Research Status and Development Trends of Artificial Intelligence in Smart Agriculture
Abstract
1. Introduction
- It fails to enable real-time operational responses and long-term predictions, such as addressing soil nutrient variations, early diagnosis of crop diseases, and yield forecasting.
- Extensive agricultural management leads to resource waste and environmental pollution, including excessive use of chemical fertilizers and pesticides, soil degradation, and inefficient flood irrigation.
- The aging trend among agricultural practitioners results in low operational efficiency, high costs, and unstable production quality, placing immense pressure on high-intensity, high-precision repetitive tasks like planting, management, and harvesting.
- Farmers’ personal safety cannot be adequately ensured, for example, during manual pesticide spraying in large-scale plant protection environments or in complex indoor temperature, humidity, and gas conditions in livestock and poultry farming.
- Reliance on subjective product grading hinders standardized quality assurance and prevents effective traceability of agricultural product quality.
2. Representative AI Fundamentals
2.1. Machine Learning, Deep Learning, and Reinforcement Learning
2.2. Computer Vision
3. Applications of AI in Crop Detection
3.1. Seed Variety Identification-Optimal Selection
3.2. Pest and Disease Detection-Health Monitoring
3.3. Food Safety Monitoring-Risk Screening
3.3.1. Detection of Pesticide Residues in Agricultural Products
3.3.2. Detection of Heavy Metals in Food
3.3.3. Detection of Mycotoxins in Agricultural Products
3.4. Product Quality Upgrading-Value Enhancement
3.4.1. Non-Destructive Meat Quality Detection
3.4.2. Quality Grading and Detection
4. AI in Crop Growth and Agricultural Condition Forecasting
4.1. Growing Environment
4.2. Crop Growth and Management
4.3. Yield Forecast
5. AI in Fault Diagnosis of Agricultural Machinery
5.1. Harvesters
5.2. Sensors
5.3. Tractors
5.4. Pumps
5.5. Others
6. AI Agricultural Robots
6.1. Autonomous Navigation Technologies of AI Agricultural Robots
6.1.1. Localization and Perception
6.1.2. Path Planning
6.1.3. Path Tracking Control
6.2. Categories of AI-Agricultural Robots
6.2.1. Planting Operations
6.2.2. Growth Management Operations
6.2.3. Harvesting Operations
7. AI-Internet of Things for Smart Agriculture
7.1. Environmental Monitoring and Intelligent Control
7.2. Bioinformation Perception and Processing
7.3. System Architecture and Prospects
8. Challenges and Future Perspectives
- (1)
- A large number of AI detection technologies have achieved high-precision detection by integrating multi-source signals. However, traditional machine learning models have limited capabilities in processing unstructured text and fusing multimodal information, making comprehensive and systematic detection challenging. Large language models (LLMs), pre-trained on massive cross-domain datasets, can handle diverse tasks with minimal task-specific fine-tuning, enabling higher-precision, more comprehensive, and systematic agricultural detection tasks.
- (2)
- AI-based agricultural machinery fault diagnosis models demonstrate high accuracy across various machine failures, yet their low real-time performance severely limits practical application. The integration of edge AI, IoT, and sensor fusion offers new avenues for development. Edge AI enables real-time, local data processing, reducing latency and bandwidth consumption; IoT facilitates seamless transmission of data from diverse sensors; sensor fusion combines multi-source data to uncover correlations. Together, these technologies achieve low-latency, highly stable agricultural machinery fault diagnosis.
- (3)
- While existing crop condition prediction models demonstrate superior performance by integrating traditional growth models with machine learning approaches, due to differing primary influencing factors across crop growth stages, comprehensive prediction management across all stages remains challenging with a single model. Multimodal sensing technology, capable of integrating diverse data modalities, acquires more comprehensive and accurate environmental information. This offers a novel approach for crop condition prediction models: by fusing multi-source data—including imagery, environmental, and physiological data—to achieve holistic perception and precise control over the crop growth process.
- (4)
- Existing agricultural robots rely on advanced AI algorithms and extensive pre-trained data to achieve intelligent and precise operations in perception, decision-making, and execution. However, factors such as the open and complex working environment, as well as the inconsistent postures of target objects, make robots designed for single-task types and specific working conditions unable to meet the demands of cross-scenario operations and adaptive functioning in complex agricultural environments. Embodied intelligence, which emphasizes the interaction between intelligent agents and the physical environment to achieve intelligence, offers a new direction for the further development of agricultural robots. This leads to the concept of embodied intelligent agricultural robots, which aim to establish a closed-loop intelligent system capable of further creating a new generation of intelligent agricultural robots with adaptive environmental perception, multi-machine collaboration, transferability, and evolution.
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taha, M.F.; Mao, H.P.; Zhang, Z.; Elmasry, G.; Awad, M.A.; Abdalla, A.; Mousa, S.; Elwakeel, A.E.; Elsherbiny, O. Emerging technologies for precision crop management towards agriculture 5.0: A comprehensive overview. Agriculture 2025, 15, 582. [Google Scholar] [CrossRef]
- Yang, X.; Shu, L.; Chen, J.N.; Ferrag, M.A.; Wu, J.; Nurellari, E.; Huang, K. A survey on smart agriculture: Development modes, technologies, and security and privacy challenges. IEEE-CAA J. Autom. Sin. 2021, 8, 273–302. [Google Scholar] [CrossRef]
- Shaikh, T.A.; Rasool, T.; Lone, F.R. Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming. Comput. Electron. Agric. 2022, 198, 107119. [Google Scholar] [CrossRef]
- Pan, Y.Z.; Zhang, Y.Z.; Wang, X.P.; Gao, X.X.; Hou, Z.Y. Low-cost livestock sorting information management system based on deep learning. Artif. Intell. Agric. 2023, 9, 110–126. [Google Scholar] [CrossRef]
- Wang, H.J.; Gu, J.A.; Wang, M.N. A review on the application of computer vision and machine learning in the tea industry. Front. Sustain. Food Syst. 2023, 7, 1172543. [Google Scholar] [CrossRef]
- Bai, X.S.; Chen, Q.; Song, X.J.; Hong, W.H. Advancing agricultural machinery maintenance: Deep learning-enabled motor fault diagnosis. IEEE Access 2025, 13, 129933–129951. [Google Scholar] [CrossRef]
- Artificial Intelligence in Agriculture Market Size, Share, and Trends 2024 to 2034. Precedence Research. 2024. Available online: https://www.precedenceresearch.com/artificial-intelligence-in-agriculture-market (accessed on 17 October 2024).
- Peng, Y.; Zhao, S.Y.; Liu, J.Z. Fused-deep-features based grape leaf disease diagnosis. Agronomy 2021, 11, 2234. [Google Scholar] [CrossRef]
- Singh, A.; Singh, K.; Kaur, J.; Singh, M.L. Smart agriculture framework for automated detection of leaf blast disease in paddy crop using colour slicing and GLCM features based random forest approach. Wirel. Pers. Commun. 2023, 131, 2445–2462. [Google Scholar] [CrossRef]
- Ji, W.; Wang, J.C.; Xu, B.; Zhang, T. Apple grading based on multi-dimensional view processing and deep learning. Foods 2023, 12, 2117. [Google Scholar] [CrossRef]
- Zhao, S.Y.; Peng, Y.; Liu, J.Z.; Wu, S. Tomato leaf disease diagnosis based on improved convolution neural network by attention module. Agriculture 2021, 11, 651. [Google Scholar] [CrossRef]
- Sun, J.; Yang, F.Y.; Cheng, J.H.; Wang, S.M.; Fu, L.H. Nondestructive identification of soybean protein in minced chicken meat based on hyperspectral imaging and VGG16-SVM. J. Food Compos. Anal. 2024, 125, 105713. [Google Scholar] [CrossRef]
- Zhu, W.D.; Sun, J.; Wang, S.M.; Shen, J.F.; Yang, K.F.; Zhou, X. Identifying field crop diseases using transformer-embedded convolutional neural network. Agriculture 2022, 12, 1083. [Google Scholar] [CrossRef]
- Wang, Y.F.; Li, T.Z.; Chen, T.H.; Zhang, X.D.; Taha, M.F.; Yang, N.; Mao, H.P.; Shi, Q. Cucumber downy mildew disease prediction using a CNN-LSTM approach. Agriculture 2024, 14, 1155. [Google Scholar] [CrossRef]
- Akilan, T.; Baalamurugan, K.M. Automated weather forecasting and field monitoring using GRU-CNN model along with IoT to support precision agriculture. Expert Syst. Appl. 2024, 249, 123468. [Google Scholar] [CrossRef]
- Wu, Q.; Gu, J.N. Design and research of robot visual servo system based on artificial intelligence. Agro Food Ind. Hi-Tech 2017, 28, 125–128. [Google Scholar]
