Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (673)

Search Parameters:
Keywords = agricultural road

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 3799 KiB  
Systematic Review
Improvement of Expansive Soils: A Review Focused on Applying Innovative and Sustainable Techniques in the Ecuadorian Coastal Soils
by Mariela Macías-Párraga, Francisco J. Torrijo Echarri, Olegario Alonso-Pandavenes and Julio Garzón-Roca
Appl. Sci. 2025, 15(15), 8184; https://doi.org/10.3390/app15158184 - 23 Jul 2025
Viewed by 244
Abstract
Traditional stabilization techniques, such as lime and cement, widely used for their effectiveness, albeit with economic and environmental limitations, are leading to the search for sustainable approaches that utilize agricultural and industrial waste, such as rice husk ash, bagasse, and natural fibers. These [...] Read more.
Traditional stabilization techniques, such as lime and cement, widely used for their effectiveness, albeit with economic and environmental limitations, are leading to the search for sustainable approaches that utilize agricultural and industrial waste, such as rice husk ash, bagasse, and natural fibers. These have been shown to improve key geotechnical properties, even under saturated conditions, significantly. In particular, the combination of rice husk ash and recycled ceramics has shown notable results in Ecuadorian coastal soils. The article emphasizes the importance of selecting techniques that balance effectiveness, cost, and sustainability and identifies existing limitations, such as the lack of long-term data (ten years) and predictive models adapted to the Ecuadorian climate. From a bibliographic perspective, this article analyzes the challenges posed by expansive soils in the western coastal region of Ecuador, whose high plasticity and instability to moisture negatively affect civil works such as roads and buildings. The Ecuadorian clay contained 30% kaolinite and only 1.73% CaO, limiting its chemical reactivity compared to soils such as Saudi Arabia, which contained 34.7% montmorillonite and 9.31% CaO. Natural fibers such as jute, with 85% cellulose, improved the soil’s mechanical strength, increasing the UCS by up to 130%. Rice husk ash (97.69% SiO2) and sugarcane bagasse improved the CBR by 90%, highlighting their potential as sustainable stabilizers. All of this is contextualized within Ecuador’s geoenvironmental conditions, which are influenced by climatic phenomena such as El Niño and La Niña, as well as global warming. Finally, it is proposed to promote multidisciplinary research that fosters more efficient and environmentally responsible solutions for stabilizing expansive soils. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

