Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,017)

Search Parameters:
Keywords = agricultural and livestock products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1097 KiB  
Review
Natural Feed Additives in Sub-Saharan Africa: A Systematic Review of Efficiency and Sustainability in Ruminant Production
by Zonaxolo Ntsongota, Olusegun Oyebade Ikusika and Thando Conference Mpendulo
Ruminants 2025, 5(3), 36; https://doi.org/10.3390/ruminants5030036 - 6 Aug 2025
Abstract
Ruminant livestock production plays a crucial role in the agricultural systems of Sub-Saharan Africa, significantly supporting rural livelihoods through income generation, improved nutrition, and employment opportunities. Despite its importance, the sector continues to face substantial challenges, such as low feed quality, seasonal feed [...] Read more.
Ruminant livestock production plays a crucial role in the agricultural systems of Sub-Saharan Africa, significantly supporting rural livelihoods through income generation, improved nutrition, and employment opportunities. Despite its importance, the sector continues to face substantial challenges, such as low feed quality, seasonal feed shortages, and climate-related stresses, all of which limit productivity and sustainability. Considering these challenges, the adoption of natural feed additives has emerged as a promising strategy to enhance animal performance, optimise nutrient utilisation, and mitigate environmental impacts, including the reduction of enteric methane emissions. This review underscores the significant potential of natural feed additives such as plant extracts, essential oils, probiotics, and mineral-based supplements such as fossil shell flour as sustainable alternatives to conventional growth promoters in ruminant production systems across the region. All available documented evidence on the topic from 2000 to 2024 was collated and synthesised through standardised methods of systematic review protocol—PRISMA. Out of 319 research papers downloaded, six were included and analysed directly or indirectly in this study. The results show that the addition of feed additives to ruminant diets in all the studies reviewed significantly (p < 0.05) improved growth parameters such as average daily growth (ADG), feed intake, and feed conversion ratio (FCR) compared to the control group. However, no significant (p > 0.05) effect was found on cold carcass weight (CCW), meat percentage, fat percentage, bone percentage, or intramuscular fat (IMF%) compared to the control. The available evidence indicates that these additives can provide tangible benefits, including improved growth performance, better feed efficiency, enhanced immune responses, and superior meat quality, while also supporting environmental sustainability by reducing nitrogen excretion and decreasing dependence on antimicrobial agents. Full article
Show Figures

