Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (181)

Search Parameters:
Keywords = agricultural carbon emission intensity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3741 KiB  
Article
Use of Amino Acids and Organic Waste Extracts to Improve the Quality of Liquid Nitrogen–Calcium–Magnesium Fertilizers
by Eglė Didžiulytė and Rasa Šlinkšienė
Sustainability 2025, 17(15), 7081; https://doi.org/10.3390/su17157081 - 5 Aug 2025
Viewed by 61
Abstract
Agriculture is one of the most important sectors of the global economy, but it increasingly faces sustainability challenges in meeting rising food demands. The intensive use of mineral fertilizers not only improves yields, but also causes negative environmental impacts such as increasing greenhouse [...] Read more.
Agriculture is one of the most important sectors of the global economy, but it increasingly faces sustainability challenges in meeting rising food demands. The intensive use of mineral fertilizers not only improves yields, but also causes negative environmental impacts such as increasing greenhouse gas emissions, water eutrophication, and soil degradation. To develop more sustainable solutions, the focus is on organic fertilizers, which are produced using waste and biostimulants such as amino acids. The aim of this study was to develop and characterize liquid nitrogen–calcium–magnesium fertilizers produced by decomposing dolomite with nitric acid followed by further processing and to enrich them with a powdered amino acid concentrate Naturamin-WSP and liquid extracts from digestate, a by-product of biogas production. Nutrient-rich extracts were obtained using water and potassium hydroxide solutions, with the latter proving more effective by yielding a higher organic carbon content (4495 ± 0.52 mg/L) and humic substances, which can improve soil structure. The produced fertilizers demonstrated favourable physical properties, including appropriate viscosity and density, as well as low crystallization temperatures (eutectic points from –3 to –34 °C), which are essential for storage and application in cold climates. These properties were achieved by adjusting the content of nitrogenous compounds and bioactive extracts. The results of the study show that liquid fertilizers enriched with organic matter can be an effective and more environmentally friendly alternative to mineral fertilizers, contributing to the development of the circular economy and sustainable agriculture. Full article
Show Figures

Figure 1

20 pages, 16139 KiB  
Article
XCH4 Spatiotemporal Variations in a Natural-Gas-Exploiting Basin with Intensive Agriculture Activities Using Multiple Remote Sensing Datasets: Case from Sichuan Basin, China
by Tengnan Wang and Yunpeng Wang
Remote Sens. 2025, 17(15), 2695; https://doi.org/10.3390/rs17152695 - 4 Aug 2025
Viewed by 167
Abstract
The Sichuan Basin is a natural-gas-exploiting area with intensive agriculture activities. However, the spatial and temporal distribution of atmospheric methane concentration and the relationships with intensive agriculture and natural gas extraction activities are not well investigated. In this study, a long-term (2003–2021) dataset [...] Read more.
The Sichuan Basin is a natural-gas-exploiting area with intensive agriculture activities. However, the spatial and temporal distribution of atmospheric methane concentration and the relationships with intensive agriculture and natural gas extraction activities are not well investigated. In this study, a long-term (2003–2021) dataset of column-averaged dry-air mole fraction of methane (XCH4) over the Sichuan Basin and adjacent regions was built by integrating multi-satellite remote sensing data (SCIAMACHY, GOSAT, Sentinel-5P), which was calibrated using ground station data. The results show a strong correlation and consistency (R = 0.88) between the ground station and satellite observations. The atmospheric CH4 concentration of the Sichuan Basin showed an overall higher level (around 20 ppb) than that of the whole of China and an increasing trend in the rates, from around 2.27 ppb to 10.44 ppb per year between 2003 and 2021. The atmospheric CH4 concentration of the Sichuan Basin also exhibits clear seasonal changes (higher in the summer and autumn and lower in the winter and spring) with a clustered geographical distribution. Agricultural activities and natural gas extraction contribute significantly to atmospheric methane concentrations in the study area, which should be considered in carbon emission management. This study provides an effective way to investigate the spatiotemporal distribution of atmospheric CH4 concentration and related factors at a regional scale with natural and human influences using multi-source satellite remote sensing data. Full article
Show Figures