17 pages, 309 KiB  
Article
Heavy Metals in Leafy Vegetables and Soft Fruits from Allotment Gardens in the Warsaw Agglomeration: Health Risk Assessment
by Jarosław Chmielewski, Elżbieta Wszelaczyńska, Jarosław Pobereżny, Magdalena Florek-Łuszczki and Barbara Gworek
Sustainability 2025, 17(15), 6666; https://doi.org/10.3390/su17156666 - 22 Jul 2025
Viewed by 424
Abstract
Vegetables and fruits grown in urban areas pose a potential threat to human health due to contamination with heavy metals (HMs). This study aimed to identify and quantify the concentrations of heavy metals (Fe, Mn, Zn, Cu, Pb, Cd) in tomatoes, leafy vegetables, [...] Read more.
Vegetables and fruits grown in urban areas pose a potential threat to human health due to contamination with heavy metals (HMs). This study aimed to identify and quantify the concentrations of heavy metals (Fe, Mn, Zn, Cu, Pb, Cd) in tomatoes, leafy vegetables, and fruits collected from 16 allotment gardens (AGs) located in Warsaw. A total of 112 samples were analyzed (72 vegetable and 40 fruit samples). Vegetables from AGs accumulated significantly higher levels of HMs than fruits. Leafy vegetables, particularly those cultivated near high-traffic roads, exhibited markedly elevated levels of Pb, Cd, and Zn compared to those grown in peripheral areas. Lead concentrations exceeded permissible limits by six to twelve times, cadmium by one to thirteen times, and zinc by 0.7 to 2.4 times. Due to high levels of Pb and Cd, tomatoes should not be cultivated in urban environments. Regardless of location, only trace amounts of HMs were detected in fruits. The greatest health risk is associated with the consumption of leafy vegetables. Lettuce should be considered an indicator plant for assessing environmental contamination. The obtained Hazard Index (HI) values indicate that only the tested fruits are safe for consumption. Meanwhile, the values of the Hazard Quotient (HQ) indicate no health risk associated with the consumption of lettuce, cherries, and red currants. Among the analyzed elements, Pb showed a higher potential health risk than other metals. This study emphasizes the need for continuous monitoring of HM levels in urban soils and the establishment of baseline values for public health purposes. Remediation of contaminated soils and the implementation of safer agricultural practices are recommended to reduce the exposure of urban populations to the risks associated with the consumption of contaminated produce. In addition, the safety of fruits and vegetables grown in urban areas is influenced by the location of the AGs and the level of industrialization of the agglomeration. Therefore, the safety assessment of plant products derived from AGs should be monitored on a continuous basis, especially in vegetables. Full article
(This article belongs to the Special Issue Soil Microorganisms, Plant Ecology and Sustainable Restoration)
18 pages, 7515 KiB  
Article
Ecological Stability over the Period: Land-Use Land-Cover Change and Prediction for 2030
by Mária Tárníková and Zlatica Muchová
Land 2025, 14(7), 1503; https://doi.org/10.3390/land14071503 - 21 Jul 2025
Viewed by 299
Abstract
This study aimed to investigate land-use and land-cover change and the associated change in the ecological stability of the model area Dobrá–Opatová (district of Trenčín, Slovakia), where increasing landscape transformation has raised concerns about declining ecological resilience. Despite the importance of sustainable land [...] Read more.
This study aimed to investigate land-use and land-cover change and the associated change in the ecological stability of the model area Dobrá–Opatová (district of Trenčín, Slovakia), where increasing landscape transformation has raised concerns about declining ecological resilience. Despite the importance of sustainable land management, few studies in this region have addressed long-term landscape dynamics in relation to ecological stability. This research fills that gap by evaluating historical and recent LULC changes and their ecological consequences. Four time horizons were analysed: 1850, 1949, 2009, and 2024. Although the selected time periods are irregular, they reflect key milestones in the region’s land development, such as pre-industrial land use, post-war collectivisation, and recent land consolidation. These activities significantly altered the structure of the landscape. To assess future trends, we used the MOLUSCE plug-in in QGIS to simulate ecological stability for the future. The greatest structural landscape changes occurred between 1850 and 1949. Significant transformation in agricultural areas was observed between 1949 and 2009, when collectivisation reshaped small plots into large block structures and major water management projects were implemented. The 2009–2024 period was marked by land consolidation, mainly resulting in the construction of gravel roads. These structural changes have contributed to a continuous decrease in ecological stability, calculated using the coefficient of ecological stability derived from LULC categories. To explore future trends, we simulated ecological stability for the year 2030 and the simulation confirmed a continued decline in ecological stability, highlighting the need for sustainable land-use planning in the area. Full article
Show Figures

Figure 1

20 pages, 3758 KiB  
Article
Metagenomic Sequencing Revealed the Effects of Different Potassium Sulfate Application Rates on Soil Microbial Community, Functional Genes, and Yield in Korla Fragrant Pear Orchard
by Lele Yang, Xing Shen, Linsen Yan, Jie Li, Kailong Wang, Bangxin Ding and Zhongping Chai
Agronomy 2025, 15(7), 1752; https://doi.org/10.3390/agronomy15071752 - 21 Jul 2025
Viewed by 371
Abstract
Potassium fertilizer management is critical for achieving high yields of Korla fragrant pear, yet current practices often overlook or misuse potassium inputs. In this study, a two-year field experiment (2023–2024) was conducted with 7- to 8-year-old pear trees using four potassium levels (0, [...] Read more.
Potassium fertilizer management is critical for achieving high yields of Korla fragrant pear, yet current practices often overlook or misuse potassium inputs. In this study, a two-year field experiment (2023–2024) was conducted with 7- to 8-year-old pear trees using four potassium levels (0, 75, 150, and 225 kg/hm2). Metagenomic sequencing was employed to assess the effects on soil microbial communities, sulfur cycle functional genes, and fruit yield. Potassium treatments significantly altered soil physicochemical properties, the abundance of sulfur cycle functional genes, and fruit yield (p < 0.05). Increasing application rates significantly elevated soil-available potassium and organic matter while reducing pH (p < 0.05). Although alpha diversity was unaffected, NMDS analysis revealed differences in microbial community composition under different treatments. Functional gene analysis showed a significant decreasing trend in betB abundance, a peak in hpsO under K150, and variable patterns for soxX and metX across treatments (p < 0.05). All potassium applications significantly increased yield relative to CK, with K150 achieving the highest yield (p < 0.05). PLS-PM analysis indicated significant positive associations between potassium rate, nutrient availability, microbial abundance, sulfur cycling, and yield, and a significant negative association with pH (p < 0.05). These results provide a foundation for optimizing potassium fertilizer strategies in Korla fragrant pear orchards. It is recommended that future studies combine metagenomic and metatranscriptomic approaches to further elucidate the mechanisms linking potassium-driven microbial functional changes to improvements in fruit quality. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

