Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,173)

Search Parameters:
Keywords = agricultural modernization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 786 KiB  
Article
Nanopore Workflow for Grapevine Viroid Surveillance in Kazakhstan: Bypassing rRNA Depletion Through Non-Canonical Priming
by Karlygash P. Aubakirova, Zhibek N. Bakytzhanova, Akbota Rakhatkyzy, Laura S. Yerbolova, Natalya P. Malakhova and Nurbol N. Galiakparov
Pathogens 2025, 14(8), 782; https://doi.org/10.3390/pathogens14080782 - 6 Aug 2025
Abstract
Grapevine (Vitis vinifera L.) cultivation is an important agricultural sector worldwide. Its expansion into new areas, like Kazakhstan, brings significant phytosanitary risks. Viroids, such as grapevine yellow speckle viroid 1 (GYSVd-1) and hop stunt viroid (HSVd), are RNA pathogens that threaten vineyard [...] Read more.
Grapevine (Vitis vinifera L.) cultivation is an important agricultural sector worldwide. Its expansion into new areas, like Kazakhstan, brings significant phytosanitary risks. Viroids, such as grapevine yellow speckle viroid 1 (GYSVd-1) and hop stunt viroid (HSVd), are RNA pathogens that threaten vineyard productivity. They can cause a progressive decline through latent infections. Traditional diagnostic methods are usually targeted and therefore not suitable for thorough surveillance. In contrast, modern high-throughput sequencing (HTS) methods often face challenges due to their high costs and complicated sample preparation, such as ribosomal RNA (rRNA) depletion. This study introduces a simplified diagnostic workflow that overcomes these barriers. We utilized the latest Oxford Nanopore V14 cDNA chemistry, which is designed to prevent internal priming, by substituting a targeted oligo(dT)VN priming strategy to facilitate the sequencing of non-polyadenylated viroids from total RNA extracts, completely bypassing the rRNA depletion step and use of random oligonucleotides for c DNA synthesis. This method effectively detects and identifies both GYSVd-1 and HSVd. This workflow significantly reduces the time, cost, and complexity of HTS-based diagnostics. It provides a powerful and scalable tool for establishing strong genomic surveillance and phytosanitary certification programs, which are essential for supporting the growing viticulture industry in Kazakhstan. Full article
19 pages, 19033 KiB  
Article
Multi-Strategy Fusion RRT-Based Algorithm for Optimizing Path Planning in Continuous Cherry Picking
by Yi Zhang, Xinying Miao, Yifei Sun, Zhipeng He, Tianwen Hou, Zhenghan Wang and Qiuyan Wang
Agriculture 2025, 15(15), 1699; https://doi.org/10.3390/agriculture15151699 - 6 Aug 2025
Abstract
Automated cherry harvesting presents a significant opportunity to overcome the high costs and inefficiencies of manual labor in modern agriculture. However, robotic harvesting in dense canopies requires sophisticated path planning to navigate cluttered branches and selectively pick target fruits. This paper introduces a [...] Read more.
Automated cherry harvesting presents a significant opportunity to overcome the high costs and inefficiencies of manual labor in modern agriculture. However, robotic harvesting in dense canopies requires sophisticated path planning to navigate cluttered branches and selectively pick target fruits. This paper introduces a complete robotic harvesting solution centered on a novel path-planning algorithm: the Multi-Strategy Integrated RRT for Continuous Harvesting Path (MSI-RRTCHP) algorithm. Our system first employs a machine vision system to identify and locate mature cherries, distinguishing them from unripe fruits, leaves, and branches, which are treated as obstacles. Based on this visual data, the MSI-RRTCHP algorithm generates an optimal picking trajectory. Its core innovation is a synergistic strategy that enables intelligent navigation by combining probability-guided exploration, goal-oriented sampling, and adaptive step size adjustments based on the obstacle’s density. To optimize the picking sequence for multiple targets, we introduce an enhanced traversal algorithm (σ-TSP) that accounts for obstacle interference. Field experiments demonstrate that our integrated system achieved a 90% picking success rate. Compared with established algorithms, the MSI-RRTCHP algorithm reduced the path length by up to 25.47% and the planning time by up to 39.06%. This work provides a practical and efficient framework for robotic cherry harvesting, showcasing a significant step toward intelligent agricultural automation. Full article
(This article belongs to the Section Agricultural Technology)
12 pages, 1432 KiB  
Article
Optimizing Gear Selection and Engine Speed to Reduce CO2 Emissions in Agricultural Tractors
by Murilo Battistuzzi Martins, Jessé Santarém Conceição, Aldir Carpes Marques Filho, Bruno Lucas Alves, Diego Miguel Blanco Bertolo, Cássio de Castro Seron, João Flávio Floriano Borges Gomides and Eduardo Pradi Vendruscolo
AgriEngineering 2025, 7(8), 250; https://doi.org/10.3390/agriengineering7080250 - 6 Aug 2025
Abstract
In modern agriculture, tractors play a crucial role in powering tools and implements. Proper operation of agricultural tractors in mechanized field operations can support sustainable agriculture and reduce emissions of pollutants such as carbon dioxide (CO2). This has been a recurring [...] Read more.
In modern agriculture, tractors play a crucial role in powering tools and implements. Proper operation of agricultural tractors in mechanized field operations can support sustainable agriculture and reduce emissions of pollutants such as carbon dioxide (CO2). This has been a recurring concern associated with agricultural intensification for food production. This study aimed to evaluate the optimization of tractor gears and engine speed during crop operations to minimize CO2 emissions and promote sustainability. The experiment was conducted using a strip plot design with subdivided sections and six replications, following a double factorial structure. The first factor evaluated was the type of agricultural implement (disc harrow, subsoiler, or sprayer), while the second factor was the engine speed setting (nominal or reduced). Operational and energy performance metrics were analyzed, including fuel consumption and CO2 emissions, travel speed, effective working time, wheel slippage, and working depth. Optimized gear selection and engine speeds resulted in a 20 to 40% reduction in fuel consumption and CO2 emissions. However, other evaluated parameters remain unaffected by the reduced engine speed, regardless of the implement used, ensuring the operation’s quality. Thus, optimizing operator training or configuring machines allows for environmental impact reduction, making agricultural practices more sustainable. Full article
(This article belongs to the Collection Research Progress of Agricultural Machinery Testing)
Show Figures

