual EKF) sensor fusion framework, widely utilized in robotic navigation. The proposed model uses time-synchronized inertial measurement data combined with the velocity inputs to predict GNSS position increments during periods of outages and RTK disengagement, effectively substituting for missing GNSS measurements. The model demonstrates high accuracy, as the total aDTW across 180 s trajectories averages at 1.6 m while the RMSE averages at 3.4 m. The 30 s test shows errors below 30 cm. We leave the actual Dual EKF fusion to future work, and here, we evaluate the standalone deep network. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

27 pages, 4875 KB  
Review
Toward Modern Pesticide Use Reduction Strategies in Advancing Precision Agriculture: A Bibliometric Review
by Sebastian Lupica, Salvatore Privitera, Antonio Trusso Sfrazzetto, Emanuele Cerruto and Giuseppe Manetto
AgriEngineering 2025, 7(10), 346; https://doi.org/10.3390/agriengineering7100346 - 12 Oct 2025
Viewed by 641
Abstract
Precision agriculture technologies (PATs) are revolutionizing the agricultural sector by minimizing the reliance on plant protection products (PPPs) in crop management. This approach integrates a broad range of advanced solutions employed to help farmers in optimizing PPP application, while minimizing input and maintaining [...] Read more.
Precision agriculture technologies (PATs) are revolutionizing the agricultural sector by minimizing the reliance on plant protection products (PPPs) in crop management. This approach integrates a broad range of advanced solutions employed to help farmers in optimizing PPP application, while minimizing input and maintaining effective crop protection. These technologies include sensors, drones, robotics, variable rate systems, and artificial intelligence (AI) tools that support site-specific pesticide applications. The objective of this review was to perform a bibliometric analysis to identify scientific trends and gaps in this field. The analysis was conducted using Scopus and Web of Science databases for the period of 2015–2024, by applying a data filtering process to ensure a clean and reliable dataset. The methodology involved citation, co-authorship, co-citation, and co-occurrence analysis. VOSviewer software (version 1.6.20) was used to generate maps and assess global research developments. Results identified AI, sensor, and data processing categories as the most central and interconnected scientific topics, emphasizing their vital role in the evolution of precision spraying technology. Bibliometric analysis highlighted that China, the United States, and India were the most productive countries, with strong collaborations within Europe. The co-occurrence and co-citation analyses revealed increasing interdisciplinarity and the integration of AI tools across various technologies. These findings help identify key experts and research leaders in the precision agriculture domain, thus underscoring the shift toward a more sustainable, data-driven, and synergistic approach in crop protection. Full article
(This article belongs to the Collection Research Progress of Agricultural Machinery Testing)
Show Figures

Figure 1

42 pages, 28795 KB  
Article
Secure and Efficient Data Encryption for Internet of Robotic Things via Chaos-Based Ascon
by Gülyeter Öztürk, Murat Erhan Çimen, Ünal Çavuşoğlu, Osman Eldoğan and Durmuş Karayel
Appl. Sci. 2025, 15(19), 10641; https://doi.org/10.3390/app151910641 - 1 Oct 2025
Viewed by 368
Abstract
The increasing adoption of digital technologies, robotic systems, and IoT applications in sectors such as medicine, agriculture, and industry drives a surge in data generation and necessitates secure and efficient encryption. For resource-constrained systems, lightweight yet robust cryptographic algorithms are critical. This study [...] Read more.
The increasing adoption of digital technologies, robotic systems, and IoT applications in sectors such as medicine, agriculture, and industry drives a surge in data generation and necessitates secure and efficient encryption. For resource-constrained systems, lightweight yet robust cryptographic algorithms are critical. This study addresses the security demands of IoRT systems by proposing an enhanced chaos-based encryption method. The approach integrates the lightweight structure of NIST-standardized Ascon-AEAD128 with the randomness of the Zaslavsky map. Ascon-AEAD128 is widely used on many hardware platforms; therefore, it must robustly resist both passive and active attacks. To overcome these challenges and enhance Ascon’s security, we integrate into Ascon the keys and nonces generated by the Zaslavsky chaotic map, which is deterministic, nonperiodic, and highly sensitive to initial conditions and parameter variations.This integration yields a chaos-based Ascon variant with a higher encryption security relative to the standard Ascon. In addition, we introduce exploratory variants that inject non-repeating chaotic values into the initialization vectors (IVs), the round constants (RCs), and the linear diffusion constants (LCs), while preserving the core permutation. Real-time tests are conducted using Raspberry Pi 3B devices and ROS 2–based IoRT robots. The algorithm’s performance is evaluated over 100 encryption runs on 12 grayscale/color images and variable-length text transmitted via MQTT. Statistical and differential analyses—including histogram, entropy, correlation, chi-square, NPCR, UACI, MSE, MAE, PSNR, and NIST SP 800-22 randomness tests—assess the encryption strength. The results indicate that the proposed method delivers consistent improvements in randomness and uniformity over standard Ascon-AEAD128, while remaining comparable to state-of-the-art chaotic encryption schemes across standard security metrics. These findings suggest that the algorithm is a promising option for resource-constrained IoRT applications. Full article
(This article belongs to the Special Issue Recent Advances in Mechatronic and Robotic Systems)
Show Figures