20 pages, 7174 KiB  
Article
The Spatiotemporal Evolution Characteristics and Influencing Factors of Traditional Villages in the Qinling-Daba Mountains
by Tianshu Chu and Chenchen Liu
Buildings 2025, 15(14), 2397; https://doi.org/10.3390/buildings15142397 - 8 Jul 2025
Viewed by 265
Abstract
Traditional villages are irreplaceable cultural heritages, embodying complex human–environment interactions. This study uses historical geography analysis, kernel density estimation, centroid migration modeling, and Geodetector techniques to analyze the 2000-year spatiotemporal evolution and formation mechanisms of 224 nationally designated traditional villages in China’s Qinling-Daba [...] Read more.
Traditional villages are irreplaceable cultural heritages, embodying complex human–environment interactions. This study uses historical geography analysis, kernel density estimation, centroid migration modeling, and Geodetector techniques to analyze the 2000-year spatiotemporal evolution and formation mechanisms of 224 nationally designated traditional villages in China’s Qinling-Daba Mountains. The findings are as follows: (1) These villages significantly cluster on sunny slopes of hills and low mountains with moderate gradients. They are also closely located near waterways, ancient roads, and historic cities. (2) From the embryonic stage during the Qin and Han dynasties, through the diffusion and transformation phases in the Wei, Jin, Song, and Yuan dynasties, to the mature stage in the Ming and Qing dynasties, the spatial center of these villages shifted distinctly southwestward. This migration was accompanied by expansion along waterway transport corridors, an enlarged spatial scope, and a decrease in directional concentration. (3) The driving forces evolved from a strong coupling between natural conditions and infrastructure in the early stage to human-dominated adaptation in the later stage. Agricultural innovations, such as terraced fields, and sociopolitical factors, like migration policies, overcame environmental constraints through the synergistic effects of cultural and economic networks. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

19 pages, 1034 KiB  
Article
Assessing Tractors’ Active Safety in Serbia: A Driving Simulator Study
by Sreten Simović, Aleksandar Trifunović, Tijana Ivanišević, Vaidas Lukoševičius and Larysa Neduzha
Sustainability 2025, 17(13), 6144; https://doi.org/10.3390/su17136144 - 4 Jul 2025
Viewed by 383
Abstract
The active safety of tractors remains a major concern in rural road environments, where tractor drivers face high crash risks due to limited vehicle visibility. In Serbia, 1.4% of crashes involve tractors, mainly due to poor visibility (64.3%), lack of beacon lights, unsafe [...] Read more.
The active safety of tractors remains a major concern in rural road environments, where tractor drivers face high crash risks due to limited vehicle visibility. In Serbia, 1.4% of crashes involve tractors, mainly due to poor visibility (64.3%), lack of beacon lights, unsafe overtaking, and unmarked stopped tractors (14.3% each). These issues reduce safety, increase fuel consumption and emissions, and cause economic losses. A driving simulator study with 117 drivers examined how visibility equipment affects speed perception. The results showed that 20 km/h was best estimated with all visibility aids, while 10 km/h was most accurately judged with only the slow-moving vehicle emblem. These findings emphasize the potential for simple, cost-effective visibility measures to enhance the active safety of tractors in mixed rural traffic conditions. By enhancing tractor visibility, these measures reduce crash risks, minimize unnecessary acceleration and deceleration, and lower fuel consumption and emissions associated with traffic disturbances. Furthermore, by preventing crashes, these solutions contribute to reducing resource consumption in crash-related medical care, vehicle repairs, and infrastructure damage. Integrating improved visibility equipment into rural traffic policy can significantly enhance tractors’ active safety and reduce the risk of crashes in agricultural regions. Full article
(This article belongs to the Special Issue Transportation and Infrastructure for Sustainability)
Show Figures