Figure 1

10 pages, 386 KiB  
Article
Certified Seed Use Enhances Yield Stability in Cereal Production Under Temperate Climate Conditions
by Patrycja Ojdowska, Tadeusz Oleksiak, Marcin Studnicki and Marzena Iwańska
Agronomy 2025, 15(8), 1886; https://doi.org/10.3390/agronomy15081886 - 5 Aug 2025
Abstract
In the face of growing demand for food and climate change, ensuring the stability and height of crop yields is becoming a key challenge for modern agriculture. One of the solutions supporting the sustainable development of crop production is the use of certified [...] Read more.
In the face of growing demand for food and climate change, ensuring the stability and height of crop yields is becoming a key challenge for modern agriculture. One of the solutions supporting the sustainable development of crop production is the use of certified seed. The aim of this study was to assess the impact of using certified seed on the level and stability of yields of three cereal species: winter wheat, winter triticale and spring barley, in temperate climate conditions. Data came from surveys conducted on over 8000 farms in six agroecoregions of Poland in 2021–2023. The analysis showed significantly higher yields on farms using certified seed for all species studied. Additionally, greater yield stability (lower values of Shukla variance and Wricke ecovalence) was noted in the case of using certified seeds, especially in region IV. This indicates the positive impact of certified seeds (e.g., genetic purity, health, and vigor) on the efficiency and resilience of agricultural systems. This phenomenon is of particular importance in the context of climate change and may be an important element of risk management strategies in agriculture. Full article
(This article belongs to the Special Issue Genotype × Environment Interactions in Crop Production—2nd Edition)
Show Figures