Figure 1

20 pages, 312 KiB  
Article
Pimelea and Its Toxicity: A Survey of Landholder Experiences and Management Practices
by Rashid Saleem, Shane Campbell, Mary T. Fletcher, Sundaravelpandian Kalaipandian and Steve W. Adkins
Toxins 2025, 17(8), 393; https://doi.org/10.3390/toxins17080393 - 6 Aug 2025
Abstract
Pimelea is one of the highly toxic plants in Australia, particularly affecting cattle. It contains simplexin, a potent toxin that can cause Pimelea poisoning (St. George Disease) in livestock. A survey was conducted to assess the current impact of Pimelea on livestock production, [...] Read more.
Pimelea is one of the highly toxic plants in Australia, particularly affecting cattle. It contains simplexin, a potent toxin that can cause Pimelea poisoning (St. George Disease) in livestock. A survey was conducted to assess the current impact of Pimelea on livestock production, pasture systems, and financial losses among agricultural producers. In addition, information was also sought about the environmental conditions that facilitate its growth and the effectiveness of existing management strategies. The survey responses were obtained from producers affected by Pimelea across nine different Local Government Areas, through three States, viz., Queensland, New South Wales, and South Australia. Pimelea was reported to significantly affect animal production, with 97% of producers surveyed acknowledging its detrimental effects. Among livestock, cattle were the most severely affected (94%), when compared to sheep (13%), goats (3%), and horses (3%). The presence of Pimelea was mostly observed in spring (65%) and winter (48%), although 29% of respondents indicated that it could be present all year-round under favorable rainfall conditions. Germination was associated with light to moderate rainfall (52%), while only 24% linked it to heavy rainfall. Pimelea simplex F. Muell. was the most frequently encountered species (71%), followed by Pimelea trichostachya Lindl. (26%). Infestations were reported to occur annually by 47% of producers, with 41% noting occurrences every 2 to 5 years. Financially, producers estimated average annual losses of AUD 67,000, with 50% reporting an average of 26 cattle deaths per year, reaching up to 105 deaths in severe years. Some producers were spending up to AUD 2100 per annum to manage Pimelea. While chemical and physical controls were commonly employed, integrating competitive pastures and alternative livestock, such as sheep and goats, was considered as a potential management strategy. This study reiterates the need for further research on sustainable pasture management practices to reduce Pimelea-related risks to livestock and agricultural production systems. Full article
(This article belongs to the Special Issue Plant Toxin Emergency)
27 pages, 4190 KiB  
Article
Dairy’s Development and Socio-Economic Transformation: A Cross-Country Analysis
by Ana Felis, Ugo Pica-Ciamarra and Ernesto Reyes
World 2025, 6(3), 105; https://doi.org/10.3390/world6030105 - 1 Aug 2025
Viewed by 184
Abstract
Global policy narratives on livestock development increasingly emphasize environmental concerns, often overlooking the social dimensions of the sector. In the case of dairy, the world’s most valuable agricultural commodity, its role in social and economic development remains poorly quantified. Our study contributes to [...] Read more.
Global policy narratives on livestock development increasingly emphasize environmental concerns, often overlooking the social dimensions of the sector. In the case of dairy, the world’s most valuable agricultural commodity, its role in social and economic development remains poorly quantified. Our study contributes to a more balanced vision of the UN SDGs thanks to the inclusion of a socio-economic dimension. Here we present a novel empirical approach to assess the socio-economic impacts of dairy development using a new global dataset and non-parametric modelling techniques (local polynomial regressions), with yield as a proxy for sectoral performance. We find that as dairy systems intensify, the number of farm households engaged in production declines, yet household incomes rise. On-farm labour productivity also increases, accompanied by a reduction in employment but higher wages. In dairy processing, employment initially grows, peaks, and then contracts, again with rising wages. The most substantial impact is observed among consumers: an increased milk supply leads to lower prices and improved affordability, expanding the access to dairy products. Additionally, dairy development is associated with greater agricultural value added, an expanding tax base, and the increased formalization of the economy. These findings suggest that dairy development, beyond its environmental footprint, plays a significant and largely positive role in social transformation, yet is having to adapt sustainably while tackling labour force relocation, and that dairy development’s social impacts mimic the general agricultural sector. These results might be of interest for the assessment of policies regarding dairy development. Full article
Show Figures

Graphical abstract

13 pages, 373 KiB  
Article
Impact Assessment of Rural Electrification Through Photovoltaic Kits on Household Expenditures and Income: The Case of Morocco
by Abdellah Oulakhmis, Rachid Hasnaoui and Youness Boudrik
Economies 2025, 13(8), 224; https://doi.org/10.3390/economies13080224 - 31 Jul 2025
Viewed by 216
Abstract
This study evaluates the socio-economic impact of rural electrification through photovoltaic (PV) systems in Morocco. As part of the country’s broader energy transition strategy, decentralized renewable energy solutions like PV kits have been deployed to improve energy access in isolated rural areas. Using [...] Read more.
This study evaluates the socio-economic impact of rural electrification through photovoltaic (PV) systems in Morocco. As part of the country’s broader energy transition strategy, decentralized renewable energy solutions like PV kits have been deployed to improve energy access in isolated rural areas. Using quasi-experimental econometric techniques, specifically propensity score matching (PSM) and estimation of the Average Treatment Effect on the Treated (ATT), the study measures changes in household income, expenditures, and economic activities resulting from PV electrification. The results indicate significant positive effects on household income, electricity spending, and productivity in agriculture and livestock. These findings highlight the critical role of decentralized renewable energy in advancing rural development and poverty reduction. Policy recommendations include expanding PV access with complementary support measures such as microfinance and technical training. Full article
Show Figures