- Chen, W.M.; Yang, J.X.; Zhang, S.C.; Wei, X.H.; Liu, C.L.; Zhou, X.Y.; Sun, L.; Wang, F.; Wang, A.Z. Variable scale operational path planning for land levelling based on the improved ant colony optimization algorithm. Sci. Rep. 2025, 15, 9854. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Gao, X.X.; Xu, B.; Pan, Y.; Zhang, Z.; Zhao, D. Apple target recognition method in complex environment based on improved YOLOv4. J. Food Process Eng. 2021, 44, e13866. [Google Scholar] [CrossRef]
- Yang, G.Y.; Cheng, Y.; Xi, C.B.; Liu, L.; Gan, X. Combine harvester bearing fault-diagnosis method based on SDAE-RCmvMSE. Entropy 2022, 24, 1139. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.J.; Jing, T.T.; Fang, M.; Li, P.C.; Tang, Z. Failure state identification and fault diagnosis method of vibrating screen bolt under multiple excitation of combine harvester. Agriculture 2025, 15, 455. [Google Scholar] [CrossRef]
- Hosseinpour-Zarnaq, M.; Omid, M.; Biabani-Aghdam, E. Fault diagnosis of tractor auxiliary gearbox using vibration analysis and random forest classifier. Inf. Process. Agric. 2022, 9, 60–67. [Google Scholar] [CrossRef]
- Wang, R.C.; Yan, H.; Dong, E.Z.; Cheng, Z.H.; Li, Y.; Jia, X.S. Infrared thermography based fault diagnosis of diesel engines using convolutional neural network and image enhancement. Open Phys. 2024, 22, 20240110. [Google Scholar] [CrossRef]
- Xu, L.Y.; Zhao, G.X.; Zhao, S.X.; Wu, Y.W.; Chen, X.L. Fault diagnosis method for tractor transmission system based on improved convolutional neural network–bidirectional long short-term memory. Machines 2024, 12, 492. [Google Scholar] [CrossRef]
- An, Q.; Rahman, S.; Zhou, J.W.; Kang, J.J. A comprehensive review on machine learning in healthcare industry: Classification, restrictions, opportunities and challenges. Sensors 2023, 23, 4178. [Google Scholar] [CrossRef]
- Dong, S.; Wang, P.; Abbas, K. A survey on deep learning and its applications. Comput. Sci. Rev. 2021, 40, 100379. [Google Scholar] [CrossRef]
- Elguea-Aguinaco, I.; Serrano-Muñoz, A.; Chrysostomou, D.; Inziarte-Hidalgo, I.; Bogh, S.; Arana-Arexolaleiba, N. A review on reinforcement learning for contact-rich robotic manipulation tasks. Robot. Comput.-Integr. Manuf. 2023, 81, 102517. [Google Scholar] [CrossRef]
- Matsuzaka, Y.; Yashiro, R. AI-Based Computer Vision Techniques and Expert Systems. AI 2023, 4, 289–302. [Google Scholar] [CrossRef]
- Tu, K.L.; Wen, S.Z.; Cheng, Y.; Xu, Y.A.; Pan, T.; Hou, H.N.; Gu, R.L.; Wang, J.H.; Wang, F.G.; Sun, Q. A model for genuineness detection in genetically and phenotypically similar maize variety seeds based on hyperspectral imaging and machine learning. Plant Methods 2022, 18, 81. [Google Scholar] [CrossRef] [PubMed]
- Zuo, X.; Chu, J.; Shen, J.F.; Sun, J. Multi-granularity feature aggregation with self-attention and spatial reasoning for fine-grained crop disease classification. Agriculture 2022, 12, 1499. [Google Scholar] [CrossRef]
- Qiu, D.K.; Guo, T.H.; Yu, S.Q.; Liu, W.; Li, L.; Sun, Z.Z.; Peng, H.H.; Hu, D. Classification of apple color and deformity using machine vision combined with CNN. Agriculture 2024, 14, 978. [Google Scholar] [CrossRef]
- Fu, L.H.; Sun, J.; Wang, S.M.; Xu, M.; Yao, K.S.; Cao, Y.; Tang, N.Q. Identification of maize seed varieties based on stacked sparse autoencoder and near-infrared hyperspectral imaging technology. J. Food Process Eng. 2022, 45, e14120. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, L.; Zhou, X.; Yao, K.S.; Tian, Y.; Nirere, A. A method of information fusion for identification of rice seed varieties based on hyperspectral imaging technology. J. Food Process Eng. 2022, 44, e13797. [Google Scholar] [CrossRef]
- Zhang, F.; Cui, X.H.; Zhang, C.C.; Cao, W.H.; Wang, X.Y.; Fu, S.L.; Teng, S. Rapid non-destructive identification of selenium-enriched millet based on hyperspectral imaging technology. Czech J. Food Sci. 2022, 40, 445–455. [Google Scholar] [CrossRef]
- Xu, M.; Sun, J.; Zhou, X.; Tang, N.Q.; Shen, J.F.; Wu, X.H. Research on nondestructive identification of grape varieties based on EEMD-DWT and hyperspectral image. J. Food Sci. 2021, 86, 2011–2023. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Nirere, A.; Dusabe, K.D.; Zhang, Y.H.; Adrien, G. Rapid and nondestructive watermelon (Citrullus lanatus) seed viability detection based on visible near-infrared hyperspectral imaging technology and machine learning algorithms. J. Food Sci. 2024, 89, 4403–4418. [Google Scholar] [CrossRef]
- Cap, Q.H.; Uga, H.; Kagiwada, S.; Iyatomi, H. Leafgan: An effective data augmentation method for practical plant disease diagnosis. IEEE Trans. Autom. Sci. Eng. Sci. Eng. 2022, 19, 1258–1267. [Google Scholar] [CrossRef]
- Lu, B.; Sun, J.; Yang, N.; Wu, X.H.; Zhou, X. Identification of tea white star disease and anthrax based on hyperspectral image information. J. Food Process Eng. 2021, 44, e13584. [Google Scholar] [CrossRef]
- Yang, N.; Yu, J.J.; Wang, A.Y.; Tang, J.; Zhang, R.B.; Xie, L.L.; Shu, F.Y.; Kwabena, O.P. A rapid rice blast detection and identification method based on crop disease spores’ diffraction fingerprint texture. J. Sci. Food. Agric. 2020, 100, 3608–3621. [Google Scholar] [CrossRef]
- Li, H.H.; Luo, X.F.; Haruna, S.A.; Zareef, M.; Chen, Q.S.; Ding, Z.; Yan, Y.Y. Au-Ag OHCs-based SERS sensor coupled with deep learning CNN algorithm to quantify thiram and pymetrozine in tea. Food Chem. 2023, 428, 136798. [Google Scholar] [CrossRef]
- Deng, J.H.; Zhao, X.K.; Luo, W.F.; Bai, X.; Xu, L.J.; Jiang, H. Microwave detection technique combined with deep learning algorithm facilitates quantitative analysis of heavy metal pb residues in edible oils. J. Food Sci. 2024, 89, 6005–6015. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhao, C.J.; Sun, J.; Cao, Y.; Yao, K.S.; Xu, M. A deep learning method for predicting lead content in oilseed rape leaves using fluorescence hyperspectral imaging. Food Chem. 2023, 409, 135251. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Sun, J.; Yan, T.; Lu, B.; Hang, Y.Y.; Chen, Q.S. Hyperspectral technique combined with deep learning algorithm for detection of compound heavy metals in lettuce. Food Chem. 2020, 321, 126503. [Google Scholar] [CrossRef]
- Yang, G.; Tian, X.; Fan, Y.Y.; Xiang, D.Q.; An, T.; Huang, W.Q.; Long, Y. Identification of peanut kernels infected with multiple aspergillus flavus fungi using line-scan raman hyperspectral imaging. Food Anal. Methods 2024, 17, 155–165. [Google Scholar] [CrossRef]
- Lin, H.; Chen, Z.Y.; Adade, S.Y.S.S.; Yang, W.J.; Chen, Q.S. Detection of maize mold based on a nanocomposite colorimetric sensor array under different substrates. J. Agric. Food. Chem. 2024, 72, 11164–11173. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Deng, J.H.; Jiang, H. Markov transition field combined with convolutional neural network improved the predictive performance of near-infrared spectroscopy models for determination of aflatoxin b1 in maize. Foods 2022, 11, 2210. [Google Scholar] [CrossRef]
- Zhu, J.J.; Jiang, X.; Rong, Y.W.; Wei, W.Y.; Wu, S.D.; Jiao, T.H.; Chen, Q.S. Label-free detection of trace level zearalenone in corn oil by surface-enhanced Raman spectroscopy (SERS) coupled with deep learning models. Food Chem. 2023, 414, 135705. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.Q.; Deng, J.H.; Chen, Q.S.; Jiang, H. Near-infrared spectroscopy based on colorimetric sensor array coupled with convolutional neural network detecting zearalenone in wheat. Food Chem. X 2024, 22, 101322. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.H.; Sun, J.; Yao, K.S.; Xu, M.; Dai, C.X. Multi-task convolutional neural network for simultaneous monitoring of lipid and protein oxidative damage in frozen-thawed pork using hyperspectral imaging. Meat Sci. 2023, 201, 109196. [Google Scholar] [CrossRef]
- Sun, J.; Cheng, J.H.; Xu, M.; Yao, K.S. A method for freshness detection of pork using two-dimensional correlation spectroscopy images combined with dual-branch deep learning. J. Food Compos. Anal. 2024, 129, 106144. [Google Scholar] [CrossRef]
- Cheng, J.H.; Sun, J.; Shi, L.; Dai, C.X. An effective method fusing electronic nose and fluorescence hyperspectral imaging for the detection of pork freshness. Food Biosci. 2024, 59, 103880. [Google Scholar] [CrossRef]
- Yang, F.Y.; Sun, J.; Cheng, J.H.; Fu, L.H.; Wang, S.M.; Xu, M. Detection of starch in minced chicken meat based on hyperspectral imaging technique and transfer learning. J. Food Process Eng. 2023, 46, e14304. [Google Scholar] [CrossRef]
- Huang, Y.X.; Pan, Y.; Liu, C.; Zhou, L.; Tang, L.J.; Wei, H.Y.; Fan, K.; Wang, A.C.; Tang, Y. Rapid and non-destructive geographical origin identification of chuanxiong slices using near-infrared spectroscopy and convolutional neural networks. Agriculture 2024, 14, 1281. [Google Scholar] [CrossRef]