Figure 1

26 pages, 6220 KiB  
Article
Estimating Urbanization’s Impact on Soil Erosion: A Global Comparative Analysis and Case Study of Phoenix, USA
by Ara Jeong, Dylan S. Connor, Ronald I. Dorn and Yeong Bae Seong
Land 2025, 14(8), 1590; https://doi.org/10.3390/land14081590 - 4 Aug 2025
Viewed by 31
Abstract
Healthy soils are an essential ingredient of land systems and ongoing global change. Urbanization as a global change process often works through the lens of urban planning, which involves urban agriculture, urban greening, and leveraging nature-based solutions to promote resilient cities. Yet, urbanization [...] Read more.
Healthy soils are an essential ingredient of land systems and ongoing global change. Urbanization as a global change process often works through the lens of urban planning, which involves urban agriculture, urban greening, and leveraging nature-based solutions to promote resilient cities. Yet, urbanization frequently leads to soil erosion. Despite recognition of this tension, the rate at which the urban growth boundary accelerates soil erosion above natural background levels has not yet been determined. Our goal here is to provide a first broad estimate of urbanization’s impact of soil erosion. By combining data on modern erosion levels with techniques for estimating long-term natural erosion rates through cosmogenic nuclide 10Be analysis, we modeled the impact of urbanization on erosion across a range of cities in different global climates, revealing an acceleration of soil erosion ~7–19x in environments with mean annual precipitation <1500 mm; growth in wetter urban centers accelerated soil erosion ~23–72x. We tested our statistical model by comparing natural erosion rates to decades of monitoring soil erosion on the margins of Phoenix, USA. A century-long expansion of Phoenix accelerated soil erosion by ~12x, an estimate that is roughly at the mid-point of model projections for drier global cities. In addition to urban planning implications of being able to establish a baseline target of natural rates of soil erosion, our findings support the urban cycle of soil erosion theory for the two USA National Science Foundation urban long-term ecological research areas of Baltimore and Phoenix. Full article
Show Figures

Figure 1

16 pages, 1650 KiB  
Article
Profiling of Disubstituted Chloroacetamides’ Potential Biological Activity by Liquid Chromatography
by Suzana Apostolov, Dragana Mekić, Marija Mitrović, Slobodan Petrović and Gyöngyi Vastag
Organics 2025, 6(3), 35; https://doi.org/10.3390/org6030035 - 4 Aug 2025
Viewed by 61
Abstract
Modern agriculture relies heavily on the use of pesticides, with one-third of them being herbicides. Chloroacetamides are the most widely used herbicides because of their high effectiveness, but their extensive use poses environmental challenges and threatens the health of living organisms due to [...] Read more.
Modern agriculture relies heavily on the use of pesticides, with one-third of them being herbicides. Chloroacetamides are the most widely used herbicides because of their high effectiveness, but their extensive use poses environmental challenges and threatens the health of living organisms due to toxicity risks. Since the pharmacokinetic behavior and toxicity of a compound are influenced by its lipophilicity, this essential physicochemical parameter for disubstituted chloroacetamides was determined in silico and experimentally through thin-layer chromatography on reversed phases (RPTLC C18/UV254s) in mixtures of water and distinct organic modifiers. The pharmacokinetic profile of chloroacetamides was analyzed by using the BOILED-Egg model. The correlation between the obtained chromatographic parameters and software-based lipophilicity, pharmacokinetic, and ecotoxicity predictors of the studied chloroacetamides was assessed by using linear regression, but more comprehensive insight was obtained through multivariate methods—Cluster Analysis and Principal Component Analysis. It was observed that the total number of carbon atoms in the structure of their molecules, along with the type of hydrocarbon substituents, are the most important factors affecting lipophilicity, pharmacokinetics, and potential toxicity to non-target organisms. Full article
Show Figures

Figure 1

30 pages, 1511 KiB  
Review
Environmental and Health Impacts of Pesticides and Nanotechnology as an Alternative in Agriculture
by Jesús Martín Muñoz-Bautista, Ariadna Thalía Bernal-Mercado, Oliviert Martínez-Cruz, Armando Burgos-Hernández, Alonso Alexis López-Zavala, Saul Ruiz-Cruz, José de Jesús Ornelas-Paz, Jesús Borboa-Flores, José Rogelio Ramos-Enríquez and Carmen Lizette Del-Toro-Sánchez
Agronomy 2025, 15(8), 1878; https://doi.org/10.3390/agronomy15081878 - 3 Aug 2025
Viewed by 213
Abstract
The extensive use of conventional pesticides has been a fundamental strategy in modern agriculture for controlling pests and increasing crop productivity; however, their improper application poses significant risks to human health and environmental sustainability. This review compiles scientific evidence linking pesticide exposure to [...] Read more.
The extensive use of conventional pesticides has been a fundamental strategy in modern agriculture for controlling pests and increasing crop productivity; however, their improper application poses significant risks to human health and environmental sustainability. This review compiles scientific evidence linking pesticide exposure to oxidative stress and genotoxic damage, particularly affecting rural populations and commonly consumed foods, even at levels exceeding the maximum permissible limits in fruits, vegetables, and animal products. Additionally, excessive pesticide use has been shown to alter soil microbiota, negatively compromising long-term agricultural fertility. In response to these challenges, recent advances in nanotechnology offer promising alternatives. This review highlights the development of nanopesticides designed for controlled release, improved stability, and targeted delivery of active ingredients, thereby reducing environmental contamination and increasing efficacy. Moreover, emerging nanobiosensor technologies, such as e-nose and e-tongue systems, have shown potential for real-time monitoring of pesticide residues and soil health. Although pesticides are still necessary, it is crucial to implement stricter laws and promote sustainable solutions that ensure safe and responsible agricultural practices. The need for evidence-based public policy is emphasized to regulate pesticide use and protect both human health and agricultural resources. Full article
Show Figures