Figure 1

24 pages, 1386 KiB  
Article
Assessing Sustainable Growth: Evolution and Convergence of Green Total Factor Productivity in Tibetan Plateau Agriculture
by Mengmeng Zhang and Chengqun Yu
Sustainability 2025, 17(15), 6963; https://doi.org/10.3390/su17156963 - 31 Jul 2025
Viewed by 163
Abstract
Accurate assessment of green productivity is essential for advancing sustainable agriculture in ecologically fragile regions. This study examined the evolution of agricultural green total factor productivity (AGTFP) in Tibet over the period 2002–2021 by applying a super-efficiency SBM-GML model that accounts for undesirable [...] Read more.
Accurate assessment of green productivity is essential for advancing sustainable agriculture in ecologically fragile regions. This study examined the evolution of agricultural green total factor productivity (AGTFP) in Tibet over the period 2002–2021 by applying a super-efficiency SBM-GML model that accounts for undesirable outputs. We decompose AGTFP into technical change and efficiency change, conduct redundancy analysis to identify sources of inefficiency and explore its spatiotemporal dynamics through kernel density estimation and convergence analysis. Results show that (1) AGTFP in Tibet grew at an average annual rate of 0.78%, slower than the national average of 1.6%; (2) labor input, livestock scale, and agricultural carbon emissions are major sources of redundancy, especially in pastoral regions; (3) technological progress is the main driver of AGTFP growth, while efficiency gains have a limited impact, reflecting a technology-led growth pattern; (4) AGTFP follows a “convergence-divergence-reconvergence” trend, with signs of conditional β convergence after controlling for regional heterogeneity. These findings highlight the need for region-specific green agricultural policies. Priority should be given to improving green technology diffusion and input allocation in high-altitude pastoral areas, alongside strengthening ecological compensation and interregional coordination to enhance green efficiency and promote high-quality development across Tibet. Full article
Show Figures

Figure 1

23 pages, 3140 KiB  
Article
Socioeconomic and Environmental Dimensions of Agriculture, Livestock, and Fisheries: A Network Study on Carbon and Water Footprints in Global Food Trade
by Murilo Mazzotti Silvestrini, Thiago Joel Angrizanes Rossi and Flavia Mori Sarti
Standards 2025, 5(3), 19; https://doi.org/10.3390/standards5030019 - 25 Jul 2025
Viewed by 242
Abstract
Agriculture, livestock, and fisheries significantly impact socioeconomic, environmental, and health dimensions at global level, ensuring food supply for growing populations whilst promoting economic welfare through international trade, employment, and income. Considering that bilateral food exchanges between countries represent exchanges of natural resources involved [...] Read more.
Agriculture, livestock, and fisheries significantly impact socioeconomic, environmental, and health dimensions at global level, ensuring food supply for growing populations whilst promoting economic welfare through international trade, employment, and income. Considering that bilateral food exchanges between countries represent exchanges of natural resources involved in food production (i.e., food imports are equivalent to savings of natural resources), the purpose of the study is to investigate the evolution of carbon and water footprints corresponding to the global food trade networks between 1986 and 2020. The research aims to identify potential associations between carbon and water footprints embedded in food trade and countries’ economic welfare. Complex network analysis was used to map countries’ positions within annual food trade networks, and countries’ metrics within networks were used to identify connections between participation in global trade of carbon and water footprints and economic welfare. The findings of the study show an increase in carbon and water footprints linked to global food exchanges between countries during the period. Furthermore, a country’s centrality within the network was linked to economic welfare, showing that countries with higher imports of carbon and water through global food trade derive economic benefits from participating in global trade. Global efforts towards transformations of food systems should prioritize sustainable development standards to ensure continued access to healthy sustainable diets for populations worldwide. Full article
(This article belongs to the Special Issue Sustainable Development Standards)
Show Figures