Figure 1

27 pages, 3470 KiB  
Article
Spatiotemporal Evolution and Influencing Factors of Carbon Emission Efficiency of Apple Production in China from 2003 to 2022
by Dejun Tan, Juanjuan Cheng, Jin Yu, Qian Wang and Xiaonan Chen
Agriculture 2025, 15(15), 1680; https://doi.org/10.3390/agriculture15151680 - 2 Aug 2025
Viewed by 293
Abstract
Understanding the carbon emission efficiency of apple production (APCEE) is critical for promoting green and low-carbon agricultural development. However, the spatiotemporal dynamics and driving factors of APCEE in China remain inadequately explored. This study employs life cycle assessment, super-efficiency slacks-based measures, [...] Read more.
Understanding the carbon emission efficiency of apple production (APCEE) is critical for promoting green and low-carbon agricultural development. However, the spatiotemporal dynamics and driving factors of APCEE in China remain inadequately explored. This study employs life cycle assessment, super-efficiency slacks-based measures, and a panel Tobit model to evaluate the carbon footprint, APCEE, and its determinants in China’s two major production regions from 2003 to 2022. The results reveal that: (1) Producing one ton of apples in China results in 0.842 t CO2e emissions. Land carbon intensity and total carbon emissions peaked in 2010 (28.69 t CO2e/ha) and 2014 (6.52 × 107 t CO2e), respectively, exhibiting inverted U-shaped trends. Carbon emissions from various production areas show significant differences, with higher pressure on carbon emission reduction in the Loess Plateau region, especially in Gansu Province. (2) The APCEE in China exhibits a W-shaped trend (mean: 0.645), with overall low efficiency loss. The Bohai Bay region outperforms the Loess Plateau and national averages. (3) The structure of the apple industry, degree of agricultural mechanization, and green innovation positively influence APCEE, while the structure of apple cultivation, education level, and agricultural subsidies negatively impact it. Notably, green innovation and agricultural subsidies display lagged effects. Moreover, the drivers of APCEE differ significantly between the two major production regions. These findings provide actionable pathways for the green and low-carbon transformation of China’s apple industry, emphasizing the importance of spatially tailored green policies and technology-driven decarbonization strategies. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

17 pages, 1398 KiB  
Article
Spatio-Temporal Dynamics, Driving Mechanisms, and Decoupling Evaluation of Farmland Carbon Emissions: A Case Study of Shandong Province, China
by Tao Sun, Ran Li, Zichao Zhao, Bing Guo, Meng Ma, Li Yao and Xinhao Gao
Sustainability 2025, 17(15), 6876; https://doi.org/10.3390/su17156876 - 29 Jul 2025
Viewed by 210
Abstract
Understanding the spatio-temporal evolution of farmland carbon emissions, disentangling their underlying driving forces, and exploring the decoupling relationship between these emissions and economic development are pivotal to advancing low-carbon and high-quality agricultural development in Shandong Province, China. Using the Logarithmic Mean Divisia Index [...] Read more.
Understanding the spatio-temporal evolution of farmland carbon emissions, disentangling their underlying driving forces, and exploring the decoupling relationship between these emissions and economic development are pivotal to advancing low-carbon and high-quality agricultural development in Shandong Province, China. Using the Logarithmic Mean Divisia Index (LMDI) and Tapio decoupling model, this study conducted a comprehensive analysis of panel data from 16 cities in Shandong Province spanning 2004–2023. This research reveals that the total farmland carbon emissions in Shandong Province followed a trajectory of “initial fluctuating increase and subsequent steady decline” during the study period. The emissions peaked at 29.4 million tons in 2007 and then declined to 20.2 million tons in 2023, representing a 26.0% reduction compared to the 2004 level. Farmland carbon emission intensity in Shandong Province showed an overall downward trend over the period 2004–2023, with the 2023 intensity registering a 68.9% decline compared to 2004. The carbon emission intensity, agricultural structure, and labor effects acted as inhibiting factors on farmland carbon emissions in Shandong Province, while the economic development effect exerted a positive driving impact on the growth of such emissions. Over the 20-year period, these four factors cumulatively contributed to a reduction of 2.1 × 105 tons in farmland carbon emissions. During 2004–2013, the farmland carbon emissions in Zaozhuang, Yantai, Jining, Linyi, Dezhou, Liaocheng, and Heze showed a weak decoupling state, while in 2014–2023, the farmland carbon emissions and economic development in all cities of Shandong Province showed a strong decoupling state. In the future, it is feasible to reduce farmland carbon emissions in Shandong Province by improving agricultural resource utilization efficiency through technological progress, adopting advanced low-carbon technologies, and promoting the transformation of agricultural industrial structures towards “high-value and low-carbon” designs. Full article
Show Figures