- Xu, M.; Sun, J.; Yao, K.S.; Wu, X.H.; Shen, J.F.; Cao, Y.; Zhou, X. Nondestructive detection of total soluble solids in grapes using VMD-RC and hyperspectral imaging. J. Food Sci. 2022, 87, 326–338. [Google Scholar] [CrossRef]
- Xu, B.; Cui, X.; Ji, W.; Yuan, H.; Wang, J.C. Apple grading method design and implementation for automatic grader based on improved YOLOv5. Agriculture 2023, 13, 124. [Google Scholar] [CrossRef]
- Guo, J.L.; Zhang, K.X.; Adade, S.Y.S.S.; Lin, J.S.; Lin, H.; Chen, Q.S. Tea grading, blending, and matching based on computer vision and deep learning. J. Sci. Food Agric. 2025, 105, 3239–3251. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Chen, Z.J.; Ali, S.; Yang, N.; Fu, S.L.; Zhang, Y.K. Multi-class detection of cherry tomatoes using improved YOLOv4-Tiny. Int. J. Agric. Biol. Eng. 2023, 16, 225–231. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Sun, Y.; Shi, J.Y.; Zhang, W.; Zhang, X.A.; Huang, X.W.; Zou, X.B.; Li, Z.H.; Wei, R.C. Facile synthesis of Au@Ag core-shell nanorod with bimetallic synergistic effect for SERS detection of thiabendazole in fruit juice. Food Chem. 2022, 370, 131276. [Google Scholar] [CrossRef]
- Qiu, H.; Gao, L.; Wang, J.X.; Pan, J.M.; Yan, Y.S.; Zhang, X.F. A precise and efficient detection of Seta-Cyfluthrin via fluorescent molecularly imprinted polymers with ally fluorescein as functional monomer in agricultural products. Food Chem. 2017, 217, 620–627. [Google Scholar] [CrossRef]
- Li, S.H.; Zhang, S.; Wu, J.Z.; Khan, I.M.; Chen, M.; Jiao, T.H.; Wei, J.; Chen, X.M.; Chen, Q.M.; Chen, Q.S. Upconversion fluorescence nanosensor based on enzymatic inhibited and copper-triggered o-phenylenediamine oxidation for the detection of dimethoate pesticides. Food Chem. 2024, 453, 139666. [Google Scholar] [CrossRef]
- Chen, P.; Yin, L.M.; El-Seedi, H.R.; Zou, X.B.; Guo, Z.M. Green reduction of silver nanoparticles for cadmium detection in food using surface-enhanced Raman spectroscopy coupled multivariate calibration. Food Chem. 2022, 394, 133481. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Y.; Li, M.Q.; Mao, H.P.; Zhu, W.J. Diagnosis of potassium nutrition level in Solanum lycopersicum based on electrical impedance. Biosyst. Eng. 2016, 147, 130–138. [Google Scholar] [CrossRef]
- Balyan, S.; Jangir, H.; Tripathi, S.N.; Tripathi, A.; Jhang, T.; Pandey, P. Seeding a sustainable future: Navigating the digital horizon of smart agriculture. Sustainability 2024, 16, 475. [Google Scholar] [CrossRef]
- Abubaker, B.A.; Yan, H.F.; Hong, L.; You, W.Y.; Elshaikh, N.A.; Hussein, G.; Pandab, S.; Hassan, S. Enhancement of depleted loam soil as well as cucumber productivity utilizing biochar under water stress. Commun. Soil Sci. Plant Anal. 2019, 50, 49–64. [Google Scholar]
- Reda, R.; Saffaj, T.; Ilham, B.; Saidi, O.; Issam, K.; Brahim, L.; El, H.; El Hadrami, E. A comparative study between a new method and other machine learning algorithms for soil organic carbon and total nitrogen prediction using near infrared spectroscopy. Chemometric. Intell. Lab. Syst. 2019, 195, 103873. [Google Scholar] [CrossRef]
- Khanal, S.; Fulton, J.; Klopfenstein, A.; Douridas, N.; Shearer, S. Integration of high resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield. Comput. Electron. Agric. 2018, 153, 213–225. [Google Scholar] [CrossRef]
- Bhattacharyya, D.; Joshua, E.S.N.; Rao, N.T.; Kim, T. Hybrid CNN-SVM classifier approaches to process semi-structured data in sugarcane yield forecasting production. Agronomy 2023, 13, 1169. [Google Scholar] [CrossRef]
- Cui, X.; Han, W.T.; Zhang, H.H.; Dong, Y.X.; Ma, W.T.; Zhai, X.D.; Zhang, L.Y.; Li, G. Estimating and mapping the dynamics of soil salinity under different crop types using sentinel-2 satellite imagery. Geoderma 2023, 440, 116738. [Google Scholar] [CrossRef]
- Han, S.H.; Kim, S.; Chang, H.N.; Li, G.L.; Son, Y.H. Increased soil temperature stimulates changes in carbon, nitrogen, and mass loss in the fine roots of pinus koraiensis under experimental warming and drought. Turk. J. Agric. For. 2019, 43, 80–87. [Google Scholar] [CrossRef]
- Yue, Y.; Li, J.H.; Fan, L.F.; Zhang, L.L.; Zhao, P.F.; Zhou, Q.; Wang, N.; Wang, Z.Y.; Huang, L.; Dong, X.H. Prediction of maize growth stages based on deep learning. Comput. Electron. Agric. 2020, 172, 105351. [Google Scholar] [CrossRef]
- Devarashetti, D.; Aravinth, S.S. Design and development of gorilla optimized deep resilient architecture for prediction of agro-climatic changes to increase the crop-yield production. Int. J. Comput. Int. Sys. 2025, 18, 136. [Google Scholar] [CrossRef]
- Li, L.; Liu, J.Z.; Peng, Q.; Wang, X.W.; Xu, J.T.; Cai, H.J. Propagation process-based agricultural drought typology and its copula-based risk. Irrig. Drain. 2024, 73, 1496–1519. [Google Scholar] [CrossRef]
- Guo, F.W.; Wang, P.X.; Tansey, K.; Sun, Y.F.; Li, M.Q.; Zhou, J. Pixel-based agricultural drought forecasting based on deep learning approach: Considering the linear trend and residual feature of vegetation temperature condition index. Comput. Electron. Agric. 2025, 237, 110570. [Google Scholar] [CrossRef]
- Khan, M.M.H.; Muhammad, N.S.; El-Shafie, A. Wavelet based hybrid ANN-ARIMA models for meteorological drought forecasting. J. Hydrol. 2020, 590, 125380. [Google Scholar] [CrossRef]
- Gowri, L.; Manjula, K.R. Development of agricultural drought prediction using triple exponential-long short-term memory (TEX-LSTM) model. Theor. Appl. Climatol. 2025, 156, 426. [Google Scholar] [CrossRef]
- Mokhtarzad, M.; Eskandari, F.; Vanjani, N.J.; Arabasadi, A. Drought forecasting by ANN, ANFIS, and SVM and comparison of the models. Environ. Earth Sci. 2017, 76, 729. [Google Scholar] [CrossRef]
- De Vos, K.; Gebruers, S.; Degerickx, J.; Iordache, M.D.; Keune, J.; Di Giuseppe, F.; Pereira, F.V.; Wouters, H.; Swinnen, E.; Van Rossum, K.; et al. Predicting below-average NDVI anomalies for agricultural drought impact forecasting. Remote Sens. Environ. 2025, 330, 114980. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Y.; Zhao, X.; Huang, M.; Zhu, Q.B. Integrating field images and microclimate data to realize multi-day ahead forecasting of maize crop coverage using CNN-LSTM. Int. J. Agric. Biol. Eng. 2023, 16, 199–206. [Google Scholar] [CrossRef]
- Ahmad, R.; Yang, B.; Ettlin, G.; Berger, A.; Rodríguez-Bocca, P. A machine-learning based ConvLSTM architecture for NDVI forecasting. Int. Trans. Oper. Res. 2023, 30, 2025–2048. [Google Scholar] [CrossRef]
- Zhang, L.L.; Wang, X.W.; Zhang, H.H.; Zhang, B.; Zhang, J.; Hu, X.K.; Du, X.T.; Cai, J.R.; Jia, W.D.; Wu, C.D. UAV-based multispectral winter wheat growth monitoring with adaptive weight allocation. Agriculture 2024, 14, 1900. [Google Scholar] [CrossRef]
- Pal, P.; Landivar-Bowles, J.; Landivar-Scott, J.; Duffield, N.; Nowka, K.; Jung, J.H.; Chang, A.; Lee, K.; Zhao, L.; Bhandari, M. Unmanned aerial system and machine learning driven digital-twin framework for in-season cotton growth forecasting. Comput. Electron. Agric. 2025, 228, 109589. [Google Scholar] [CrossRef]
- Luo, X.L.; Sun, C.J.; He, Y.; Zhu, F.L.; Li, X.L. Cross-cultivar prediction of quality indicators of tea based on VIS-NIR hyperspectral imaging. Ind. Crop. Prod. 2023, 202, 117009. [Google Scholar] [CrossRef]
- Tsai, A.C.; Saengsoi, A. Artificial Intelligent IoT-Based Cognitive Hardware for Agricultural Precision Analysis. Mobile. Netw. Appl. 2024, 29, 334–348. [Google Scholar] [CrossRef]
- Acquah, S.J.; Yan, H.F.; Zhang, C.; Wang, G.Q.; Zhao, B.S.; Wu, H.M.; Zhang, H.N. Application and evaluation of stanghellini model in the determination of crop evapotranspiration in a naturally ventilated greenhouse. Int. J. Agric. Biol. Eng. 2018, 11, 95–103. [Google Scholar] [CrossRef]
- Francik, S.; Kurpaska, S. The use of artificial neural networks for forecasting of air temperature inside a heated foil tunnel. Sensors 2020, 20, 652. [Google Scholar] [CrossRef]
- Lee, M.H.; Yao, M.H.; Kow, P.Y.; Kuo, B.J.; Chang, F.J. An artificial intelligence-powered environmental control system for resilient and efficient greenhouse farming. Sustainability 2024, 16, 10958. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Chikangaise, P.; Shi, W.D.; Chen, W.H.; Yuan, S.Q. Review of intelligent sprinkler irrigation technologies for remote autonomous system. Int. J. Agric. Biol. Eng. 2018, 11, 23–30. [Google Scholar] [CrossRef]
- Gao, S.K.; Yu, S.E.; Wang, M.; Meng, J.J.; Tang, S.H.; Ding, J.H.; Li, S.; Miao, Z.M. Effect of different controlled irrigation and drainage regimes on crop growth and water use in paddy rice. Int. J. Agric. Biol. 2018, 20, 486–492. [Google Scholar] [CrossRef]
- Darko, R.O.; Yuan, S.Q.; Hong, L.; Liu, J.P.; Yan, H.F. Irrigation, a productive tool for food security—A review. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2016, 66, 191–206. [Google Scholar] [CrossRef]