Figure 1

26 pages, 2995 KiB  
Article
A New High-Efficiency Fertilization System from Waste Materials for Soil Protection: Material Engineering, Chemical-Physical Characterization, Antibacterial and Agronomic Performances
by Martina Napolitano, Gianluca Malavasi, Daniele Malferrari, Giulio Galamini, Michelina Catauro, Veronica Viola, Fabrizio Marani and Luisa Barbieri
Materials 2025, 18(15), 3492; https://doi.org/10.3390/ma18153492 - 25 Jul 2025
Viewed by 311
Abstract
The development of slow-release fertilizers (SRFs) based on production residues is a promising strategy to improve nutrient use efficiency and promote circular economy practices in agriculture. In this study, a series of experimental formulations were designed and tested using pumice scraps, liquid and [...] Read more.
The development of slow-release fertilizers (SRFs) based on production residues is a promising strategy to improve nutrient use efficiency and promote circular economy practices in agriculture. In this study, a series of experimental formulations were designed and tested using pumice scraps, liquid and dried blood, and bone meal, aiming at producing sustainable and low-cost N-P-K SRFs. These were processed through mixing and granulation, both in the laboratory and on a semi-industrial scale. The formulations were evaluated through release tests in 2% citric acid solution simulating the acidic conditions of the rhizosphere, and in acetic acid to assess potential nutrient leaching under acid rain conditions. The results showed a progressive cumulative release of macronutrients (NPKs), ranging from approximately 8% at 24 h to 73% after 90 days for the most effective formulation (WBF6). Agronomic trials on lettuce confirmed the effectiveness of WBF6, resulting in significant biomass increases compared with both the untreated control and a conventional fertilizer. The use of livestock waste and minerals facilitated the development of a scalable product aligned with the principles of sustainable agriculture. The observed release behavior, combined with the simplicity of production, positions these formulations as a promising alternative to conventional slow-release fertilizers. Full article
(This article belongs to the Section Green Materials)
Show Figures

Graphical abstract

27 pages, 1706 KiB  
Review
Micro- and Nanoplastics as Emerging Threats to Both Terrestrial and Aquatic Animals: A Comprehensive Review
by Munwar Ali, Chang Xu and Kun Li
Vet. Sci. 2025, 12(8), 688; https://doi.org/10.3390/vetsci12080688 - 23 Jul 2025
Viewed by 525
Abstract
Micro- and Nanoplastic (MNP) pollution is an emerging challenge globally, posing a significant threat to both aquatic and terrestrial ecosystems worldwide. This review critically examines the sources, exposure routes, and impact of plastics, with particular focus on implications for the livestock sector. MNPs [...] Read more.
Micro- and Nanoplastic (MNP) pollution is an emerging challenge globally, posing a significant threat to both aquatic and terrestrial ecosystems worldwide. This review critically examines the sources, exposure routes, and impact of plastics, with particular focus on implications for the livestock sector. MNPs enter animals’ bodies primarily through ingestion of contaminated feed and water, inhalation, and dermal exposure, subsequently accumulating in various organs, disrupting physiological functions. Notably, MNPs facilitate the horizontal transfer of antimicrobial resistance genes (ARGs), exacerbating the global challenge of antimicrobial resistance (AMR). In agricultural environments, sources such as organic fertilizers, wastewater irrigation systems, surface runoff, and littering contribute to soil contamination, adversely affecting plant growth and soil health, which in turn compromises feed quality and ultimately animals’ productivity. This review synthesizes current evidence demonstrating how MNP exposure impairs animal production, reproduction, and survival, and highlights the interconnected risks to food safety and ecosystem health. The findings call for the urgent need for comprehensive research under controlled conditions to underscore the fine details regarding mechanisms of MNP toxicity and to inform effective mitigation strategies. Addressing MNP pollution is crucial for safeguarding animal health, ensuring sustainable livestock production, and promoting environmental sustainability and integrity. Full article
Show Figures