Figure 1

17 pages, 594 KiB  
Article
Diversifying Rural Economies: Identifying Factors That Discourage Primary Producers from Engaging in Emerging Carbon and Environmental Offsetting Markets in Queensland, Australia
by Lila Singh-Peterson, Fynn De Daunton, Andrew Drysdale, Lorinda Otto, Wim Linström and Ben Lyons
Sustainability 2025, 17(15), 6847; https://doi.org/10.3390/su17156847 - 28 Jul 2025
Viewed by 243
Abstract
Commitments to carbon neutrality at both international and national levels have spurred the development of market-based mechanisms that incentivize low-carbon technologies while penalizing emissions-intensive activities. These policies have wide ranging impacts for the Australian agricultural sector, and associated rural communities, where the majority [...] Read more.
Commitments to carbon neutrality at both international and national levels have spurred the development of market-based mechanisms that incentivize low-carbon technologies while penalizing emissions-intensive activities. These policies have wide ranging impacts for the Australian agricultural sector, and associated rural communities, where the majority of carbon credits and biodiversity credits are sourced in Australia. Undeniably, the introduction of carbon and environmental markets has created the opportunity for an expansion and diversification of local, rural economies beyond a traditional agricultural base. However, there is much complexity for the agricultural sector to navigate as environmental markets intersect and compete with food and fiber livelihoods, and entrenched ideologies of rural identity and purpose. As carbon and environmental markets focused on primary producers have expanded rapidly, there is little understanding of the associated situated and relational impacts for farming households and rural communities. Nor has there been much work to identify the barriers to engagement. This study explores these tensions through qualitative research in Stanthorpe and Roma, Queensland, offering insights into the barriers and benefits of market engagement. The findings inform policy development aimed at balancing climate goals with agricultural sustainability and rural community resilience. Full article
Show Figures

Figure 1

16 pages, 2199 KiB  
Article
Carbon Footprint and Energy Balance Analysis of Rice-Wheat Rotation System in East China
by Dingqian Wu, Yezi Shen, Yuxuan Zhang, Tianci Zhang and Li Zhang
Agronomy 2025, 15(8), 1778; https://doi.org/10.3390/agronomy15081778 - 24 Jul 2025
Viewed by 275
Abstract
The rice-wheat rotation is the main agricultural cropping system in Jiangsu Province, playing a vital role in ensuring food security and promoting economic development. However, current research on rice-wheat systems mainly focuses on in-situ controlled experiments at the point scale, with limited studies [...] Read more.
The rice-wheat rotation is the main agricultural cropping system in Jiangsu Province, playing a vital role in ensuring food security and promoting economic development. However, current research on rice-wheat systems mainly focuses on in-situ controlled experiments at the point scale, with limited studies addressing carbon footprint (CF) and energy balance (EB) at the regional scale and long time series. Therefore, we analyzed the evolution patterns of the CF and EB of the rice-wheat system in Jiangsu Province from 1980 to 2022, as well as their influencing factors. The results showed that the sown area and total yield of rice and wheat exhibited an increasing–decreasing–increasing trend during 1980–2022, while the yield per unit area increased continuously. The CF of rice and wheat increased by 4172.27 kg CO2 eq ha−1 and 2729.18 kg CO2 eq ha−1, respectively, with the greenhouse gas emissions intensity (GHGI) showing a fluctuating upward trend. Furthermore, CH4 emission, nitrogen (N) fertilizer, and irrigation were the main factors affecting the CF of rice, with proportions of 36%, 20.26%, and 17.34%, respectively. For wheat, N fertilizer, agricultural diesel, compound fertilizer, and total N2O emission were the primary contributors, accounting for 42.39%, 22.54%, 13.65%, and 13.14%, respectively. Among energy balances, the net energy (NE) of rice exhibited an increasing and then fluctuating trend, while that of wheat remained relatively stable. The energy utilization efficiency (EUE), energy productivity (EPD), and energy profitability (EPF) of rice showed an increasing and then decreasing trend, while wheat decreased by 46.31%, 46.31%, and 60.62% during 43 years, respectively. Additionally, N fertilizer, agricultural diesel, and compound fertilizer accounted for 43.91–45.37%, 21.63–25.81%, and 12.46–20.37% of energy input for rice and wheat, respectively. Moreover, emission factors and energy coefficients may vary over time, which is an important consideration in the analysis of long-term time series. This study analyzes the ecological and environmental effects of the rice-wheat system in Jiangsu Province, which helps to promote the development of agriculture in a green, low-carbon, and high-efficiency direction. It also offers a theoretical basis for constructing a low-carbon sustainable agricultural production system. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