- Elbeltagi, A.; Srivastava, A.; Deng, J.S.; Li, Z.B.; Raza, A.; Khadke, L.; Yu, Z.L.; El-Rawy, M. Forecasting vapor pressure deficit for agricultural water management using machine learning in semi-arid environments. Agric. Water Manag. 2023, 283, 108302. [Google Scholar] [CrossRef]
- Raza, A.; Saber, K.; Hu, Y.G.; Ray, R.L.; Ziya Kaya, Y.; Dehghanisanij, H.; Kisi, O.; Elbeltagi, A. Modelling reference evapotranspiration using principal component analysis and machine learning methods under different climatic environments. Irrig. Drain. 2023, 72, 945–970. [Google Scholar] [CrossRef]
- Tong, Z.Y.; Zhang, S.R.; Yu, J.X.; Zhang, X.L.; Wang, B.J.; Zheng, W.A. A hybrid prediction model for catboost tomato transpiration rate based on feature extraction. Agronomy 2023, 13, 2371. [Google Scholar] [CrossRef]
- Zhu, Q.Z.; Zhang, H.Y.; Zhu, Z.H.; Gao, Y.Y.; Chen, L.P. Structural design and simulation of pneumatic conveying line for a paddy side-deep fertilisation system. Agriculture 2022, 12, 867. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Song, X.Y.; Niu, Y.X.; Zhang, H.H.; Wang, A.C.; Zhu, Y.H.; Zhu, X.Y.; Chen, L.P.; Zhu, Q.Z. Estimating winter wheat plant nitrogen content by combining spectral and texture features based on a low-cost UAV rgb system throughout the growing season. Agriculture 2024, 14, 456. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Wang, A.C.; Zhang, H.Y.; Zhu, Q.Z.; Zhang, H.H.; Sun, W.H.; Niu, Y.X. Estimating leaf chlorophyll content of winter wheat from UAV multispectral images using machine learning algorithms under different species, growth stages, and nitrogen stress conditions. Agriculture 2024, 14, 1064. [Google Scholar] [CrossRef]
- Schauberger, B.; Jägermeyr, J.; Gornott, C. A systematic review of local to regional yield forecasting approaches and frequently used data resources. Eur. J. Agron. 2020, 120, 126153. [Google Scholar] [CrossRef]
- Hirooka, Y.; Eda, S.; Ikazaki, K.; Batieno, J.B.; Iseki, K. Development of a simple prediction model for cowpea yield under environmentally growth-restricted conditions. Sci. Rep. 2024, 14, 28706. [Google Scholar] [CrossRef]
- Hoque, M.J.; Islam, M.S.; Uddin, J.; Samad, M.A.; De Abajo, B.S.; Vargas, D.L.R.; Ashraf, I. Incorporating meteorological data and pesticide information to forecast crop yields using machine learning. IEEE Access 2024, 12, 47768–47786. [Google Scholar] [CrossRef]
- Kularathne, S.; Rathnayake, N.; Herath, M.; Rathnayake, U.; Hoshino, Y. Impact of economic indicators on rice production: A machine learning approach in Sri Lanka. PLoS ONE 2024, 19, e303883. [Google Scholar] [CrossRef]
- Guo, Y.L. Integrating genetic algorithm with ARIMA and reinforced random forest models to improve agriculture economy and yield forecasting. Soft Comput. 2024, 28, 1685–1706. [Google Scholar] [CrossRef]
- Ashfaq, M.; Khan, I.; Afzal, R.F.; Shah, D.; Ali, S.; Tahir, M. Enhanced wheat yield prediction through integrated climate and satellite data using advanced AI techniques. Sci. Rep. 2025, 15, 18093. [Google Scholar] [CrossRef]
- Pinto, A.A.; Zerbato, C.; Rolim, G.D. A machine learning models approach and remote sensing to forecast yield in corn with based cumulative growth degree days. Theor. Appl. Climatol. 2024, 155, 7285–7294. [Google Scholar] [CrossRef]
- Xie, J.Y.; Zhang, D.Y.; Jin, N.; Cheng, T.; Zhao, G.; Han, D.; Niu, Z.; Li, W.F. Coupling crop growth models and machine learning for scalable winter wheat yield estimation across major wheat regions in China. Agric. For. Meteorol. 2025, 372, 110687. [Google Scholar] [CrossRef]
- Feng, P.Y.; Wang, B.; Liu, D.; Waters, C.; Xiao, D.P.; Shi, L.J.; Yu, Q. Dynamic wheat yield forecasts are improved by a hybrid approach using a biophysical model and machine learning technique. Agric. For. Meteorol. 2020, 285, 107922. [Google Scholar] [CrossRef]
- Lee, D.H.; Davenport, F.; Shukla, S.; Husak, G.; Funk, C.; Harrison, L.; Mcnally, A.; Rowland, J.; Budde, M.; Verdin, J. Maize yield forecasts for sub-saharan africa using earth observation data and machine learning. Glob. Food Secur.-Agric. Policy 2022, 33, 100643. [Google Scholar] [CrossRef]
- Wei, L.L.; Yang, H.S.; Niu, Y.X.; Zhang, Y.N.; Xu, L.Z.; Chai, X.Y. Wheat biomass, yield, and straw-grain ratio estimation from multi-temporal uav-based rgb and multispectral images. Biosyst. Eng. 2023, 234, 187–205. [Google Scholar] [CrossRef]
- Khan, T.; Sherazi, H.H.R.; Ali, M.; Letchmunan, S.; Butt, U.M. Deep learning-based growth prediction system: A use case of china agriculture. Agronomy 2021, 11, 1551. [Google Scholar] [CrossRef]
- Ashfaq, M.; Khan, I.; Shah, D.; Ali, S.; Tahir, M. Predicting wheat yield using deep learning and multi-source environmental data. Sci. Rep. 2025, 15, 26446. [Google Scholar] [CrossRef]
- Sathya, P.; Gnanasekaran, P. Paddy yield prediction in tamilnadu delta region using MLR-LSTM Model. Appl. Artif. Intell. 2023, 37, 2175113. [Google Scholar] [CrossRef]
- Shook, J.; Gangopadhyay, T.; Wu, L.J.; Ganapathysubramanian, B.; Sarkar, S.; Singh, A.K. Crop yield prediction integrating genotype and weather variables using deep learning. PLoS ONE 2021, 16, e252402. [Google Scholar] [CrossRef] [PubMed]
- Di, Y.; Gao, M.F.; Feng, F.K.; Li, Q.; Zhang, H.J. A new framework for winter wheat yield prediction integrating deep learning and bayesian optimization. Agronomy 2022, 12, 3194. [Google Scholar] [CrossRef]
- Ren, Y.T.; Li, Q.Z.; Du, X.; Zhang, Y.; Wang, H.Y.; Shi, G.W.; Wei, M.F. Analysis of corn yield prediction potential at various growth phases using a process-based model and deep learning. Plants 2023, 12, 446. [Google Scholar] [CrossRef]
- Fieuzal, R.; Marais Sicre, C.M.; Baup, F. Estimation of corn yield using multi-temporal optical and radar satellite data and artificial neural networks. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 14–23. [Google Scholar] [CrossRef]
- Liang, Z.W.; Wada, M.E. Development of cleaning systems for combine harvesters: A review. Biosyst. Eng. 2023, 236, 79–102. [Google Scholar] [CrossRef]
- Wang, H.Y.; Lao, L.Y.; Zhang, H.L.; Tang, Z.; Qian, P.F.; He, Q. Structural fault detection and diagnosis for combine harvesters: A critical review. Sensors 2025, 25, 3851. [Google Scholar] [CrossRef] [PubMed]
- Hao, S.H.; Tang, Z.; Guo, S.B.; Ding, Z.; Su, Z. Model and method of fault signal diagnosis for blockage and slippage of rice threshing drum. Agriculture 2022, 12, 1968. [Google Scholar] [CrossRef]
- Li, Y.M.; Liu, Y.B.; Ji, K.Z.; Zhu, R.H. A fault diagnosis method for a differential inverse gearbox of a crawler combine harvester based on order analysis. Agriculture 2022, 12, 1300. [Google Scholar] [CrossRef]
- Zhou, X.L.; Xu, X.C.; Zhang, J.F.; Wang, L.; Wang, D.F.; Zhang, P.P. Fault diagnosis of silage harvester based on a modified random forest. Inf. Process. Agric. 2023, 10, 301–311. [Google Scholar] [CrossRef]
- Gomez-Gil, F.J.; Martínez-Martínez, V.; Ruiz-Gonzalez, R.; Martínez-Martínez, L.; Gomez-Gil, J. Vibration-based monitoring of agro-industrial machinery using a k-nearest neighbors (kNN) classifier with a harmony search (HS) frequency selector algorithm. Comput. Electron. Agric. 2024, 217, 108556. [Google Scholar] [CrossRef]
- Martínez-Martínez, V.; Gomez-Gil, F.J.; Gomez-Gil, J.; Ruiz-Gonzalez, R. An artificial neural network based expert system fitted with genetic algorithms for detecting the status of several rotary components in agro-industrial machines using a single vibration signal. Expert Syst. Appl. 2015, 42, 6433–6441. [Google Scholar] [CrossRef]
- She, D.M.; Yang, Z.C.; Duan, Y.D.; Pecht, M.G. A meta transfer learning-driven few-shot fault diagnosis method for combine harvester gearboxes. Comput. Electron. Agric. 2024, 227, 109605. [Google Scholar] [CrossRef]
- Ling, G.M.; Zhang, L.K.; Liu, W.R.; Lyu, Z.; Xu, H.M.; Wu, Q.; Zhang, G.Z. Diagnosis model of threshing cylinder blockage condition based on hybrid sparrow search algorithm and support vector machine. Comput. Electron. Agric. 2025, 237, 110660. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Zhang, B.; Shen, C.; Liu, H.L.; Huang, J.C.; Tian, K.P.; Tang, Z. Review of the field environmental sensing methods based on multi-sensor information fusion technology. Int. J. Agric. Biol. Eng. 2024, 17, 1–13. [Google Scholar] [CrossRef]
- Zou, X.G.; Liu, W.C.; Huo, Z.Q.; Wang, S.Y.; Chen, Z.L.; Xin, C.R.; Bai, Y.A.; Liang, Z.Y.; Gong, Y.; Qian, Y.; et al. Current status and prospects of research on sensor fault diagnosis of agricultural internet of things. Sensors 2023, 23, 2528. [Google Scholar] [CrossRef] [PubMed]
- Karimzadeh, S.; Li, Z.; Ahamed, M.S. Machine learning-based fault detection and diagnosis of electrical conductivity and ph sensors in hydroponic systems. Comput. Electron. Agric. 2025, 237, 110544. [Google Scholar] [CrossRef]