Figure 1

14 pages, 2070 KiB  
Article
Carcass and Meat Quality Characteristics and Changes of Lean and Fat Pigs After the Growth Turning Point
by Tianci Liao, Mailin Gan, Yan Zhu, Yuhang Lei, Yiting Yang, Qianli Zheng, Lili Niu, Ye Zhao, Lei Chen, Yuanyuan Wu, Lixin Zhou, Jia Xue, Xiaofeng Zhou, Yan Wang, Linyuan Shen and Li Zhu
Foods 2025, 14(15), 2719; https://doi.org/10.3390/foods14152719 - 3 Aug 2025
Viewed by 278
Abstract
Pork is a major global source of animal protein, and improving both its production efficiency and meat quality is a central goal in modern animal agriculture and food systems. This study investigated post-inflection-point growth patterns in two genetically distinct pig breeds—the lean-type Yorkshire [...] Read more.
Pork is a major global source of animal protein, and improving both its production efficiency and meat quality is a central goal in modern animal agriculture and food systems. This study investigated post-inflection-point growth patterns in two genetically distinct pig breeds—the lean-type Yorkshire pig (YP) and the fatty-type Qingyu pig (QYP)—with the aim of elucidating breed-specific characteristics that influence pork quality and yield. Comprehensive evaluations of carcass traits, meat quality attributes, nutritional composition, and gene expression profiles were conducted. After the growth inflection point, carcass traits exhibited greater variability than meat quality traits in both breeds, though with distinct patterns. YPs displayed superior muscle development, with the longissimus muscle area (LMA) increasing rapidly before plateauing at ~130 kg, whereas QYPs maintained more gradual but sustained muscle growth. In contrast, intramuscular fat (IMF)—a key determinant of meat flavor and texture—accumulated faster in YPs post inflection but plateaued earlier in QYPs. Correlation and clustering analyses revealed more synchronized regulation of meat quality traits in QYPs, while YPs showed greater trait variability. Gene expression patterns aligned with these phenotypic trends, highlighting distinct regulatory mechanisms for muscle and fat development in each breed. In addition, based on the growth curves, we calculated the peak age at which the growth rate declined in lean-type and fat-type pigs, which was approximately 200 days for YPs and around 270 days for QYPs. This suggests that these ages may represent the optimal slaughter times for the respective breeds, balancing both economic efficiency and meat quality. These findings provide valuable insights for enhancing pork quality through precision management and offer theoretical guidance for developing breed-specific feeding strategies, slaughter timing, and value-added pork production tailored to consumer preferences in the modern food market. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

24 pages, 1376 KiB  
Article
Smart Agriculture in Ecuador: Adoption of IoT Technologies by Farmers in Guayas to Improve Agricultural Yields
by Ruth Rubí Peña-Holguín, Carlos Andrés Vaca-Coronel, Ruth María Farías-Lema, Sonnia Valeria Zapatier-Castro and Juan Diego Valenzuela-Cobos
Agriculture 2025, 15(15), 1679; https://doi.org/10.3390/agriculture15151679 - 2 Aug 2025
Viewed by 284
Abstract
The adoption of digital technologies, such as the Internet of Things (IoT), has emerged as a key strategy to improve efficiency, sustainability, and productivity in the agricultural sector, especially in contexts of modernization and digital transformation in developing regions. This study analyzes the [...] Read more.
The adoption of digital technologies, such as the Internet of Things (IoT), has emerged as a key strategy to improve efficiency, sustainability, and productivity in the agricultural sector, especially in contexts of modernization and digital transformation in developing regions. This study analyzes the key factors influencing the adoption of IoT technologies by farmers in the province of Guayas, Ecuador, and their impact on agricultural yields. The research is grounded in innovation diffusion theory and technology acceptance models, which emphasize the role of perception, usability, training, and economic viability in digital adoption. A total of 250 surveys were administered, with 232 valid responses (92.8% response rate), reflecting strong interest from the agricultural sector in digital transformation and precision agriculture. Using structural equation modeling (SEM), the results confirm that general perception of IoT (β = 0.514), practical functionality (β = 0.488), and technical training (β = 0.523) positively influence adoption, while high implementation costs negatively affect it (β = −0.651), all of which are statistically significant (p < 0.001). Furthermore, adoption has a strong positive effect on agricultural yield (β = 0.795). The model explained a high percentage of variance in both adoption (R2 = 0.771) and performance (R2 = 0.706), supporting its predictive capacity. These findings underscore the need for public and private institutions to implement targeted training and financing strategies to overcome economic barriers and foster the sustainable integration of IoT technologies in Ecuadorian agriculture. Full article
Show Figures