Graphical abstract

21 pages, 991 KiB  
Article
Strengthening Agricultural Drought Resilience of Commercial Livestock Farmers in South Africa: An Assessment of Factors Influencing Decisions
by Yonas T. Bahta, Frikkie Maré and Ezael Moshugi
Climate 2025, 13(8), 154; https://doi.org/10.3390/cli13080154 - 22 Jul 2025
Viewed by 323
Abstract
In order to fulfil SDG 13—taking urgent action to combat climate change and its impact—SDG 2—ending hunger and poverty—and the African Union CAADP Strategy and Action Plan: 2026–2035, which’s goal is ending hunger and intensifying sustainable food production, agro-industrialisation, and trade, the resilience [...] Read more.
In order to fulfil SDG 13—taking urgent action to combat climate change and its impact—SDG 2—ending hunger and poverty—and the African Union CAADP Strategy and Action Plan: 2026–2035, which’s goal is ending hunger and intensifying sustainable food production, agro-industrialisation, and trade, the resilience of commercial livestock farmers to agricultural droughts needs to be enhanced. Agricultural drought has affected the economies of many sub-Saharan African countries, including South Africa, and still poses a challenge to commercial livestock farming. This study identifies and determines the factors affecting commercial livestock farmers’ level of resilience to agricultural drought. Primary data from 123 commercial livestock farmers was used in a principal component analysis to estimate the agricultural drought resilience index as an outcome variable, and the probit model was used to determine the factors influencing the resilience of commercial livestock farmers in the Northern Cape Province of South Africa. This study provides a valuable contribution towards resilience-building strategies that are critical for sustaining commercial livestock farming in arid regions by developing a formula for calculating the Agricultural Drought Resilience Index for commercial livestock farmers, significantly contributing to the pool of knowledge. The results showed that 67% of commercial livestock farming households were not resilient to agricultural drought, while 33% were resilient. Reliance on sustainable natural water resources, participation in social networks, education, relative support, increasing livestock numbers, and income stability influence the resilience of commercial livestock farmers. It underscores the importance of multidimensional policy interventions to enhance farmer drought resilience through education and livelihood diversification. Full article
Show Figures

Figure 1

20 pages, 1463 KiB  
Article
Promoting the Sale of Locally Sourced Products: Km 0 as a Sustainable Model for Local Agriculture and CO2 Reduction
by Alejandro Martínez-Vérez and Cristina Lucini Baquero
Agriculture 2025, 15(15), 1568; https://doi.org/10.3390/agriculture15151568 - 22 Jul 2025
Viewed by 269
Abstract
The commercialization of Km 0 agricultural and livestock products represents a strategic opportunity to enhance rural economic resilience and reduce greenhouse gas emissions in the food sector. This paper presents an original, policy-oriented framework that connects Km 0 distribution models with measurable CO [...] Read more.
The commercialization of Km 0 agricultural and livestock products represents a strategic opportunity to enhance rural economic resilience and reduce greenhouse gas emissions in the food sector. This paper presents an original, policy-oriented framework that connects Km 0 distribution models with measurable CO2 reductions, proposing a structured system of economic incentives to support their adoption. Grounded in a mixed-methods approach, including normative analysis, empirical modeling, and a regional case study in Galicia, Spain, we demonstrate the alignment of Km 0 policies with the EU’s Common Agricultural Policy (CAP) 2023–2027 and the Sustainable Development Goals (SDGs). Findings reveal substantial potential for environmental mitigation, improved farm profitability, and revitalization of rural economies. This work provides a comprehensive roadmap for integrating Km 0 into national agricultural strategies, supported by data-driven justification and scalable implementation models. Full article
(This article belongs to the Special Issue Strategies for Resilient and Sustainable Agri-Food Systems)
Show Figures