- Kaur, G.; Bhattacharya, M. Intelligent fault diagnosis for ait-based smart farming applications. IEEE Sens. J. 2023, 23, 28261–28269. [Google Scholar] [CrossRef]
- Liang, S.C.; Liu, P.Z.; Zhang, Z.W.; Wu, Y. Research on fault diagnosis of agricultural iot sensors based on improved dung beetle optimization–support vector machine. Sustainability 2024, 16, 10001. [Google Scholar] [CrossRef]
- Lu, W.D.; Xu, X.H.; Huang, G.X.; Li, B.; Wu, Y.; Zhao, N.; Yu, F.R. Energy efficiency optimization in swipt enabled wsns for smart agriculture. IEEE Trans. Ind. Inform. 2021, 17, 4335–4344. [Google Scholar] [CrossRef]
- Barriga, A.; Barriga, J.A.; Moñino, M.J.; Clemente, P.J. IoT-based expert system for fault detection in Japanese Plum leaf-turgor pressure WSN. Internet Things 2023, 23, 100829. [Google Scholar] [CrossRef]
- Salhi, M.S.; Salhi, M.; Touti, E.; Zitouni, N.; Benzarti, F. On the use of wireless sensor nodes for agricultural smart fault detection. Wirel. Pers. Commun. 2024, 134, 95–117. [Google Scholar] [CrossRef]
- Zhu, Z.; Zeng, L.X.; Chen, L.; Zou, R.; Cai, Y.F. Fuzzy adaptive energy management strategy for a hybrid agricultural tractor equipped with hmcvt. Agriculture 2022, 12, 1986. [Google Scholar] [CrossRef]
- Xu, L.Y.; Zhang, G.D.; Zhao, S.X.; Wu, Y.W.; Xi, Z.Q. Fault diagnosis of tractor transmission system based on time GAN and transformer. IEEE Access 2024, 12, 107153–107169. [Google Scholar] [CrossRef]
- Ni, H.T.; Lu, L.Q.; Sun, M.; Bai, X.; Yin, Y.F. Research on fault diagnosis of pst electro-hydraulic control system of heavy tractor based on support vector machine. Processes 2022, 10, 791. [Google Scholar] [CrossRef]
- Xue, L.J.; Jiang, H.H.; Zhao, Y.H.; Wang, J.B.; Wang, G.M.; Xiao, M.H. Fault diagnosis of wet clutch control system of tractor hydrostatic power split continuously variable transmission. Comput. Electron. Agric. 2022, 194, 106778. [Google Scholar] [CrossRef]
- Xiao, M.H.; Wang, W.C.; Wang, K.X.; Zhang, W.; Zhang, H.T. Fault diagnosis of high-power tractor engine based on competitive multiswarm cooperative particle swarm optimizer algorithm. Shock Vib. 2020, 2020, 8829257. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Y.J.; Rakibuzzaman, M.; Agarwal, R.; Zhou, L. Numerical and experimental investigations of a double-suction pump with a middle spacer and a staggered impeller. Irrig. Drain. 2025, 74, 944–956. [Google Scholar] [CrossRef]
- Balaji, A.M.; Venkatesh, N.S.; Sakthivel, N.R.; Sugumaran, V. Can pretrained networks be used in fault diagnosis of monoblock centrifugal pump? Proc. Inst. Mech. Eng. Part. E-J. Process Mech. Eng. 2025, 239, 1306–1317. [Google Scholar]
- Loukatos, D.; Kondoyanni, M.; Alexopoulos, G.; Maraveas, C.; Arvanitis, K.G. On-device intelligence for malfunction detection of water pump equipment in agricultural premises: Feasibility and experimentation. Sensors 2023, 23, 839. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Xie, R.T.; Chen, J.W.; Kang, T.B.; Zhang, M. A flexible winding identification method utilizing self-attention and dnn for the double-suction centrifugal pump. IEEE Trans. Instrum. Meas. 2025, 74, 3525511. [Google Scholar] [CrossRef]
- Prasshanth, C.V.; Naveen Venkatesh, S.N.; Mahanta, T.K.; Sakthivel, N.R.; Sugumaran, V. Fault diagnosis of monoblock centrifugal pumps using pre-trained deep learning models and scalogram images. Eng. Appl. Artif. Intell. 2024, 136, 109022. [Google Scholar] [CrossRef]
- Zou, F.Q.; Sang, S.T.; Jiang, M.; Guo, H.L.; Yan, S.Q.; Li, X.M.; Liu, X.W.; Zhang, H.F. A few-shot sample augmentation algorithm based on scam and deps for pump fault diagnosis. ISA Trans. 2023, 142, 445–453. [Google Scholar] [CrossRef]
- Zou, F.Q.; Sang, S.T.; Jiang, M.; Li, X.M.; Zhang, H.F. Few-shot pump anomaly detection via Diff-WRN-based model-agnostic meta-learning strategy. Struct. Health Monit. 2023, 22, 2674–2687. [Google Scholar] [CrossRef]
- Xie, F.Y.; Li, G.; Liu, H.; Sun, E.G.; Wang, Y. Advancing early fault diagnosis for multi-domain agricultural machinery rolling bearings through data enhancement. Agriculture 2024, 14, 112. [Google Scholar] [CrossRef]
- Xie, F.Y.; Sun, E.G.; Wang, L.L.; Wang, G.; Xiao, Q. Rolling bearing fault diagnosis in agricultural machinery based on multi-source locally adaptive graph convolution. Agriculture 2024, 14, 1333. [Google Scholar] [CrossRef]
- Rajakumar, M.P.; Ramya, J.; Maheswari, B.U. Health monitoring and fault prediction using a lightweight deep convolutional neural network optimized by levy flight optimization algorithm. Neural Comput. Appl. 2021, 33, 12513–12534. [Google Scholar] [CrossRef]
- Gupta, N.; Khosravy, M.; Gupta, S.; Dey, N.; Crespo, R.G. Lightweight artificial intelligence technology for health diagnosis of agriculture vehicles: Parallel evolving artificial neural networks by genetic algorithm. Int. J. Parallel Program. 2022, 50, 1–26. [Google Scholar] [CrossRef]
- Mystkowski, A.; Wolniakowski, A.; Idzkowski, A.; Ciężkowski, M.; Ostaszewski, M.; Kociszewski, R.; Kotowski, A.; Kulesza, Z.; Dobrzański, S.; Miastkowski, K. Measurement and diagnostic system for detecting and classifying faults in the rotary hay tedder using multilayer perceptron neural networks. Eng. Appl. Artif. Intell. 2024, 133, 108513. [Google Scholar] [CrossRef]
- Luque, A.; Campos Olivares, D.C.; Mazzoleni, M.; Ferramosca, A.; Previdi, F.; Carrasco, A. Use of artificial intelligence techniques in characterization of vibration signals for application in agri-food engineering. Appl. Intell. 2025, 55, 534. [Google Scholar] [CrossRef]
- Li, C.Q.; Wu, J.G.; Pan, X.Y.; Dou, H.J.; Zhao, X.G.; Gao, Y.Y.; Yang, S.; Zhai, C.Y. Design and experiment of a breakpoint continuous spraying system for automatic-guidance boom sprayers. Agriculture 2023, 13, 2203. [Google Scholar] [CrossRef]
- Qing, Y.R.; Li, Y.M.; Yang, Y.; Xu, L.Z.; Ma, Z. Development and experiments on reel with improved tine trajectory for harvesting oilseed rape. Biosyst. Eng. 2021, 206, 19–31. [Google Scholar] [CrossRef]
- Liu, L.; Yang, F.; Liu, X.Y.; Du, Y.F.; Li, X.Y.; Li, G.R.; Chen, D.; Zhu, Z.X.; Song, Z.H. A review of the current status and common key technologies for agricultural field robots. Comput. Electron. Agric. 2024, 227, 109630. [Google Scholar] [CrossRef]
- Jia, W.K.; Zheng, Y.J.; Zhao, D.A.; Yin, X.; Liu, X.Y.; Du, R.C. Preprocessing method of night vision image application in apple harvesting robot. Int. J. Agric. Biol. Eng. 2018, 11, 158–163. [Google Scholar] [CrossRef]
- Wang, J.Z.; Gao, Z.H.; Zhang, Y.; Zhou, J.; Wu, J.Z.; Li, P.P. Real-time detection and location of potted flowers based on a ZED camera and a YOLO V4-tiny deep learning algorithm. Horticulturae 2022, 8, 21. [Google Scholar] [CrossRef]
- Cui, L.F.; Le, F.X.; Xue, X.Y.; Sun, T.; Jiao, Y.X. Design and experiment of an agricultural field management robot and its navigation control system. Agronomy 2024, 14, 654. [Google Scholar] [CrossRef]
- Hu, T.T.; Wang, W.B.; Gu, J.A.; Xia, Z.L.; Zhang, J.; Wang, B. Research on apple object detection and localization method based on improved YOLOX and RGB-D images. Agronomy 2023, 13, 1816. [Google Scholar] [CrossRef]
- Gugan, G.; Haque, A. Path planning for autonomous drones: Challenges and future directions. Drones 2023, 7, 169. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, X.X.; Zheng, M.Y.; Zhan, Z.H. Evolutionary computation for unmanned aerial vehicle path planning: A survey. Artif. Intell. Rev. 2024, 57, 267. [Google Scholar] [CrossRef]
- Amer, N.H.; Zamzuri, H.; Hudha, K.; Kadir, Z.A. Modelling and control strategies in path tracking control for autonomous ground vehicles: A review of state of the art and challenges. J. Intell. Robot. Syst. 2017, 86, 225–254. [Google Scholar] [CrossRef]
- Zhu, F.H.; Chen, J.; Guan, Z.H.; Zhu, Y.H.; Shi, H.; Cheng, K. Development of a combined harvester navigation control system based on visual simultaneous localization and mapping-inertial guidance fusion. J. Agric. Eng. 2024, 55, 1583. [Google Scholar] [CrossRef]
- Zhou, H.X.; Wang, J.T.; Chen, Y.Q.; Hu, L.; Li, Z.H.; Xie, F.M.; He, J.; Wang, P. Neural network-based SLAM/GNSS fusion localization algorithm for agricultural robots in orchard GNSS-degraded or denied environments. Agriculture 2025, 15, 1612. [Google Scholar] [CrossRef]
- Li, Y.L.; Feng, Q.C.; Ji, C.; Sun, J.H.; Sun, Y. GNSS and LiDAR integrated navigation method in orchards with intermittent GNSS dropout. Appl. Sci. 2024, 14, 3231. [Google Scholar] [CrossRef]
- Ma, Z.; Yang, S.Y.; Li, J.B.; Qi, J.T. Research on slam localization algorithm for orchard dynamic vision based on YOLOD-SLAM2. Agriculture 2024, 14, 1622. [Google Scholar] [CrossRef]
- Liu, W.; Hu, J.P.; Liu, J.X.; Yue, R.C.; Zhang, T.F.; Yao, M.J.; Li, J. Method for the navigation line recognition of the ridge without crops via machine vision. Int. J. Agric. Biol. Eng. 2024, 17, 230–239. [Google Scholar] [CrossRef]