Figure 1

55 pages, 4017 KiB  
Review
Sonchus Species of the Mediterranean Region: From Wild Food to Horticultural Innovation—Exploring Taxonomy, Cultivation, and Health Benefits
by Adrián Ruiz-Rocamora, Concepción Obón, Segundo Ríos, Francisco Alcaraz and Diego Rivera
Horticulturae 2025, 11(8), 893; https://doi.org/10.3390/horticulturae11080893 (registering DOI) - 1 Aug 2025
Viewed by 326
Abstract
The genus Sonchus (Asteraceae) comprises 98 species, including 17 predominantly herbaceous taxa native to the Mediterranean region. These plants have long been utilized as traditional wild food sources due to their high nutritional value, as they are rich in vitamins A, C, and [...] Read more.
The genus Sonchus (Asteraceae) comprises 98 species, including 17 predominantly herbaceous taxa native to the Mediterranean region. These plants have long been utilized as traditional wild food sources due to their high nutritional value, as they are rich in vitamins A, C, and K, essential minerals, and bioactive compounds with antioxidant and anti-inflammatory properties. This review aims to provide a comprehensive synthesis of the taxonomy, geographic distribution, phytochemical composition, traditional uses, historical significance, and pharmacological properties of Sonchus species. A systematic literature search was conducted using PubMed, Scopus, Web of Science, and Google Scholar, focusing on studies from 1980 to 2024. Inclusion and exclusion criteria were applied, and methodological quality was assessed using standardized tools. A bibliometric analysis of 440 publications (from 1856 to 2025) reveals evolving research trends, with S. oleraceus, S. arvensis, and S. asper being the most extensively studied species. The review provides detailed taxonomic insights into 17 species and 14 subspecies, emphasizing their ecological adaptations and biogeographical patterns. Additionally, it highlights the cultural and medicinal relevance of Sonchus since antiquity while underscoring the threats posed by environmental degradation and changing dietary habits. Sonchus oleraceus and S. tenerrimus dominate the culinary applications of the genus, likely due to favorable taste, wide accessibility, and longstanding cultural importance. The comprehensive nutritional profile of Sonchus species positions these plants as valuable contributors to dietary diversity and food security. Finally, the study identifies current knowledge gaps and proposes future research directions to support the conservation and sustainable utilization of Sonchus species. Full article
Show Figures

Figure 1

21 pages, 3648 KiB  
Article
Preparation and Physicochemical Evaluation of Ionically Cross-Linked Chitosan Nanoparticles Intended for Agricultural Use
by Maria Karayianni, Emi Haladjova, Stanislav Rangelov and Stergios Pispas
Polysaccharides 2025, 6(3), 67; https://doi.org/10.3390/polysaccharides6030067 - 1 Aug 2025
Viewed by 200
Abstract
The search for sustainable, economically viable, and effective plant protection strategies against pathogenic bacteria, fungi, and viruses is a major challenge in modern agricultural practices. Chitosan (CS) is an abundant cationic natural biopolymer known for its biocompatibility, low toxicity, and antimicrobial properties. Its [...] Read more.
The search for sustainable, economically viable, and effective plant protection strategies against pathogenic bacteria, fungi, and viruses is a major challenge in modern agricultural practices. Chitosan (CS) is an abundant cationic natural biopolymer known for its biocompatibility, low toxicity, and antimicrobial properties. Its potential use in agriculture for pathogen control is a promising alternative to traditional chemical fertilisers and pesticides, which raise concerns regarding public health, environmental protection, and pesticide resistance. This study focused on the preparation of chitosan nanoparticles (CS-NPs) through cross-linking with organic molecules, such as tannic acid (TA). Various formulations were explored for the development of stable nanoscale particles having encapsulation capabilities towards low compounds of varying polarity and with potential agricultural applications relevant to plant health and growth. The solution properties of the NPs were assessed using dynamic and electrophoretic light scattering (DLS and ELS); their morphology was observed through atomic force microscopy (AFM), while analytical ultracentrifugation (AUC) measurements provided insights into their molar mass. Their properties proved to be primarily influenced by the concentration of CS, which significantly affected its intrinsic conformation. Additional structural insights were obtained via infrared and UV–Vis spectroscopic measurements, while detailed fluorescence analysis with the use of three different probes, as model cargo molecules, provided information regarding the hydrophobic and hydrophilic microdomains within the particles. Full article
(This article belongs to the Collection Bioactive Polysaccharides)
Show Figures