Figure 1

29 pages, 838 KiB  
Article
Blockchain-Based Secure Authentication Protocol for Fog-Enabled IoT Environments
by Taehun Kim, Deokkyu Kwon, Yohan Park and Youngho Park
Mathematics 2025, 13(13), 2142; https://doi.org/10.3390/math13132142 - 30 Jun 2025
Viewed by 289
Abstract
Fog computing technology grants computing and storage resources to nearby IoT devices, enabling a fast response and ensuring data locality. Thus, fog-enabled IoT environments provide real-time and convenient services to users in healthcare, agriculture, and road traffic monitoring. However, messages are exchanged on [...] Read more.
Fog computing technology grants computing and storage resources to nearby IoT devices, enabling a fast response and ensuring data locality. Thus, fog-enabled IoT environments provide real-time and convenient services to users in healthcare, agriculture, and road traffic monitoring. However, messages are exchanged on public channels, which can be targeted to various security attacks. Hence, secure authentication protocols are critical for reliable fog-enabled IoT services. In 2024, Harbi et al. proposed a remote user authentication protocol for fog-enabled IoT environments. They claimed that their protocol can resist various security attacks and ensure session key secrecy. Unfortunately, we have identified several vulnerabilities in their protocol, including to insider, denial of service (DoS), and stolen verifier attacks. We also prove that their protocol does not ensure user untraceability and that it has an authentication problem. To address the security problems of their protocol, we propose a security-enhanced blockchain-based secure authentication protocol for fog-enabled IoT environments. We demonstrate the security robustness of the proposed protocol via informal and formal analyses, including Burrows–Abadi–Needham (BAN) logic, the Real-or-Random (RoR) model, and Automated Verification of Internet Security Protocols and Applications (AVISPA) simulation. Moreover, we compare the proposed protocol with related protocols to demonstrate the excellence of the proposed protocol in terms of efficiency and security. Finally, we conduct simulations using NS-3 to verify its real-world applicability. Full article
(This article belongs to the Special Issue Advances in Mobile Network and Intelligent Communication)
Show Figures

Figure 1

21 pages, 1044 KiB  
Article
Container Traffic in the Colombian Caribbean: A Competitiveness Analysis of the Port of Santa Marta Through a Technical–Economic Combination Framework
by Adriana del Socorro Pabón Noguera, María del Mar Cerbán Jiménez and Juan Jesús Ruiz Aguilar
Logistics 2025, 9(3), 84; https://doi.org/10.3390/logistics9030084 - 27 Jun 2025
Viewed by 573
Abstract
Background: The Port of Santa Marta, located on Colombia’s northern Caribbean coast, plays a vital role in the country’s maritime trade, particularly in the export of agricultural and perishable goods. This raises the question: how competitive is Santa Marta’s container terminal compared to [...] Read more.
Background: The Port of Santa Marta, located on Colombia’s northern Caribbean coast, plays a vital role in the country’s maritime trade, particularly in the export of agricultural and perishable goods. This raises the question: how competitive is Santa Marta’s container terminal compared to national and regional ports, and what strategic factors shape its performance within the Colombia and Latin American maritime logistics system? Methods: This study evaluates the port’s competitiveness by applying Porter’s Extended Diamond Model. A mixed-methods ap-proach was employed, combining structured surveys and interviews with port stakeholders and operational data analysis. A competitiveness matrix was developed and examined using standardized residuals and L1 regression to identify critical performance gaps and strengths. Results: The analysis reveals several competitive advantages, including the port’s strategic location, natural deep-water access, and advanced infrastructure for refrigerated cargo. It also benefits from skilled labour and proximity to global shipping routes, such as the Panama Canal. Nonetheless, challenges remain in storage capacity, limited road connectivity, and insufficient public investment in hinterland infrastructure. Conclusions: While the Port of Santa Marta shows strong maritime capabilities and spe-cialized services, addressing its land-side and institutional constraints is essential for positioning it as a resilient, competitive logistics hub in the Latin American and Caribbean region. Full article
Show Figures