Figure 1

19 pages, 1387 KiB  
Review
Enhancing Agricultural Sustainability by Improving the Efficiency of Lignocellulosic Biomass Utilization in the Ruminant Diet via Solid-State Fermentation with White-Rot Fungi: A Review
by Qi Yan, Osmond Datsomor, Wenhao Zhao, Wenjie Chen, Caixiang Wei, Deshuang Wei, Xin Gao, Chenghuan Qin, Qichao Gu, Caixia Zou and Bo Lin
Microorganisms 2025, 13(7), 1708; https://doi.org/10.3390/microorganisms13071708 - 21 Jul 2025
Viewed by 413
Abstract
Against the backdrop of the green circular economy, the exploration of reliable and sustainable applications of lignocellulosic biomass (LCBM) has emerged as a critical research frontier. The utilization of LCBM as a ruminant roughage source offers a promising strategy to address two pressing [...] Read more.
Against the backdrop of the green circular economy, the exploration of reliable and sustainable applications of lignocellulosic biomass (LCBM) has emerged as a critical research frontier. The utilization of LCBM as a ruminant roughage source offers a promising strategy to address two pressing issues: the “human-animal competition for food” dilemma and the environmental degradation resulting from improper LCBM disposal. However, the high degree of lignification in LCBM significantly restricts its utilization efficiency in ruminant diets. In recent years, microbial pretreatment has gained considerable attention as a viable approach to reduce lignification prior to LCBM application as ruminant feed. White-rot fungi (WRF) have emerged as particularly noteworthy among various microbial agents due to their environmentally benign characteristics and unique lignin degradation selectivity. WRF demonstrates remarkable efficacy in enzymatically breaking down the rigid lignocellulosic matrix (comprising lignin, cellulose, and hemicellulose) within LCBM cell walls, thereby reducing lignin content—a largely indigestible component for ruminants—while simultaneously enhancing the nutritional profile through increased protein availability and improved digestibility. Solid-state fermentation mediated by WRF enhances LCBM utilization rates and optimizes its nutritional value for ruminant consumption, thereby contributing to the advancement of sustainable livestock production, agroforestry systems, and global environmental conservation efforts. This review systematically examines recent technological advancements in WRF-mediated solid-state fermentation of LCBM, evaluates its outcomes of nutritional enhancement and animal utilization efficiency, and critically assesses current limitations and future prospects of this innovative approach within the framework of circular bioeconomy principles. Full article
Show Figures