Figure 1

15 pages, 1257 KiB  
Article
Waterborne Polymer Coating Material Modified with Nano-SiO2 and Siloxane for Fabricating Environmentally Friendly Coated Urea
by Songling Chen, Fuxin Liu, Wenying Zhao, Jianrong Zhao, Xinlin Li and Jianfei Wang
Sustainability 2025, 17(15), 6987; https://doi.org/10.3390/su17156987 - 1 Aug 2025
Viewed by 276
Abstract
Environmentally friendly coated urea prepared using a waterborne polymer coating material is essential for promoting green and sustainable practices in modern agriculture. However, significant efforts are still urgently needed to address the undesirable properties of waterborne polymer coatings, i.e., poor hydrophobic properties and [...] Read more.
Environmentally friendly coated urea prepared using a waterborne polymer coating material is essential for promoting green and sustainable practices in modern agriculture. However, significant efforts are still urgently needed to address the undesirable properties of waterborne polymer coatings, i.e., poor hydrophobic properties and numerous micropores. Herein, dual nano-SiO2 and siloxane-modified waterborne-polymer-coated urea was successfully developed. The characteristics of waterborne-polymer-coated urea before and after modification were compared. The results demonstrate that nano-SiO2 and siloxane modification improved the hydrophobicity (water absorption decreased from 119.86% to 46.35%) and mechanical strength (tensile strength increased from 21.09 to 31.29 MPa, and the elongation at break exhibited an increase of 22.42%) of the waterborne polymer coatings. Furthermore, the –OH number of the modified coatings was decreased, while the coating surface formed a nano-scale rough structure, prolonging the nitrogen (N)-controlled release period from 7 to 28 days. Overall, the proposed novel dual-modification technique utilizing waterborne polymer coatings highlights the significant potential of eco-friendly coated urea with renewable coatings in modern agriculture. Full article
Show Figures

Figure 1

20 pages, 2990 KiB  
Article
Examination of Interrupted Lighting Schedule in Indoor Vertical Farms
by Dafni D. Avgoustaki, Vasilis Vevelakis, Katerina Akrivopoulou, Stavros Kalogeropoulos and Thomas Bartzanas
AgriEngineering 2025, 7(8), 242; https://doi.org/10.3390/agriengineering7080242 - 1 Aug 2025
Viewed by 167
Abstract
Indoor horticulture requires a substantial quantity of electricity to meet crops extended photoperiodic requirements for optimal photosynthetic rate. Simultaneously, global electricity costs have grown dramatically in recent years, endangering the sustainability and profitability of indoor vertical farms and/or modern greenhouses that use artificial [...] Read more.
Indoor horticulture requires a substantial quantity of electricity to meet crops extended photoperiodic requirements for optimal photosynthetic rate. Simultaneously, global electricity costs have grown dramatically in recent years, endangering the sustainability and profitability of indoor vertical farms and/or modern greenhouses that use artificial lighting systems to accelerate crop development and growth. This study investigates the growth rate and physiological development of cherry tomato plants cultivated in a pilot indoor vertical farm at the Agricultural University of Athens’ Laboratory of Farm Structures (AUA) under continuous and disruptive lighting. The leaf physiological traits from multiple photoperiodic stress treatments were analyzed and utilized to estimate the plant’s tolerance rate under varied illumination conditions. Four different photoperiodic treatments were examined and compared, firstly plants grew under 14 h of continuous light (C-14L10D/control), secondly plants grew under a normalized photoperiod of 14 h with intermittent light intervals of 10 min of light followed by 50 min of dark (NI-14L10D/stress), the third treatment where plants grew under 14 h of a load-shifted energy demand response intermittent lighting schedule (LSI-14L10D/stress) and finally plants grew under 13 h photoperiod following of a load-shifted energy demand response intermittent lighting schedule (LSI-13L11D/stress). Plants were subjected also under two different light spectra for all the treatments, specifically WHITE and Blue/Red/Far-red light composition. The aim was to develop flexible, energy-efficient lighting protocols that maintain crop productivity while reducing electricity consumption in indoor settings. Results indicated that short periods of disruptive light did not negatively impact physiological responses, and plants exhibited tolerance to abiotic stress induced by intermittent lighting. Post-harvest data indicated that intermittent lighting regimes maintained or enhanced growth compared to continuous lighting, with spectral composition further influencing productivity. Plants under LSI-14L10D and B/R/FR spectra produced up to 93 g fresh fruit per plant and 30.4 g dry mass, while consuming up to 16 kWh less energy than continuous lighting—highlighting the potential of flexible lighting strategies for improved energy-use efficiency. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