Figure 1

17 pages, 27567 KiB  
Article
MaxEnt-Based Evaluation of Cultivated Land Suitability in the Lijiang River Basin, China
by Yu Lin, Wei Li, Xiangwen Cai, Min Wang, Wencui Xie and Yinglan Lu
Sustainability 2025, 17(13), 5875; https://doi.org/10.3390/su17135875 - 26 Jun 2025
Viewed by 240
Abstract
The Lijiang River Basin (LRB) is a karst ecosystem that presents unique challenges for agricultural land planning. Evaluating cultivated land suitability based on natural factors is critical for ensuring food security in this region. This study was based on the cultivated land distribution [...] Read more.
The Lijiang River Basin (LRB) is a karst ecosystem that presents unique challenges for agricultural land planning. Evaluating cultivated land suitability based on natural factors is critical for ensuring food security in this region. This study was based on the cultivated land distribution data of the LRB in the China Land-Use and Land-Cover Chang dataset, selecting 22 restriction factors across five dimensions: climate, topography, soil, hydrology, and social conditions, and the suitability of cultivated land (paddy fields and drylands) in the LRB was evaluated using the MaxEnt model to further identify the main restricting factors affecting the spatial distribution. The research showed that (1) For paddy fields, high-suitability areas covered 2875.05 km2, medium-suitability 1670.58 km2, low-suitability 3187.25 km2, and non-suitable 9368.46 km2. The main restriction factors were distance to villages, slope, surface gravel content, soil thickness, soil pH, and total phosphorus content. (2) For drylands, high-suitability areas covered 3282.3 km2, medium-suitability 2260.93 km2, low-suitability 4536.27 km2, and non-suitable 6836.85 km2. The main restriction factors were soil thickness, distance to roads, surface gravel content, elevation, soil pH, and soil texture. This research can provide a scientific basis for the layout of food security and planning agricultural land use in the LRB. Full article
Show Figures

Figure 1

23 pages, 8818 KiB  
Article
Spatiotemporal Patterns and Driving Factors of Cropland Abandonment in Metropolitan Suburbs: A Case Study of Chengdu Directly Administered Zone, Tianfu New Area, Sichuan Province, China
by Mingyong Zuo, Guoxiang Liu, Chuangli Jing, Rui Zhang, Xiaowen Wang, Wenfei Mao, Li Shen, Keren Dai and Xiaodan Wu
Land 2025, 14(6), 1311; https://doi.org/10.3390/land14061311 - 19 Jun 2025
Viewed by 529
Abstract
Cropland abandonment (CA) has become a significant threat to agricultural sustainability, particularly in metropolitan suburbs where urban expansion and cropland preservation often conflict. This study examines the Chengdu Directly Administered Zone of the Tianfu New Area in Sichuan Province, China, as a case [...] Read more.
Cropland abandonment (CA) has become a significant threat to agricultural sustainability, particularly in metropolitan suburbs where urban expansion and cropland preservation often conflict. This study examines the Chengdu Directly Administered Zone of the Tianfu New Area in Sichuan Province, China, as a case study, utilizing high-precision vector data from China’s 2019–2023 National Land Survey to identify abandoned croplands through land use change trajectory analysis. By integrating kernel density estimation, spatial autocorrelation analysis, and geographically weighted regression modeling, we quantitatively analyzed the spatiotemporal patterns of CA and the spatial heterogeneity of driving factors in the study area. The results demonstrate an average annual abandonment rate of approximately 8%, exhibiting minor fluctuations but significant spatial clustering characteristics, with abandonment hotspots concentrated in peri-urban areas that gradually expanded toward urban cores over time, while exurban regions showed lower abandonment rates. Cropland quality and the aggregation index were identified as key restraining factors, whereas increasing slope and land development intensity were found to elevate abandonment risks. Notably, distance to roads displayed a negative effect, contrary to conventional understanding, revealing that policy feedback mechanisms induced by anticipated land expropriation along transportation corridors serve as important drivers of suburban abandonment. This study provides a scientific basis for optimizing resilient urban–rural land allocation, curbing speculative abandonment, and exploring integrated “agriculture + ecology + cultural tourism” utilization models for abandoned lands. The findings offer valuable insights for balancing food security and sustainable development in rapidly urbanizing regions worldwide, particularly providing empirical references for developing countries addressing the dilemma between urban expansion and cropland preservation. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