Figure 1

16 pages, 1681 KB  
Article
Theoretical Study of a Pneumatic Device for Precise Application of Mineral Fertilizers by an Agro-Robot
by Tormi Lillerand, Olga Liivapuu, Yevhen Ihnatiev and Jüri Olt
AgriEngineering 2025, 7(10), 320; https://doi.org/10.3390/agriengineering7100320 - 1 Oct 2025
Viewed by 428
Abstract
This article presents the development of a new pneumatic device for the precise application of mineral fertilizers, designed for use in precision agriculture systems involving farming robots. The proposed device is mounted on an autonomous agricultural platform and utilizes a machine vision system [...] Read more.
This article presents the development of a new pneumatic device for the precise application of mineral fertilizers, designed for use in precision agriculture systems involving farming robots. The proposed device is mounted on an autonomous agricultural platform and utilizes a machine vision system to determine plant coordinates. Its operating principle is based on accumulating a single dose of fertilizer in a chamber and delivering it precisely to the plant’s root zone using a directed airflow. The study includes a theoretical investigation of fertilizer movement inside the applicator tube under the influence of airflow and rotational motion of the tube. A mathematical model has been developed to describe both the relative and translational motion of the fertilizer. The equations, which account for frictional forces, inertia, and air pressure, enable the determination of optimal structural and kinematic parameters of the device depending on operating conditions and the properties of the applied material. The use of numerical methods to solve the developed mathematical model allows for synchronization of the device’s operating time parameters with the movement of the agricultural robot along the crop rows. The obtained results and the developed device improve the accuracy and speed of fertilizer application, minimize fertilizer consumption, and reduce soil impact, making the proposed device a promising solution for precision agriculture. Full article
(This article belongs to the Section Agricultural Mechanization and Machinery)
Show Figures

Figure 1

31 pages, 1983 KB  
Review
Integrating Remote Sensing and Autonomous Robotics in Precision Agriculture: Current Applications and Workflow Challenges
by Magdalena Łągiewska and Ewa Panek-Chwastyk
Agronomy 2025, 15(10), 2314; https://doi.org/10.3390/agronomy15102314 - 30 Sep 2025
Viewed by 1268
Abstract
Remote sensing technologies are increasingly integrated with autonomous robotic platforms to enhance data-driven decision-making in precision agriculture. Rather than replacing conventional platforms such as satellites or UAVs, autonomous ground robots complement them by enabling high-resolution, site-specific observations in real time, especially at the [...] Read more.
Remote sensing technologies are increasingly integrated with autonomous robotic platforms to enhance data-driven decision-making in precision agriculture. Rather than replacing conventional platforms such as satellites or UAVs, autonomous ground robots complement them by enabling high-resolution, site-specific observations in real time, especially at the plant level. This review analyzes how remote sensing sensors—including multispectral, hyperspectral, LiDAR, and thermal—are deployed via robotic systems for specific agricultural tasks such as canopy mapping, weed identification, soil moisture monitoring, and precision spraying. Key benefits include higher spatial and temporal resolution, improved monitoring of under-canopy conditions, and enhanced task automation. However, the practical deployment of such systems is constrained by terrain complexity, power demands, and sensor calibration. The integration of artificial intelligence and IoT connectivity emerges as a critical enabler for responsive, scalable solutions. By focusing on how autonomous robots function as mobile sensor platforms, this article contributes to the understanding of their role within modern precision agriculture workflows. The findings support future development pathways aimed at increasing operational efficiency and sustainability across diverse crop systems. Full article
Show Figures

Figure 1

40 pages, 29429 KB  
Review
Innovations in Multidimensional Force Sensors for Accurate Tactile Perception and Embodied Intelligence
by Jiyuan Chen, Meili Xia, Pinzhen Chen, Binbin Cai, Huasong Chen, Xinkai Xie, Jun Wu and Qiongfeng Shi
AI Sens. 2025, 1(2), 7; https://doi.org/10.3390/aisens1020007 - 29 Sep 2025
Viewed by 1286
Abstract
Multidimensional force sensors are key devices capable of simultaneously perceiving and analyzing force in multiple directions (normally triaxial forces). They are designed to provide intelligent systems with skin-like precision in environmental interaction, offering high sensitivity, spatial resolution, decoupling capability, and environmental adaptability. However, [...] Read more.
Multidimensional force sensors are key devices capable of simultaneously perceiving and analyzing force in multiple directions (normally triaxial forces). They are designed to provide intelligent systems with skin-like precision in environmental interaction, offering high sensitivity, spatial resolution, decoupling capability, and environmental adaptability. However, the inherent complexity of tactile information coupling, combined with stringent demands for miniaturization, robustness, and low cost in practical applications, makes high-performance and reliable multidimensional sensing and decoupling a major challenge. This drives ongoing innovation in sensor structural design and sensing mechanisms. Various structural strategies have demonstrated significant advantages in improving sensor performance, simplifying decoupling algorithms, and enhancing adaptability—attributes that are essential in scenarios requiring fine physical interactions. From this perspective, this article reviews recent advances in multidimensional force sensing technology, with a focus on the operating principles and performance characteristics of sensors with different structural designs. It also highlights emerging trends toward multimodal sensing and the growing integration with system architectures and artificial intelligence, which together enable higher-level intelligence. These developments support a wide range of applications, including intelligent robotic manipulation, natural human–computer interaction, wearable health monitoring, and precision automation in agriculture and industry. Finally, the article discusses remaining challenges and future opportunities in the development of multidimensional force sensors. Full article
Show Figures

Figure 1

Back to TopTop