19 pages, 1066 KiB  
Article
Toward a Sustainable Livestock Sector in China: Evolution Characteristics and Driving Factors of Carbon Emissions from a Life Cycle Perspective
by Xiao Wang, Xuezhen Xiong and Xiangfei Xin
Sustainability 2025, 17(14), 6537; https://doi.org/10.3390/su17146537 - 17 Jul 2025
Viewed by 309
Abstract
Addressing the sustainability challenges posed by the expanding livestock sector is crucial for China’s green transition. With the transformation of national dietary structure and increasing demand for livestock products, the associated resource consumption and environmental impacts, particularly carbon emissions have intensified. Reducing carbon [...] Read more.
Addressing the sustainability challenges posed by the expanding livestock sector is crucial for China’s green transition. With the transformation of national dietary structure and increasing demand for livestock products, the associated resource consumption and environmental impacts, particularly carbon emissions have intensified. Reducing carbon emissions from livestock is vital for mitigating global warming, enhancing resource utilization efficiency, improving ecosystems and biodiversity, and ultimately achieving sustainable development of the livestock industry. Against this backdrop, this study measures the carbon emissions from livestock sector employing the Life Cycle Assessment (LCA) method, and applies the Generalized Divisia Index Method (GDIM) to analyze the factors affecting the changes in carbon emissions, aiming to quantify and analyze the carbon footprint of China’s livestock sector to inform sustainable practices. The findings reveal that China’s total carbon emissions from the livestock sector fluctuated between 645.15 million tons and 812.99 million tons from 2000 to 2023. Since 2020, emissions have entered a new phase of continuous growth, with a 5.40% increase in 2023 compared to 2020. Significantly, a positive trend toward sustainability is observed in the substantial decline of carbon emission intensity over the study period, with notable reductions in emission intensity across provinces and a gradual convergence in inter-provincial disparities. Understanding the drivers is key for effective mitigation. The output level and total mechanical power consumption level emerged as primary positive drivers of carbon emissions, while output carbon intensity and mechanical power consumption carbon intensity served as major negative drivers. Moving forward, to foster a sustainable and low-carbon livestock sector, China’s livestock sector development should prioritize coordinated carbon reduction across the entire industrial chain, adjust the industrial structure, and enhance the utilization efficiency of advanced low-carbon agricultural machinery while introducing such equipment. Full article
Show Figures