- Syed, T.N.; Zhou, J.; Lakhiar, I.A.; Marinello, F.; Gemechu, T.T.; Rottok, L.T.; Jiang, Z.Z. Enhancing autonomous orchard navigation: A real-time convolutional neural network-based obstacle classification system for distinguishing ‘real’ and ‘fake’ obstacles in agricultural robotics. Agriculture 2025, 15, 827. [Google Scholar] [CrossRef]
- Zhang, T.F.; Zhou, J.H.; Liu, W.; Yue, R.C.; Shi, J.W.; Zhou, C.J.; Hu, J.P. SN-CNN: A lightweight and accurate line extraction algorithm for seedling navigation in ridge-planted vegetables. Agriculture 2024, 14, 1446. [Google Scholar] [CrossRef]
- Teng, H.Z.; Wang, Y.P.; Chatziparaschis, D.; Karydis, K. Adaptive LiDAR odometry and mapping for autonomous agricultural mobile robots in unmanned farms. Comput. Electron. Agric. 2025, 232, 110023. [Google Scholar] [CrossRef]
- Firkat, E.; An, F.; Peng, B.; Zhang, J.L.; Mijit, T.; Ahat, A.; Zhu, J.H.; Hamdulla, A. FGSeg: Field-ground segmentation for agricultural robot based on LiDAR. Comput. Electron. Agric. 2023, 211, 107965. [Google Scholar] [CrossRef]
- Lu, E.; Xu, L.Z.; Li, Y.M.; Tang, Z.; Ma, Z. Modeling of working environment and coverage path planning method of combine harvesters. Int. J. Agric. Biol. Eng. 2020, 13, 132–137. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Chen, W.M.; Wei, X.H. Improved field obstacle detection algorithm based on YOLOv8. Agriculture 2024, 14, 2263. [Google Scholar] [CrossRef]
- Jeon, C.W.; Kim, H.J.; Yun, C.H.; Han, X.Z.; Kim, J.H. Design and validation testing of a complete paddy field-coverage path planner for a fully autonomous tillage tractor. Biosyst. Eng. 2021, 208, 79–97. [Google Scholar] [CrossRef]
- Wang, L.H.; Wang, Z.X.; Liu, M.J.; Ying, Z.H.; Xu, N.H.; Meng, Q. Full coverage path planning methods of harvesting robot with multi-objective constraints. J. Intell. Robot. Syst. 2022, 106, 17. [Google Scholar] [CrossRef]
- Soitinaho, R.; Väyrynen, V.; Oksanen, T. Heuristic cooperative coverage path planning for multiple autonomous agricultural field machines performing sequentially dependent tasks of different working widths and turn characteristics. Biosyst. Eng. 2024, 242, 16–28. [Google Scholar] [CrossRef]
- Ahmed, S.; Qiu, B.; Kong, C.; Xin, H.; Ahmad, F.; Lin, J. A data-driven dynamic obstacle avoidance method for liquid-carrying plant protection UAVs. Agronomy 2022, 12, 873. [Google Scholar] [CrossRef]
- Wu, H.X.; Wang, X.Z.; Chen, X.G.; Zhang, Y.F.; Zhang, Y.W. Review on key technologies for autonomous navigation in field agricultural machinery. Agriculture 2025, 15, 1297. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.K.; Wen, X.; Zhang, G.; Ma, Q.L.; Cheng, S.K.; Qi, J.; Xu, L.Y.; Chen, L.Q. An optimal goal point determination algorithm for automatic navigation of agricultural machinery: Improving the tracking accuracy of the pure pursuit algorithm. Comput. Electron. Agric. 2022, 194, 106760. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, B.L.; Zhang, C.B.; Zhang, Y.Y.; Shen, G. A model-free adaptive predictive path-tracking controller with pid terms for tractors. Biosyst. Eng. 2024, 242, 38–49. [Google Scholar] [CrossRef]
- Yang, W.H.; Ding, S.H.; Ding, C. Fast supertwisting sliding mode control with antipeaking extended state observer for path-tracking of unmanned agricultural vehicles. IEEE Trans. Ind. Electron. 2024, 71, 12973–12982. [Google Scholar] [CrossRef]
- Han, L.H.; Mao, H.P.; Hu, J.P.; Kumi, F. Development of a riding-type fully automatic transplanter for vegetable plug seedlings. Span. J. Agric. Res. 2019, 17, e205. [Google Scholar] [CrossRef]
- Han, L.; Mao, H.; Kumi, F.; Hu, J. Development of a multi-task robotic transplanting workcell for greenhouse seedlings. Appl. Eng. Agric. 2018, 34, 335–342. [Google Scholar] [CrossRef]
- Shanmugasundar, G.; Manoj Kumar, G.; Gouthem, S.E.; Surya Prakash, V. Design and development of solar powered autonomous seed sowing robot. J. Pharm. Negat. Results 2022, 13, 1013–1016. [Google Scholar] [CrossRef]
- Liu, J.Z.; Zhao, S.Y.; Li, N.; Faheem, M.; Zhou, T.; Cai, W.J.; Zhao, M.Z.; Zhu, X.Y.; Li, P.P. Development and field test of an autonomous strawberry plug seeding transplanter for use in elevated cultivation. Appl. Eng. Agric. 2019, 35, 1067–1078. [Google Scholar] [CrossRef]
- Abo-Habaga, M.; Ismail, Z.; Moustafa, N.; Okasha, M. Developing an automatic precision seeding unit (APSU) for pot seed planting. INMATEH-Agric. Eng. 2024, 74, 260–272. [Google Scholar] [CrossRef]
- Liu, H.M. Control of automatic seeding robot based on basketball movement capture. J. Intell. Fuzzy Syst. 2020, 38, 7475–7485. [Google Scholar] [CrossRef]
- Hiraguri, T.; Kimura, T.; Endo, K.; Ohya, T.; Takanashi, T.; Shimizu, H. Shape classification technology of pollinated tomato flowers for robotic implementation. Sci. Rep. 2023, 13, 2159. [Google Scholar] [CrossRef]
- Hiraguri, T.; Shimizu, H.; Kimura, T.; Matsuda, T.; Maruta, K.; Takemura, Y.; Ohya, T.; Takanashi, T. Autonomous drone-based pollination system using AI classifier to replace bees for greenhouse tomato cultivation. IEEE Access 2023, 11, 99352–99364. [Google Scholar] [CrossRef]
- Yang, M.H.; Lyu, H.C.; Zhao, Y.J.; Sun, Y.C.; Pan, H.; Sun, Q.; Chen, J.L.; Qiang, B.H.; Yang, H.B. Delivery of pollen to forsythia flower pistils autonomously and precisely using a robot arm. Comput. Electron. Agric. 2023, 214, 108274. [Google Scholar] [CrossRef]
- Gao, C.Q.; He, L.L.; Fang, W.T.; Wu, Z.C.; Jiang, H.H.; Li, R.; Fu, L.S. A novel pollination robot for kiwifruit flower based on preferential flowers selection and precisely target. Comput. Electron. Agric. 2023, 207, 107762. [Google Scholar] [CrossRef]
- Masuda, N.; Khalil, M.M.; Toda, S.; Takayama, K.; Kanada, A.; Mashimo, T. A suspended pollination robot with a flexible multi-degrees-of-freedom manipulator for self-pollinated plants. IEEE Access 2024, 12, 142449–142458. [Google Scholar] [CrossRef]
- Ju, J.Y.; Chen, G.Q.; Lv, Z.Y.; Zhao, M.Y.; Sun, L.; Wang, Z.T.; Wang, J.F. Design and experiment of an adaptive cruise weeding robot for paddy fields based on improved YOLOv5. Comput. Electron. Agric. 2024, 219, 108824. [Google Scholar] [CrossRef]
- Zhu, H.B.; Zhang, Y.Y.; Mu, D.L.; Bai, L.Z.; Zhuang, H.; Li, H. YOLOX-based blue laser weeding robot in corn field. Front. Plant Sci. 2022, 13, 1017803. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.S.; Xie, S.Y.; Song, D.Z.; Thomasson, J.A.; Hardin, R.G.; Bagavathiannan, M. Algorithm and system development for robotic micro-volume herbicide spray towards precision weed management. IEEE Robot. Autom. Lett. 2022, 7, 11633–11640. [Google Scholar] [CrossRef]
- Zhao, P.; Chen, J.L.; Li, J.H.; Ning, J.F.; Chang, Y.M.; Yang, S.Q. Design and testing of an autonomous laser weeding robot for strawberry fields based on DIN-LW-YOLO. Comput. Electron. Agric. 2025, 229, 109808. [Google Scholar] [CrossRef]
- Zheng, S.Y.; Zhao, X.G.; Fu, H.; Tan, H.R.; Zhai, C.Y.; Chen, L.P. Design and experimental evaluation of a smart intra-row weed control system for open-field cabbage. Agronomy 2025, 15, 112. [Google Scholar] [CrossRef]
- Balabantaray, A.; Behera, S.; Liew, C.; Chamara, N.; Singh, M.; Jhala, A.J.; Pitla, S. Targeted weed management of palmer amaranth using robotics and deep learning (YOLOv7). Front. Robot. AI 2024, 11, 1441371. [Google Scholar] [CrossRef]
- Fan, X.P.; Chai, X.J.; Zhou, J.P.; Sun, T. Deep learning based weed detection and target spraying robot system at seedling stage of cotton field. Comput. Electron. Agric. 2023, 214, 108317. [Google Scholar] [CrossRef]
- Lei, X.J.; Liu, J.Z.; Jiang, H.K.; Xu, B.C.; Jin, Y.C.; Gao, J.A. Design and testing of a four-arm multi-joint apple harvesting robot based on singularity analysis. Agronomy 2025, 15, 1446. [Google Scholar] [CrossRef]
- Yu, Y.; Xie, H.H.; Zhang, K.L.; Wang, Y.J.; Li, Y.T.; Zhou, J.M.; Xu, L.Z. Design, development, integration, and field evaluation of a ridge-planting strawberry harvesting robot. Agriculture 2024, 14, 2126. [Google Scholar] [CrossRef]
- Yang, L.L.; Noguchi, T.; Hoshino, Y. Development of a pumpkin fruits pick-and-place robot using an RGB-D camera and a Yolo based object detection AI model. Comput. Electron. Agric. 2024, 227, 109625. [Google Scholar] [CrossRef]
- Yang, L.L.; Noguchi, T.; Hoshino, Y. Development of a grape cut point detection system using multi-cameras for a grape-harvesting robot. Sensors 2024, 24, 8035. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.L.; Huang, C.C. Design and implementation of an AI-based robotic arm for strawberry harvesting. Agriculture 2024, 14, 2057. [Google Scholar] [CrossRef]
- Choi, D.W.; Park, J.H.; Yoo, J.H.; Ko, K.E. Ai-driven adaptive grasping and precise detaching robot for efficient citrus harvesting. Comput. Electron. Agric. 2025, 232, 110131. [Google Scholar] [CrossRef]