20 pages, 6838 KiB  
Article
Fields in the Forest Roman Land Division Between Siscia and Andautonia Through LIDAR Data Analysis
by Hrvoje Kalafatić, Bartul Šiljeg and Rajna Šošić Klindžić
Heritage 2025, 8(6), 234; https://doi.org/10.3390/heritage8060234 - 18 Jun 2025
Viewed by 691
Abstract
This study investigates the Roman land division system, centuriation, using LIDAR data and historical data to understand the landscape during the Roman period, in this case between Roman cities such as Siscia and Andautonia. LIDAR data analysis provided evidence of the preservation of [...] Read more.
This study investigates the Roman land division system, centuriation, using LIDAR data and historical data to understand the landscape during the Roman period, in this case between Roman cities such as Siscia and Andautonia. LIDAR data analysis provided evidence of the preservation of the Roman centuriation system in the present day Turopoljski Lug forest. The azimuth suggests that centuriation aligned with Siscia’s ager, while the precise territorial limits between the two agers remain unclear. Additionally, the orientation of Siscia’s streets and the alignment of modern roads like Zagrebačka street suggest continuity of the Roman road system. The research also sheds light on the agricultural nature of the region in the Roman period, challenging traditional views of Turopolje as a marshy, forested area from prehistoric periods. The presence of Roman-era drainage systems and the re-evaluation of the historical landscape indicate that the region was actively cultivated. The study also discusses the abandonment of the centuriation system after the Roman period and its subsequent transformation into forested land. Future research should focus on the exact borders between the agers of Siscia and Andautonia and the ongoing influence of Roman land division on later historical landscapes. Full article
Show Figures

Figure 1

29 pages, 5723 KiB  
Article
Spatial Sustainability of Agricultural Rural Settlements: An Analysis of Rural Spatial Patterns and Influencing Factors in Three Northeastern Provinces of China
by Yu Zhang, Siang Duan, Li Dong and Xiaoming Ding
Sustainability 2025, 17(12), 5597; https://doi.org/10.3390/su17125597 - 18 Jun 2025
Viewed by 397
Abstract
With accelerating urbanization and agricultural modernization, the scale, structure, and land use conditions of rural settlements in China’s three northeastern provinces (TNPs) have changed dramatically, impacting regional food production and sustainable rural development. Based on multitemporal land use datasets and socioeconomic statistics, we [...] Read more.
With accelerating urbanization and agricultural modernization, the scale, structure, and land use conditions of rural settlements in China’s three northeastern provinces (TNPs) have changed dramatically, impacting regional food production and sustainable rural development. Based on multitemporal land use datasets and socioeconomic statistics, we used spatial pattern analysis, machine learning models, and the Shapley additive explanation (SHAP) method to investigate the spatial evolutionary characteristics and driving factors of rural settlements in China’s TNPs from 1980 to 2020. The results show that (1) the spatial evolution of rural settlements followed a four-stage “expansion–stabilization–re-expansion–restabilization” trend; arable land conversion was the primary source of expansion, with limited conversion from forests, grasslands, and water bodies. (2) Rural settlements demonstrated marked agglomeration, with the spatial distribution evolving from “single-center clustering” to “multiregional contiguous clustering”. Rural settlements in the Sanjiang Plain evolved into large patch clusters, while those in the lower Liaohe River Basin became small patch clusters. (3) Rural settlements at low elevations and near roads and waterways presented a large-scale, agglomerative distribution, while settlements at high elevations and far from rivers and roads showed a small-scale, high-agglomeration pattern. (4) The rural population, total power of agricultural machinery, total grain output, and primary industry value added predominantly drove settlement spatial expansion, with an “initial suppression, then promotion” trend, while the urbanization rate and GDP per capita had a negative impact, with the opposite trend. The interaction effects among high-contributing factors transitioned from suppressive to promoting. Our results provide theoretical insights for spatial planning and sustainable development in agricultural rural settlements. Full article
Show Figures