18 pages, 439 KiB  
Article
Is the Concept of Food Sovereignty Still Aligned with Sustainability Principles? Insights from a Q-Methodology Study
by Serena Mandolesi, Ahmed Saidi, Teresa Del Giudice, Simona Naspetti, Raffaele Zanoli and Carla Cavallo
Sustainability 2025, 17(15), 6912; https://doi.org/10.3390/su17156912 - 30 Jul 2025
Viewed by 271
Abstract
Food sovereignty has gained significant political attention in recent years, proven by the recent change of the name of Italian Ministry of Agriculture. Coined by the transnational movement “La Via Campesina” in 1996, food sovereignty emphasizes sustainable food security and the right of [...] Read more.
Food sovereignty has gained significant political attention in recent years, proven by the recent change of the name of Italian Ministry of Agriculture. Coined by the transnational movement “La Via Campesina” in 1996, food sovereignty emphasizes sustainable food security and the right of populations to determine their own food policies. However, the concept is often misunderstood in the light of rising sovereigntist debate, and its original meaning, intertwined with long-term sustainability, is gradually disappearing. This study uses Q methodology to explore consumer perspectives on food sovereignty, identifying distinct groups that reflect how the concept has evolved and how it is perceived by the general population. The analysis is based on a sample of 24 participants from Italy. Starting from all sustainability issues contained in food sovereignty, relevant opinion groups have been identified. Results show that half of the groups still recognize their traditional meaning, while the other half understands food sovereignty as a modern form of autarchy. Full article
Show Figures

Figure 1

34 pages, 1087 KiB  
Article
Reconfiguring Urban–Rural Systems Through Agricultural Service Reform: A Socio-Technical Perspective from China
by Yuchen Lu, Chenlu Yang, Yifan Tang and Yakun Chen
Systems 2025, 13(8), 634; https://doi.org/10.3390/systems13080634 - 29 Jul 2025
Viewed by 402
Abstract
The transition toward integrated urban–rural development represents a complex socio-technical challenge in post-poverty alleviation China. This study examines how the reform of agricultural service systems—especially the rollout of full-process socialization services—reshapes urban–rural integration by embedding new institutional, technological, and organizational structures into rural [...] Read more.
The transition toward integrated urban–rural development represents a complex socio-technical challenge in post-poverty alleviation China. This study examines how the reform of agricultural service systems—especially the rollout of full-process socialization services—reshapes urban–rural integration by embedding new institutional, technological, and organizational structures into rural production. Drawing on staggered provincial pilot programs, we apply a double machine learning framework to assess the causal impact of service reform on the urban–rural income gap, labor reallocation, and agricultural productivity. Results show that agricultural socialization services enhance systemic efficiency by reducing labor bottlenecks, increasing technology diffusion, and fostering large-scale coordination in agricultural operations. These effects are most pronounced in provinces with stronger institutional capacity and higher levels of mechanization. The findings highlight agricultural service reform as a systemic intervention that alters resource allocation logics, drives institutional change, and fosters structural convergence across urban and rural domains. This research contributes to the understanding of agricultural modernization as a systems-engineered solution for regional inequality. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

Back to TopTop