Figure 1

31 pages, 4680 KiB  
Article
Path Mechanism and Field Practice Effect of Green Agricultural Production on the Soil Organic Carbon Dynamics and Greenhouse Gas Emission Intensity in Farmland Ecosystems
by Xiaoqian Li, Yi Wang, Wen Chen and Bin He
Agriculture 2025, 15(14), 1499; https://doi.org/10.3390/agriculture15141499 - 12 Jul 2025
Viewed by 370
Abstract
Exploring the mechanisms by which green agricultural production reduces emissions and enhances carbon sequestration in soil can provide a scientific basis for greenhouse gas reduction and sustainable development in farmland. This study uses a combination of meta-analysis and field experiments to evaluate the [...] Read more.
Exploring the mechanisms by which green agricultural production reduces emissions and enhances carbon sequestration in soil can provide a scientific basis for greenhouse gas reduction and sustainable development in farmland. This study uses a combination of meta-analysis and field experiments to evaluate the impact of different agricultural management practices and climatic conditions on soil organic carbon (SOC) and the emissions of CO2 and CH4, as well as the role of microorganisms. The results indicate the following: (1) Meta-analysis reveals that the long-term application of organic fertilizers in green agriculture increases SOC at a rate four times higher than that of chemical fertilizers. No-till and straw return practices significantly reduce CO2 emissions from alkaline soils by 30.7% (p < 0.05). Warm and humid climates in low-altitude regions are more conducive to soil carbon sequestration. (2) Structural equation modeling of plant–microbe–soil carbon interactions shows that plant species diversity (PSD) indirectly affects microbial biomass by influencing organic matter indicators, mineral properties, and physicochemical characteristics, thereby regulating soil carbon sequestration and greenhouse gas emissions. (3) Field experiments conducted in the typical green farming research area of Chenzhuang reveal that soils managed under natural farming absorb CH4 at a rate three times higher than those under conventional farming, and the stoichiometric ratios of soil enzymes in the former are close to 1. The peak SOC (19.90 g/kg) in the surface soil of Chenzhuang is found near fields cultivated with natural farming measures. This study provides theoretical support and practical guidance for the sustainable development of green agriculture. Full article
Show Figures

Figure 1

26 pages, 2310 KiB  
Article
Identification and Forecasting of Key Influencing Factors in China’s Agricultural Carbon Emissions: Based on Machine Learning Method
by Juntong Liu, Xiong Peng, Malan Huang, Yuzhou Ma, Cancan Jiang, Wanling Hu and Jinxin Zhang
Systems 2025, 13(7), 554; https://doi.org/10.3390/systems13070554 - 8 Jul 2025
Viewed by 381
Abstract
Identifying the key factors influencing agricultural carbon emissions and accurately predicting future trends are essential for achieving carbon peak and carbon neutrality goals. This study aims to assess carbon emissions in agriculture from 1997 to 2022, construct an accurate model to identify the [...] Read more.
Identifying the key factors influencing agricultural carbon emissions and accurately predicting future trends are essential for achieving carbon peak and carbon neutrality goals. This study aims to assess carbon emissions in agriculture from 1997 to 2022, construct an accurate model to identify the key influencing factors, and predict carbon emissions in agriculture from 2023 to 2030 with an intelligent prediction system to discuss risk management. Additionally, the Dagum method was employed to explore regional differences in agricultural carbon emissions across China. The results reveal that China’s agricultural carbon emissions exhibited a fluctuating trend from 1997 to 2022, peaking in 2015, followed by a period of decline and a moderate rebound in recent years. Elastic Net Regression identified eleven key variables, including Agricultural Machinery Level (MA), Numbers of Agricultural Tools (AT), and Agricultural Industrial Structure Upgrading (AICE), as major determinants of agricultural carbon emissions. Furthermore, the RF-PSO method demonstrated the highest predictive accuracy, forecasting a minor peak in agricultural carbon emissions in 2027, followed by stabilization. Regionally, imbalances in emissions were observed, with the intensity of transvariation accounting for 37.078% of the disparity. Therefore, the Chinese government is advised to implement region-specific strategies for controlling agricultural carbon emissions, cultivate new high-quality agricultural productivity, and promote advanced technologies. Full article
(This article belongs to the Section Supply Chain Management)
Show Figures