- Bu, F.Y.; Wang, X. A smart agriculture IoT system based on deep reinforcement learning. Futur. Gener. Comp. Syst. 2019, 99, 500–507. [Google Scholar] [CrossRef]
- Mohamed, T.M.K.; Gao, J.M.; Tunio, M. Development and experiment of the intelligent control system for rhizosphere temperature of aeroponic lettuce via the Internet of Things. Int. J. Agric. Biol. Eng. 2022, 15, 225–233. [Google Scholar] [CrossRef]
- Qureshi, W.A.; Gao, J.M.; Elsherbiny, O.; Mosha, A.H.; Tunio, M.H.; Qureshi, J.A. Boosting aeroponic system development with plasma and high-efficiency tools: AI and IoT-A Review. Agronomy 2025, 15, 546. [Google Scholar] [CrossRef]
- Shi, B.; Sreeram, V.; Zhao, D.A.; Duan, S.L.; Jiang, J.M. A wireless sensor network-based monitoring system for freshwater fishpond aquaculture. Biosyst. Eng. 2018, 172, 57–66. [Google Scholar] [CrossRef]
- Ma, Y.W.; Chen, J.L.; Shih, C.C.; Dabirian, A. An automatic and intelligent internet of things for future agriculture. IT Prof. 2022, 24, 74–80. [Google Scholar] [CrossRef]
- Sitharthan, R.; Rajesh, M.; Vimal, S.; Kumar, E.S.; Yuvaraj, S.; Kumar, A.; Raglend, I.J.; Vengatesan, K. A novel autonomous irrigation system for smart agriculture using AI and 6G enabled IoT network. Microprocess. Microsyst. 2023, 101, 104905. [Google Scholar]
- Singh, A.; Nawayseh, N.; Singh, H.; Dhabi, Y.K.; Samuel, S. Internet of agriculture: Analyzing and predicting tractor ride comfort through supervised machine learning. Eng. Appl. Artif. Intell. 2023, 125, 106720. [Google Scholar] [CrossRef]
- Jose, T.; Mayan, J.A. LoRaWAN and artificial intelligence integrated smart acoustic sensor network for bird species identification and deterrence system for farm protection. Measurement 2025, 256, 118452. [Google Scholar] [CrossRef]
- Li, Z.K.; Mao, H.P.; Li, L.Z.; Wei, Y.Z.; Yu, Y.S.; Zhao, M.X.; Liu, Z. A flexible wearable sensor for in situ non-destructive detection of plant leaf transpiration information. Agriculture 2024, 14, 2174. [Google Scholar] [CrossRef]
- Shadrin, D.; Menshchikov, A.; Ermilov, D.; Somov, A. Designing future precision agriculture: Detection of seeds germination using artificial intelligence on a low-power embedded system. IEEE Sens. J. 2019, 19, 11573–11582. [Google Scholar] [CrossRef]
- Shadrin, D.; Menshchikov, A.; Ermilov, D.; Somov, A. Enabling precision agriculture through embedded sensing with artificial intelligence. IEEE Trans. Instrum. Meas. 2020, 69, 4103–4113. [Google Scholar] [CrossRef]
- Muhammed, D.; Ahvar, E.; Ahvar, S.; Trocan, M.; Montpetit, M.; Ehsani, R. Artificial intelligence of things (AIoT) for smart agriculture: A review of architectures, technologies and solutions. J. Netw. Comput. Appl. 2024, 228, 103905. [Google Scholar] [CrossRef]
- Adli, H.K.; Remli, M.A.; Wong, K.N.S.W.S.; Ismail, N.A.; González-Briones, A.; Corchado, J.M.; Mohamad, M.S. Recent advancements and challenges of aiot application in smart agriculture: A Review. Sensors 2023, 23, 3752. [Google Scholar] [CrossRef] [PubMed]
- Mowla, M.N.; Mowla, N.; Shah, A.F.M.S.; Rabie, K.M.; Shongwe, T. Internet of things and wireless sensor networks for smart agriculture applications: A Survey. IEEE Access 2023, 11, 145813–145852. [Google Scholar] [CrossRef]
- Liu, J.H.; Jiang, W.W.; Han, H.Y.; He, M.; Gu, W.X. Satellite internet of things for smart agriculture applications: A case study of computer vision. In Proceedings of the IEEE International Conference on Sensing Communication and Networking, Madrid, Spain, 11–14 September 2023. [Google Scholar]
- Vangala, A.; Das, A.K.; Kumar, N.; Alazab, M. Smart secure sensing for IoT-based agriculture: Blockchain perspective. IEEE Sens. J. 2021, 21, 17591–17607. [Google Scholar] [CrossRef]
- Dhanaraju, M.; Chenniappan, P.; Ramalingam, K.; Pazhanivelan, S.; Kaliaperumal, R. Smart farming: Internet of Things (IoT)-based sustainable agriculture. Agriculture 2022, 12, 1745. [Google Scholar] [CrossRef]
- AlZubi, A.A.; Galyna, K. Artificial intelligence and internet of things for sustainable farming and smart agriculture. IEEE Access 2023, 11, 78686–78692. [Google Scholar] [CrossRef]
- Luo, X.; Xiong, S.M.; Jia, X.C.; Zeng, Y.; Chen, X. AIoT-enabled data management for smart agriculture: A comprehensive review on emerging technologies. IEEE Access 2025, 13, 102964–102993. [Google Scholar] [CrossRef]
- Miller, T.; Mikiciuk, G.; Durlik, I.; Mikiciuk, M.; Lobodzinska, A.; Snieg, M. The iot and ai in agriculture: The time is now-a systematic review of smart sensing technologies. Sensors 2025, 25, 3583. [Google Scholar] [CrossRef]






| Fields | Methods | Application Scenarios | Acc. | Dataset | Refs. | 
|---|---|---|---|---|---|
| Optimal Selection of Seeds | SSAE + SVM+ CS | Maize seeds | 95.81% | Lab data | [31] | 
| SVM + AFSA | Rice varieties | 99.44% | Lab data | [32] | |
| SVM | Selenium rich foxtail millet | 99.58% | Lab data | [33] | |
| SVM | Grape varieties | 99.3125% | Lab data | [34] | |
| SVM + ABC | Vitality of watermelon seeds | 100% | Lab data | [35] | |
| Health Monitoring | Self-attention mechanism | Crop diseases | 89.95% | FGVC8 | [29] | 
| Transformer + CNN + Center Loss | Crop diseases | 99.62% | Plant Village | [13] | |
| CNN + Attention mechanism + ResNet | Tomato leaf diseases | 96.81% | Plant Village | [11] | |
| CNN + SVM | Grape leaf diseases | 99.77% | Kaggle | [8] | |
| GAN + Attention mechanism | Crop diseases | 78.7% | Lab data | [36] | |
| ELM | Tea disease | 95.77% | Lab data | [37] | |
| CNN | Rice blast disease | 97.18% | Lab data | [38] | |
| Risk Screening-Food Safety | CNN | Tea pesticide residues | R2p = 0.995 | Lab data | [39] | 
| Attention + ResNet | Heavy metal residues in edible oils | R2p = 0.9605 | Lab data | [40] | |
| SDAE | Lead content in oilseed rape leaves | R2p = 0.9388 | Lab data | [41] | |
| SCAE | Heavy metal analysis in lettuce | R2p = 0.9418 | Lab data | [42] | |
| SVM | Peanut kernels infected with aspergillus flavus fungi | 92.4% | Lab data | [43] | |
| KNN & LDA | Maize mold | 100 | Lab data | [44] | |
| CNN | Aflatoxin B1 in maize | R2p = 0.9955 | Lab data | [45] | |
| CNN | Trace level zearalenone in corn oil | R2p = 0.9872 | Lab data | [46] | |
| CNN | Wheat zearalenone | R2p = 0.91 | Lab data | [47] | |
| Value Enhancement | Multi-task CNN | Lipid and protein oxidative damage in frozen-thawed pork | R2p = 0.9724 | Lab data | [48] | 
| Dual-branch CNN | Pork freshness | R2p = 0.9579 | Lab data | [49] | |
| HFA-Net | Pork freshness | R2p = 0.9373 | Lab data | [50] | |
| TL + CNN | Chicken meat adulteration | 98.6% | Lab data | [51] | |
| CNN + SVM | Chicken meat adulteration | 98.1% | Lab data | [12] | |
| 1D-CNN + CAM | Herb traceability | 92.22% | Lab data | [52] | |
| LSSVM | Grape quality | R2p = 0.93 | Lab data | [53] | |
| CNN | Apple quality | 90.50% | Lab data | [30] | |
| YOLOv5s | Apple quality | 94.46% | Lab data | [10] | |
| YOLOv5 | Apple grading and detection | 90.6% | Lab data | [54] | |
| ResNet | Tea grading and detection | 99.13% | Lab data | [55] | |
| YOLOv4-Tiny | Cherry tomato grading and detection | mAP = 94.72% | Lab data | [56] | 
| Scenarios | Methods | Target | Acc. | Dataset | Refs. | 
|---|---|---|---|---|---|
| Soil Analysis | CNN-SVM | Soil moisture | MAE < 3.24 RMSE < 4.12 MAPE < 12.52 | Godavari River Plateau and Krishna River Plateau soil moisture measurements | [66] | 
| ANN & RF & SVR | Soil salinization | R2 > 0.43 RMSE < 0.16 | Sentinel-2 images obtained from the USGS Earth probe data portal | [67] | |
| Weather Forecasting | LSTM-ConvLSTM | Sunshine duration, cumulative precipitation, and average temperature | Performed very well | Meteorological data from Dandong Meteorological Station, 1981–2017 | [69] | 
| ARIMA-LSTM | Drought | MAE = 0.05 RMSE = 0.06 | VTCI remote sensing data of the Sichuan Basin downloaded from Copernicus Data Centre of the European Space Agency | [72] | |
| W-2A | Drought | R2 > 0.836 R > 0.914 RMSE < 0.448 | 30-Year Rainfall data for the Langa River Basin | [73] | |
| TEX-LSTM | Drought | 97.27 MAE = 4.1 MSE = 8.89 RMSE = 2.98 | Standard Vegetation Index and Vegetation Health Index datasets from Thanjavur | [74] | |
| ANN & SVM & ANFIS | Drought | R > 0.9237 | Standard Precipitation Index data for the Awash River Basin, Ethiopia | [75] | |
| EO-CatBoost | Drought | Performed very well | Integrated data on remote sensing, weather forecasts, soil moisture, and static environmental descriptors for Mali, Mozambique, and Somalia | [76] | |
| Crop Growth | CNN-LSTM | CC | R2 > 0.922 RMSE < 8.260 | Corn image data and microclimate data from Zhengzhou, Henan; Tai’an, Shandong; and Gucheng, Hebei, China | [77] | 
| ConvLSTM | NDVI | RMSE < 0.10264 | Spectral Index data for Uruguay | [78] | |