Figure 1

32 pages, 5267 KiB  
Article
Shifting Landscapes, Escalating Risks: How Land Use Conversion Shapes Long-Term Road Crash Outcomes in Melbourne
by Ali Soltani, Mohsen RoohaniQadikolaei and Amir Sobhani
Future Transp. 2025, 5(2), 75; https://doi.org/10.3390/futuretransp5020075 - 17 Jun 2025
Viewed by 1619
Abstract
Road crashes impose significant societal costs, and while links between static land use and safety are established, the long-term impacts of dynamic land use conversions remain under-explored. This study addresses this gap by investigating and quantifying how specific land use transitions over a [...] Read more.
Road crashes impose significant societal costs, and while links between static land use and safety are established, the long-term impacts of dynamic land use conversions remain under-explored. This study addresses this gap by investigating and quantifying how specific land use transitions over a decade influence subsequent road crash frequency in Metropolitan Melbourne. Our objective was to understand which conversion pathways pose the greatest risks or offer safety benefits, informing urban planning and policy. Utilizing extensive observational data covering numerous land use conversions, we employed Negative Binomial models (selected as the best fit over Poisson and quasi-Poisson alternatives) to analyze the association between various transition types and crash occurrences in surrounding areas. The analysis revealed distinct and statistically significant safety outcomes. Major findings indicate that transitions introducing intensified activity and vulnerable road users, such as converting agricultural land or parks to educational facilities (e.g., Agri → Edu, coefficient ≈ +0.10; Park → Edu, ≈+0.12), or intensifying land use in previously less active zones (e.g., Park → Com, ≈+0.07; Trans → Park, ≈+0.10), significantly elevate long-term crash risk, particularly when infrastructure is inadequate. Conversely, conversions creating low-traffic, nature-focused environments (e.g., Water → Park, ≈–0.16) or channeling activity onto well-suited infrastructure (e.g., Trans → Com, ≈–0.12) demonstrated substantial reductions in crash frequency. The critical role of context-specific infrastructure adaptation, highlighted by increased risks in some park conversions (e.g., Com → Park, ≈+0.06), emerged as a key mediator of safety outcomes. These findings underscore the necessity of integrating dynamic, long-term road safety considerations into land use planning, mandating appropriate infrastructure redesign during conversions, and prioritizing interventions for identified high-risk transition scenarios to foster safer and more sustainable urban development. Full article
Show Figures