Figure 1

15 pages, 3677 KiB  
Article
Spatial–Temporal Restructuring of Regional Landscape Patterns and Associated Carbon Effects: Evidence from Xiong’an New Area
by Yi-Hang Gao, Bo Han, Hong-Wei Liu, Yao-Nan Bai and Zhuang Li
Sustainability 2025, 17(13), 6224; https://doi.org/10.3390/su17136224 - 7 Jul 2025
Viewed by 300
Abstract
China’s accelerated urbanization has instigated construction land expansion and ecological land attrition, aggravating the carbon emission disequilibrium. Notably, the “land carbon emission elasticity coefficient” in urban agglomerations far exceeds international benchmarks, underscoring the contradiction between spatial expansion and low-carbon goals. Existing research predominantly [...] Read more.
China’s accelerated urbanization has instigated construction land expansion and ecological land attrition, aggravating the carbon emission disequilibrium. Notably, the “land carbon emission elasticity coefficient” in urban agglomerations far exceeds international benchmarks, underscoring the contradiction between spatial expansion and low-carbon goals. Existing research predominantly centers on single-spatial-type or static-model analyses, lacking cross-scale mechanism exploration, policy heterogeneity consideration, and differentiated carbon metabolism assessment across functional spaces. This study takes Xiong’an New Area as a case, delineating the spatiotemporal evolution of land use and carbon emissions during 2017–2023. Construction land expanded by 26.8%, propelling an 11-fold escalation in carbon emissions, while emission intensity decreased by 11.4% due to energy efficiency improvements and renewable energy adoption. Cultivated land reduction (31.8%) caused a 73.4% decline in agricultural emissions, and ecological land network restructuring (65.3% forest expansion and wetland restoration) significantly enhanced carbon sequestration. This research validates a governance paradigm prioritizing “structural optimization” over “scale expansion”—synergizing construction land intensification with ecological restoration to decelerate emission growth and strengthen carbon sink systems. Full article
Show Figures

Figure 1

21 pages, 3178 KiB  
Article
Integrating CO2 Emissions and Economic Value Modeling for Sustainable Water Management: Insights from the Segura River Basin
by Juan Odriozola, Markel Flores, Wilmer Lainez-Oyuela and Mikel Maiza
Water 2025, 17(13), 1865; https://doi.org/10.3390/w17131865 - 23 Jun 2025
Viewed by 725
Abstract
This study presents an integrated modeling framework that combines CO2 emissions and economic valuation to advance sustainable water management, focusing on the Segura River Basin in southeastern Spain. Characterized by arid conditions and severe water stress, the basin serves as an exemplary [...] Read more.
This study presents an integrated modeling framework that combines CO2 emissions and economic valuation to advance sustainable water management, focusing on the Segura River Basin in southeastern Spain. Characterized by arid conditions and severe water stress, the basin serves as an exemplary case for evaluating the trade-offs between environmental sustainability and economic productivity. The framework integrates CO2 emissions models with economic analyses to quantify the carbon footprint and economic returns across five key water demand sectors: agriculture, industry, urban, recreational and environmental. Results demonstrate substantial variations in both CO2 emissions and economic returns across and within these sectors, underscoring source-specific differences. Agriculture stands out as a key sector that balances carbon sequestration with productivity, whereas urban and industrial sectors exhibit energy-intensive water demands that significantly increase emissions. Additionally, there is notable heterogeneity in economic performance and CO2 emissions within each sector. By linking CO2 emissions with economic outcomes, the framework enables users to assess the relationship between economic value and CO2 emissions across water demand units, supporting informed decision-making on the most sustainable allocation strategies. A critical finding is the negative economic impact of using desalinated water in agriculture, where high costs substantially reduce profit margins. These insights inform policies aimed at enhancing resource efficiency, promoting low-carbon water sources and aligning water management strategies with both environmental and economic goals. This approach guides sustainable water allocation in water-scarce regions. Full article
Show Figures