Figure 1

20 pages, 7197 KiB  
Article
Simulation of Water–Energy–Food–Carbon Nexus in the Agricultural Production Process in Liaocheng Based on the System Dynamics (SD)
by Wenshuang Yuan, Hao Wang, Yuyu Liu, Song Han, Xin Cong and Zhenghe Xu
Sustainability 2025, 17(14), 6607; https://doi.org/10.3390/su17146607 - 19 Jul 2025
Viewed by 384
Abstract
To achieve regional sustainable development, the low-carbon transformation of agriculture is essential, as it serves both as a significant carbon source and as a potential carbon sink. This study calculated the agricultural carbon emissions in Liaocheng from 2010 to 2022 by analyzing processes [...] Read more.
To achieve regional sustainable development, the low-carbon transformation of agriculture is essential, as it serves both as a significant carbon source and as a potential carbon sink. This study calculated the agricultural carbon emissions in Liaocheng from 2010 to 2022 by analyzing processes including crop cultivation, animal husbandry, and agricultural input. Additionally, a simulation model of the water–energy–food–carbon nexus (WEFC-Nexus) for Liaocheng’s agricultural production process was developed. Using Vensim PLE 10.0.0 software, this study constructed a WEFC-Nexus model encompassing four major subsystems: economic development, agricultural production, agricultural inputs, and water use. The model explored four policy scenarios: business-as-usual scenario (S1), ideal agricultural development (S2), strengthening agricultural investment (S3), and reducing agricultural input costs (S4). It also forecast the trends in carbon emissions and primary sector GDP under these different scenarios from 2023 to 2030. The conclusions were as follows: (1) Total agricultural carbon emissions exhibited a three-phase trajectory, namely, “rapid growth (2010–2014)–sharp decline (2015–2020)–gradual rebound (2021–2022)”, with sectoral contributions ranked as livestock farming (50%) > agricultural inputs (27%) > crop cultivation (23%). (2) The carbon emissions per unit of primary sector GDP (CEAG) for S2, S3, and S4 decreased by 8.86%, 5.79%, and 7.72%, respectively, compared to S1. The relationship between the carbon emissions under the four scenarios is S3 > S1 > S2 > S4. The relationship between the four scenarios in the primary sector GDP is S3 > S2 > S4 > S1. S2 can both control carbon emissions and achieve growth in primary industry output. Policy recommendations emphasize reducing chemical fertilizer use, optimizing livestock management, enhancing agricultural technology efficiency, and adjusting agricultural structures to balance economic development with environmental sustainability. Full article
Show Figures

Figure 1

19 pages, 1066 KiB  
Article
Toward a Sustainable Livestock Sector in China: Evolution Characteristics and Driving Factors of Carbon Emissions from a Life Cycle Perspective
by Xiao Wang, Xuezhen Xiong and Xiangfei Xin
Sustainability 2025, 17(14), 6537; https://doi.org/10.3390/su17146537 - 17 Jul 2025
Viewed by 309
Abstract
Addressing the sustainability challenges posed by the expanding livestock sector is crucial for China’s green transition. With the transformation of national dietary structure and increasing demand for livestock products, the associated resource consumption and environmental impacts, particularly carbon emissions have intensified. Reducing carbon [...] Read more.
Addressing the sustainability challenges posed by the expanding livestock sector is crucial for China’s green transition. With the transformation of national dietary structure and increasing demand for livestock products, the associated resource consumption and environmental impacts, particularly carbon emissions have intensified. Reducing carbon emissions from livestock is vital for mitigating global warming, enhancing resource utilization efficiency, improving ecosystems and biodiversity, and ultimately achieving sustainable development of the livestock industry. Against this backdrop, this study measures the carbon emissions from livestock sector employing the Life Cycle Assessment (LCA) method, and applies the Generalized Divisia Index Method (GDIM) to analyze the factors affecting the changes in carbon emissions, aiming to quantify and analyze the carbon footprint of China’s livestock sector to inform sustainable practices. The findings reveal that China’s total carbon emissions from the livestock sector fluctuated between 645.15 million tons and 812.99 million tons from 2000 to 2023. Since 2020, emissions have entered a new phase of continuous growth, with a 5.40% increase in 2023 compared to 2020. Significantly, a positive trend toward sustainability is observed in the substantial decline of carbon emission intensity over the study period, with notable reductions in emission intensity across provinces and a gradual convergence in inter-provincial disparities. Understanding the drivers is key for effective mitigation. The output level and total mechanical power consumption level emerged as primary positive drivers of carbon emissions, while output carbon intensity and mechanical power consumption carbon intensity served as major negative drivers. Moving forward, to foster a sustainable and low-carbon livestock sector, China’s livestock sector development should prioritize coordinated carbon reduction across the entire industrial chain, adjust the industrial structure, and enhance the utilization efficiency of advanced low-carbon agricultural machinery while introducing such equipment. Full article
Show Figures