Figure 1

15 pages, 2556 KiB  
Article
The Assembly Mechanisms of Arbuscular Mycorrhizal Fungi in Urban Green Spaces and Their Response to Environmental Factors
by Jianhui Guo, Yue Xin, Xueying Li, Yiming Sun, Yue Hu and Jingfei Wang
Diversity 2025, 17(6), 425; https://doi.org/10.3390/d17060425 - 16 Jun 2025
Cited by 1 | Viewed by 463
Abstract
Urban green spaces are integral components of city ecosystems, supporting essential belowground microbial communities such as arbuscular mycorrhizal fungi (AMF). Understanding how green space types influence AMF communities is key to promoting urban ecological function. This study examines AMF diversity, community assembly, and [...] Read more.
Urban green spaces are integral components of city ecosystems, supporting essential belowground microbial communities such as arbuscular mycorrhizal fungi (AMF). Understanding how green space types influence AMF communities is key to promoting urban ecological function. This study examines AMF diversity, community assembly, and co-occurrence network structures in two urban green space types—park and roadside—in Kaifeng, Henan Province, China. Soil samples were collected from both sites, and AMF community composition was assessed using high-throughput sequencing. Environmental variables, including total nitrogen (TN), available phosphorus (AP), available potassium (AK), water content, and pH, were measured to evaluate their influence on AMF communities. The results indicate marked differences between the two green space types. Park soils support significantly greater AMF species richness and more complex co-occurrence networks than roadside soils. These differences are correlated with higher nutrient levels in park soils. By contrast, AMF communities in roadside soils are more strongly associated with soil water content and pH, resulting in reduced diversity and more homogeneous community structures. Stochastic processes predominantly govern community assembly in both green space types, with roadside green spaces being more influenced by stochastic processes than park green spaces. These findings highlight the influence of urban landscape type on AMF communities and provide guidance for enhancing urban biodiversity through targeted landscape planning and soil management. In future work, we will implement long-term AMF monitoring across different green-space types and evaluate specific management practices to optimize soil health and ecosystem resilience. Full article
Show Figures

Figure 1

31 pages, 2910 KiB  
Review
Tyre Wear Particles in the Environment: Sources, Toxicity, and Remediation Approaches
by Jie Kang, Xintong Liu, Bing Dai, Tianhao Liu, Fasih Ullah Haider, Peng Zhang, Habiba and Jian Cai
Sustainability 2025, 17(12), 5433; https://doi.org/10.3390/su17125433 - 12 Jun 2025
Viewed by 1238
Abstract
Tyre wear particles (TWPs), generated from tyre-road abrasion, are a pervasive and under-regulated environmental pollutant, accounting for a significant share of global microplastic contamination. Recent estimates indicate that 1.3 million metric tons of TWPs are released annually in Europe, dispersing via atmospheric transport, [...] Read more.
Tyre wear particles (TWPs), generated from tyre-road abrasion, are a pervasive and under-regulated environmental pollutant, accounting for a significant share of global microplastic contamination. Recent estimates indicate that 1.3 million metric tons of TWPs are released annually in Europe, dispersing via atmospheric transport, stormwater runoff, and sedimentation to contaminate air, water, and soil. TWPs are composed of synthetic rubber polymers, reinforcing fillers, and chemical additives, including heavy metals such as zinc (Zn) and copper (Cu) and organic compounds like polycyclic aromatic hydrocarbons (PAHs) and N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD). These constituents confer persistence and bioaccumulative potential. While TWP toxicity in aquatic systems is well-documented, its ecological impacts on terrestrial environments, particularly in agricultural soils, remain less understood despite global soil loading rates exceeding 6.1 million metric tons annually. This review synthesizes global research on TWP sources, environmental fate, and ecotoxicological effects, with a focus on soil–plant systems. TWPs have been shown to alter key soil properties, including a 25% reduction in porosity and a 20–35% decrease in organic matter decomposition, disrupt microbial communities (with a 40–60% reduction in nitrogen-fixing bacteria), and induce phytotoxicity through both physical blockage of roots and Zn-induced oxidative stress. Human exposure occurs through inhalation (estimated at 3200 particles per day in urban areas), ingestion, and dermal contact, with epidemiological evidence linking TWPs to increased risks of respiratory, cardiovascular, and developmental disorders. Emerging remediation strategies are critically evaluated across three tiers: (1) source reduction using advanced tyre materials (up to 40% wear reduction in laboratory tests); (2) environmental interception through bioengineered filtration systems (60–80% capture efficiency in pilot trials); and (3) contaminant degradation via novel bioremediation techniques (up to 85% removal in recent studies). Key research gaps remain, including the need for long-term field studies, standardized mitigation protocols, and integrated risk assessments. This review emphasizes the importance of interdisciplinary collaboration in addressing TWP pollution and offers guidance on sustainable solutions to protect ecosystems and public health through science-driven policy recommendations. Full article
Show Figures

Figure 1

Back to TopTop