Figure 1

33 pages, 7310 KiB  
Article
Integrating Geodetector and GTWR to Unveil Spatiotemporal Heterogeneity in China’s Agricultural Carbon Emissions Under the Dual Carbon Goals
by Huae Dang, Yuanjie Deng, Yifeng Hai, Hang Chen, Wenjing Wang, Miao Zhang, Xingyang Liu, Can Yang, Minghong Peng, Dingdi Jize, Mei Zhang and Long He
Agriculture 2025, 15(12), 1302; https://doi.org/10.3390/agriculture15121302 - 17 Jun 2025
Viewed by 587
Abstract
Against the backdrop of intensifying global climate change and deepening sustainable development goals, the low-carbon transformation of agriculture, as a major greenhouse gas emission source, holds significant strategic importance for achieving China’s “carbon peaking and carbon neutrality” (referred to as the “dual carbon”) [...] Read more.
Against the backdrop of intensifying global climate change and deepening sustainable development goals, the low-carbon transformation of agriculture, as a major greenhouse gas emission source, holds significant strategic importance for achieving China’s “carbon peaking and carbon neutrality” (referred to as the “dual carbon”) targets. To reveal the spatiotemporal evolution characteristics and complex driving mechanisms of agricultural carbon emissions (ACEs), this study constructs a comprehensive accounting framework for agricultural carbon emissions based on provincial panel data from China spanning 2000 to 2023. The framework encompasses three major carbon sources—cropland use, rice cultivation, and livestock farming—enabling precise quantification of total agricultural carbon emissions. Furthermore, spatial-temporal distribution patterns are characterized using methodologies including standard deviational ellipse (SDE) and spatial autocorrelation analysis. For driving mechanism identification, the Geodetector and Geographically and Temporally Weighted Regression (GTWR) models are employed. The former quantifies the spatial explanatory power and interaction effects of driving factors, while the latter enables dynamic estimation of factor influence intensities across temporal and spatial dimensions, jointly revealing significant spatiotemporal heterogeneity in driving mechanisms. Key findings: (1) temporally, total ACEs exhibit fluctuating growth, while emission intensity has significantly decreased, indicating the combined effects of policy regulation and technological advancements; (2) spatially, emissions display an “east-high, west-low” pattern, with an increasing number of hotspot areas and a continuous shift of the emission centroid toward the northwest; and (3) mechanistically, agricultural gross output value is the primary driving factor, with its influence fluctuating in response to economic and policy changes. The interactions among multiple factors evolve over time, transitioning from economy-driven to synergistic effects of technology and climate. The GTWR model further reveals the spatial and temporal variations in the impacts of each factor. This study recommends formulating differentiated low-carbon agricultural policies based on regional characteristics, optimizing industrial structures, enhancing modernization levels, strengthening regional collaborative governance, and promoting the synergistic development of climate and agriculture. These measures provide a scientific basis and policy reference for achieving the “dual carbon” goals. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

20 pages, 2290 KiB  
Article
Intensify or Alleviate? Measurement of the Impact of China’s Facility Agriculture on Greenhouse Gas Emissions: Comparative Analysis Based on Cucumber Industry
by Xialing Chu, Linxiu Zheng, Jie Li and Pengfei Cheng
Agronomy 2025, 15(6), 1403; https://doi.org/10.3390/agronomy15061403 - 6 Jun 2025
Viewed by 704
Abstract
Facility agriculture can increase production efficiency and alleviate resource constraints. Its developmental level has become one of the most important indicators of the level of agricultural modernization worldwide. The Chinese government has attached great importance to the development of facility agriculture in recent [...] Read more.
Facility agriculture can increase production efficiency and alleviate resource constraints. Its developmental level has become one of the most important indicators of the level of agricultural modernization worldwide. The Chinese government has attached great importance to the development of facility agriculture in recent years. Since 2020, the “No. 1 Document” has continuously emphasized and deployed the development of facility agriculture. Global climate change has greatly impacted the traditional agricultural production that is vulnerable to weather changes, while the development of facility agriculture can to some extent alleviate the limitations of climate conditions on agricultural production. However, it is unclear whether facility agriculture can help alleviate the adverse effects of global climate change, i.e., reducing greenhouse gas emissions. In view of this, in this research, based on the data from the latest National Compilation of Cost and Benefit Data on Agricultural Products in 2022, the greenhouse gas emissions and carbon emission indicators of open-field and greenhouse cucumber productions in China were measured using the life cycle assessment method (the full cycle of agricultural ecosystems). The results show that the average total greenhouse gas emissions (4572.67 kgCE·hm−2) from China’s facility cucumber production system are significantly higher than those from traditional open-field production methods (8712.86 kgCE·hm−2), with net greenhouse gas emissions from facility cucumber cultivation being on average 98.78% higher than those from open fields. Combining indicators such as land carbon intensity, carbon productivity, and carbon economic efficiency, it can be concluded that the sustainability of facility cucumber cultivation is lower than that of open-field cucumber cultivation. Additionally, considering the comprehensive differences in economic development, resource endowments, planting methods, and technological inputs across different regions, there are significant inter-provincial variations in the greenhouse gas composition, carbon sequestration, carbon ecological efficiency, carbon productivity, and carbon economic efficiency of both open-field and facility cucumbers. However, overall, carbon productivity shows a certain geographical proximity effect, with an increasing trend from south to north for open-field cucumbers. The above research findings provide direct evidence for the development of facility agriculture in China. Based on these measurement results and analytical conclusions, this paper further explores how to reduce carbon emissions and promote emission reduction in facility agriculture, providing reliable empirical support for policy implementation by relevant authorities and academic research. Full article
Show Figures