Figure 1

15 pages, 3249 KiB  
Article
Optimizing Anaerobic Acidogenesis: Synergistic Effects of Thermal Pretreatment of Composting, Oxygen Regulation, and Additive Supplementation
by Dongmei Jiang, Yalin Wang, Zhenzhen Guo, Xiaoxia Hao, Hanyu Yu and Lin Bai
Sustainability 2025, 17(14), 6494; https://doi.org/10.3390/su17146494 - 16 Jul 2025
Viewed by 278
Abstract
Anaerobic acidogenic fermentation presents a promising approach for sustainable carbon emission mitigation in livestock waste management, addressing critical environmental challenges in agriculture. This study systematically investigated the synergistic effects of composting-assisted pretreatment coupled with micro-aeration and methanogenesis suppression to enhance volatile fatty acid [...] Read more.
Anaerobic acidogenic fermentation presents a promising approach for sustainable carbon emission mitigation in livestock waste management, addressing critical environmental challenges in agriculture. This study systematically investigated the synergistic effects of composting-assisted pretreatment coupled with micro-aeration and methanogenesis suppression to enhance volatile fatty acid (VFA) production from swine manure supplemented with wheat straw, valorizing agricultural waste while reducing greenhouse gas emissions. The experimental protocol involved sequential optimization of pretreatment conditions (12 h composting followed by 10 min thermal pretreatment at 85 °C), operational parameters (300 mL micro-aeration and 30 mmol/L 2-bromoethanesulfonate (BES) supplementation), and their synergistic integration. The combined strategy achieved peak VFA production (5895.92 mg/L, p < 0.05), with butyric acid constituting the dominant fraction (2004.42 mg/L, p < 0.05). Enzymatic analysis demonstrated significantly higher activities of key hydrolytic enzymes (protease, α-glucosidase) and acidogenic enzymes (butyrate kinase, acetate kinase) in the synergistic treatment group compared to individual BES-supplemented or micro-aeration-only groups (p < 0.05). This integrated approach provides a technically feasible and environmentally sustainable pathway for circular resource recovery, contributing to low-carbon agriculture and waste-to-value conversion. Full article
Show Figures

Figure 1

13 pages, 1249 KiB  
Article
Pinelands: Impacts of Different Long-Term Land Uses on Soil Physical Properties in Red Ferrosols
by Ana Carolina de Mattos e Avila, Jackson Adriano Albuquerque and Gunnar Kirchhof
Land 2025, 14(7), 1471; https://doi.org/10.3390/land14071471 - 15 Jul 2025
Viewed by 322
Abstract
Century-long land-use practices have a profound impact on soil physical and chemical properties, with direct implications for soil health and agricultural sustainability. This study aimed to assess the effects of four contrasting land uses—remnant vegetation, pasture, cultivated areas, and loafing areas—on the physical [...] Read more.
Century-long land-use practices have a profound impact on soil physical and chemical properties, with direct implications for soil health and agricultural sustainability. This study aimed to assess the effects of four contrasting land uses—remnant vegetation, pasture, cultivated areas, and loafing areas—on the physical and chemical properties of Red Ferrosols in the Toowoomba region, Queensland, Australia. Soil samples were collected from upper and lower slope positions for each land use. Physical properties, including bulk density, porosity, water retention, and permeability, as well as chemical properties such as organic carbon, nitrogen, phosphorus, and potassium, were analysed. The results showed that remnant vegetation preserved the most favourable soil conditions, with lower bulk density, higher porosity, and greater water retention. Cultivated areas exhibited significant soil degradation, marked by compaction, reduced infiltration, and depleted organic matter. Loafing areas displayed localised nutrient enrichment but higher compaction due to livestock trampling. Pastures maintained intermediate conditions, retaining some beneficial soil characteristics. These findings emphasise the critical need for sustainable land management strategies to protect soil structure and function, supporting the long-term productivity and resilience of Red Ferrosols. Full article
(This article belongs to the Special Issue Feature Papers for "Land, Soil and Water" Section)
Show Figures

Figure 1

Back to TopTop