| DT | CC, CV, CH, and EXG | Performed very well | Cotton Growth Characteristics data from Farmland in Driscoll, Texas, USA | [80] | |
| Crop Management | ANN | Greenhouse temperature | RMSE < 4.59 | Data from heated foil tunnel at the University of Agriculture in Krakow | [84] | 
| ConvLSTM-CNN-BPNN | Greenhouse temperaturet | Performed very well | A greenhouse located at the TARI in Central Taiwan | [85] | |
| CARS-ConvLSTM | Tr | MAE < 0.009 RMSE < 0.012 | National Precision Agriculture Demonstration Base in Changping District, Beijing | [91] | |
| Yield Forecast | RF-APSIM | Wheat | Performed very well | Climate data, remote sensing data, experimental variety data, and soil hydraulic properties data for the wheat belt of New South Wales (NSW), Australia | [103] | 
| EO-ERT | Corn | Performed very well | South African Corn Production data and Corn Growing Season Anomaly Hotspot data | [104] | |
| WOFOST-GRU | Corn | R2 = 0.98 RMSE = 102.65 MRE = 1.53% | Meteorological and soil data for Shandong Province, China | [111] | 
| Scenarios | Method | Type | Applied Signal | Acc. | Dataset | Refs. | 
|---|---|---|---|---|---|---|
| Harvester | SVM | Vibrating screen bolt | Vibration | >96.8% | Lab data | [20] | 
| KNN + HS | Rotating components | Vibration | >99% | Lab data | [118] | |
| ANN + GA | Rotating components | Vibration | 92.96% | Lab data | [119] | |
| SVM + SDAE | Threshing drum bearing | Vibration | >99% | Lab data | [19] | |
| CDAN + MSL | Gearbox | Vibration | >99% | Lab data | [120] | |
| SVM + HSSA | Threshing cylinder | Vibration | 100% | Lab data | [121] | |
| Sensor | RF, LSTM, ANN KNN, and SVM | / | Temperature and humidity | >90% | Lab data | [124] | 
| HT-LS-SVM | / | Temperature and humidity | 99% | Real-world environmental data | [125] | |
| SVM + IDBO | / | Temperature and humidity | 94.91% | Sichuan pepper farm in Laiwu District, Jinan City, Shandong Province, China | [126] | |
| SVM | / | Pressure | 90% | CICYTEX—La Orden Research Center in Badajoz (Spain) | [128] | |
| ERSOM | / | Vibration | 92% | Lab data | [129] | |
| Tractor | CNN + BILSTM | Transmission system | Vibration | >98% | CWRU and Lab data | [23] | 
| GAN + Transformer | Transmission system | Vibration | >93% | CWRU and Lab data | [131] | |
| SVM | Transmission | Pressure | 95% | Lab and simulation data | [132] | |
| RF + CFS | Auxiliary gearbox | Vibration | 92.5% | Lab data | [21] | |
| PCA + GNBA | Wet-clutch control system | Pressure | 98.2% | Lab data | [133] | |
| CNN | Diesel engine | Infrared image | 97.67% | Lab data | [22] | |
| Pump | DNN | Centrifugal pump | Pressure | >82.82% | Lab data | [138] | 
| AlexNet | Monoblock centrifugal pump | Vibration | >99% | Lab data | [139] | |
| SCAM + DEPS | / | Vibration | >72% | Lab data | [140] | |
| MAMLS | / | Vibration | >95% | Lab and simulation data | [141] | |
| Others | GCN | Rolling bearing | Vibration | 97% | Xi’an Jiaotong University bearing data | [142] | 
| SVM | Rolling bearing | Vibration | 99% | Jiangnan University bearing data | [143] | |
| DCNN | Agricultural vehicle | Acoustic | >81% | Lab data | [144] | |
| ANN + GA | Agricultural vehicle | Acoustic | 76.56% | Lab data | [145] | |
| MLP | Hay tedder | Vibration | 92.5% | Lab data | [146] | |
| RF | Gripping plier | Vibration | >83% | Lab data | [147] | 
| Types | Methods | Scenarios | Performance | Refs. | 
|---|---|---|---|---|
| Localization and Perception | SLAM/GNSS fusion positioning algorithm | Farmland, orchard | Avg. Pos. Error: 0.12 m | [159] | 
| RTK-GNSS/INS/LiDAR navigation | Orchard | Avg. Lat. Error: 0.1 m | [160] | |
| Gray reconstruction and approximate quadrilateral method | Field ridge | 98.8% | [162] | |
| CNN | Orchard | Recognition success rate: 95% | [163] | |
| SN-CNN | Seedbed | Recognition success rate: 94.6% | [164] | |
| Adaptive LiDAR odometry and mapping framework | Farmland | Centimeter-level positioning accuracy | [165] | |
| Ground segmentation algorithm and LiDAR sensors | Farmland | Recognition success rate: 96.54% | [166] | |
| Path Planning | Boundary corner turning methods and coverage path planner | Paddy fields | Coverage rate ≥ 98% | [169] | 
| Ant colony algorithm and shuttle strategy | Farmland | Coverage rate ≥ 90% | [170] | |
| Short-path decomposition and real-time collision detection scheduling | Farmland | Coverage rate ≥ 96% | [171] | |
| Path Tracking Control | Optimal goal points | Farmland | High stability and accuracy | [174] | 
| Pre-aiming theory and adaptive PID architecture | Autonomous tractor | RMSE = 0.022 m | [175] | |
| FSTSM control method with AESO | Unmanned agricultural vehicles | Small heading deviation error | [176] | 
| Operations | Methods | Scenarios | Performance | Refs. | 
|---|---|---|---|---|
| Planting | Transplanting system with photoelectric navigation and pneumatic dual-gripper mechanism | Strawberry transplanting | Overall success rate: 95.3% Speed: 047.8 plants/h | [180] | 
| APSU for greenhouses | Sowing in pots | Sowing speed: 35 s/pot | [181] | |
| Basketball motion capture technology | Automatic Seeding | Sowing positioning accuracy: 95.5% | [182] | |
| Growth Management | PSTL_Orient | Pollination of Forsythia | Pollination success rate: 86.19% | [185] | 
| Pollination robot integrating vision, air-liquid spraying, and robotic arm | Pollination of kiwifruit | Pollination success rate: 99.3% | [186] | |
| Flexible multi-degree-of-freedom manipulator, a dual-actuator system | Pollination of tomato | Pollination success rate: 92% | [187] | |
| Detection method for drip irrigation pipe navigation, laser weeding | Weeding in strawberry fields | Weeding accuracy: 92.6% | [191] | |
| An electric swing-type intra-row weeding control system | Weeding in Cabbage Fields | Weeding accuracy: 96% | [192] | |
| Self-developed AI recognition model, robotic technology | Weeding targeting Palmer amaranth | Spraying precision rate: 60.4% | [193] | |
| CBAM, BiFPN, bilinear interpolation algorithms | Weeding in cotton fields | Spraying precision rate: 98.93% | [194] | |
| Harvesting | AI, RGB-D camera | Harvesting Pumpkins | Picking success rate: 90.2% | [197] | 
| Multi-camera system, AI Object Detection Algorithms | Harvesting grapes | Picking success rate: 93% | [198] | |
| Wire-driven multi-joint robotic arm, deep learning, two-stage fuzzy logic control | Harvesting strawberries | Picking success rate: 82% | [199] | |
| Eye-hand coordination of the robotic arm, 6D fruit posture sensing | Harvesting Citrus | Picking success rate: 83.33% | [200] | 
| Scenarios | Methods | Refs. | 
|---|---|---|
| Smart farming optimization | DRL, edge-cloud computing, IoT, and multi-task learning | [201] | 
| Real-time bird identification, crop protection | CNN-BiLSTM model, LoRaWAN communication, edge AI processing | [208] | 
| Automated rhizosphere cooling | IoT sensor monitoring, Arduino-based fan control, real-time data logging | [202] | 
| Aeroponics optimization via plasma-induced nitrogen fixation | Comparative analysis of PAW/PAM efficacy | [203] | 
| Flexible wearable sensor for plant transpiration monitoring | GO-based humidity sensing, PDMS substrate, in situ leaf attachment | [209] | 
| Wireless aquaculture monitoring DO, temperature | WSN with tree topology, sleep mode, data merging | [204] | 
| On-device AI for automated seed germination monitoring | Custom CNN, Low-power embedded system | [210] | 
| Long-term autonomous plant growth prediction | LSTM-RNN on low-power embedded system | [211] | 
| Automated, water-efficient smart farming | LoRa IoT, image analysis, dynamic transmission, machine learning, automated irrigation | [205] | 
| Autonomous irrigation for smart agriculture | AI prediction, 6G-IoT, soil moisture sensing | [206] | 
| Predict tractor ride comfort | Supervised ML (ANN, SVR, GPR, DTR, LR) with hyperparameter optimization | [207] | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, C.; Zhang, G.; Wang, Y.; Shao, D.; Song, X.; Wang, Z. Research Status and Development Trends of Artificial Intelligence in Smart Agriculture. Agriculture 2025, 15, 2247. https://doi.org/10.3390/agriculture15212247
Ge C, Zhang G, Wang Y, Shao D, Song X, Wang Z. Research Status and Development Trends of Artificial Intelligence in Smart Agriculture. Agriculture. 2025; 15(21):2247. https://doi.org/10.3390/agriculture15212247
Chicago/Turabian StyleGe, Chuang, Guangjian Zhang, Yijie Wang, Dandan Shao, Xiangjin Song, and Zhaowei Wang. 2025. "Research Status and Development Trends of Artificial Intelligence in Smart Agriculture" Agriculture 15, no. 21: 2247. https://doi.org/10.3390/agriculture15212247
APA StyleGe, C., Zhang, G., Wang, Y., Shao, D., Song, X., & Wang, Z. (2025). Research Status and Development Trends of Artificial Intelligence in Smart Agriculture. Agriculture, 15(21), 2247. https://doi.org/10.3390/agriculture15212247
 
        


 
       