Figure 1

22 pages, 2361 KiB  
Article
Effect of Malthouse Size and Transportation on the Environmental Profile of Malt Production
by Mauro Moresi and Alessio Cimini
Sustainability 2025, 17(11), 5077; https://doi.org/10.3390/su17115077 - 1 Jun 2025
Viewed by 439
Abstract
Malting is one of the most energy-intensive stages in beer brewing, yet its environmental impacts remain under-characterized despite recent efficiency gains. Barley and malt transport drive significant greenhouse gas emissions in import-dependent countries, while local, small-scale production can offset those savings through lower [...] Read more.
Malting is one of the most energy-intensive stages in beer brewing, yet its environmental impacts remain under-characterized despite recent efficiency gains. Barley and malt transport drive significant greenhouse gas emissions in import-dependent countries, while local, small-scale production can offset those savings through lower process efficiencies or higher resource use. This study conducted a cradle-to-gate Life Cycle Assessment (LCA) of three Italian malthouses—small, medium, and large—using SimaPro 10.2.0.0 and a functional unit of 1 kg of malted barley delivered by bulk truck to local breweries. Primary data on barley, water, methane, and electricity consumption, as well as waste generation, were collected via questionnaires; secondary data were sourced from Ecoinvent and Agri-Footprint. Impact categories were evaluated using the Cumulative Energy Demand (CED) and Product Environmental Footprint (PEF) methodologies. Barley cultivation dominates the footprint (84–92% of total impacts when using local grain). Drying and transport contribute 3.7–4.4% and 0–8.4% of impacts, respectively, depending on facility scale and import share. Smaller malthouses exhibit higher per-kilogram impacts due to lower energy efficiency and transportation modes. Mitigation strategies —including sustainable agriculture, renewable energy adoption, logistics optimization, and process improvements—can substantially reduce impacts. Notably, sourcing barley from low-impact suppliers alone lowers the carbon footprint from 0.80 to 0.66 kg CO2e/kg, freshwater eutrophication from 227 to 32 CTUe/kg, land use from 196 to 136 Pt/kg, and overall PEF from 192 to 81 µPt/kg. These results underscore the critical role of feedstock sourcing and process efficiency in decarbonizing malt production and provide a quantitative baseline for targeted sustainability interventions. Full article
Show Figures

Figure 1

18 pages, 315 KiB  
Article
A Study on the Impact Mechanism of Agricultural Trade on Agricultural Carbon Emissions
by Yuxiang Luo, Xinchen Gu, Yi Zhang, Ngoye Tonda Indy-Lee Anderson, Dungang Zang and Qianling Shen
Sustainability 2025, 17(11), 5060; https://doi.org/10.3390/su17115060 - 31 May 2025
Viewed by 498
Abstract
Controlling agricultural carbon emissions is crucial for addressing global environmental challenges. As a major player in agricultural trade, China needs to explore a specific pathway to reduce its agricultural carbon emissions. This study delves into the impact of China’s agricultural trade on agricultural [...] Read more.
Controlling agricultural carbon emissions is crucial for addressing global environmental challenges. As a major player in agricultural trade, China needs to explore a specific pathway to reduce its agricultural carbon emissions. This study delves into the impact of China’s agricultural trade on agricultural carbon emissions: (1) The research demonstrates that agricultural trade (AT) significantly reduces China’s agricultural carbon emissions (ACEs), with robustness and endogeneity tests supporting these findings. (2) In the process of lowering agricultural carbon emissions, AT exerts both direct and indirect effects. The direct effect stems from the import substitution effect of agricultural trade, while the indirect effects include agricultural technological innovation (ATI) and the agricultural carbon emission intensity (ECI). (3) The reduction in ACEs is more pronounced in eastern regions, coastal areas, and non-major grain-producing regions. This study reveals the underlying mechanisms between AT and ACEs, suggesting that China has the potential to achieve mutual benefits in international trade and environmental protection. It also provides a trade-oriented perspective for formulating agricultural emission reduction policies. Full article
Show Figures

Figure 1

Back to TopTop