Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = aged ferret

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4629 KB  
Article
Fecal Glucocorticoid Metabolite Responses of Brown Kiwi (Apteryx mantelli) to Ambassador Program Participation and Translocation: Implications for Captive Management and Welfare
by Kathleen Brader, Natalia A. Prado, Janine L. Brown, Mary Kearney, Nicole Boisseau, Lisa Ware, Kristina M. Delaski and Wesley Bailey
Animals 2025, 15(8), 1156; https://doi.org/10.3390/ani15081156 - 17 Apr 2025
Viewed by 1179
Abstract
The brown kiwi (Apteryx mantelli) is a flightless, nocturnal bird native to New Zealand and is classified as “At Risk” due to predation from domestic dogs and ferrets. In the U.S., brown kiwi have been managed under the AZA Animal Population [...] Read more.
The brown kiwi (Apteryx mantelli) is a flightless, nocturnal bird native to New Zealand and is classified as “At Risk” due to predation from domestic dogs and ferrets. In the U.S., brown kiwi have been managed under the AZA Animal Population Management and Studbook Program since 2006, with the Smithsonian National Zoological Park (NZP) and Conservation Biology Institute (SCBI) maintaining the species since 1968. However, because they are nocturnal, kiwi are not good exhibit animals and often are difficult for zoo visitors to observe during the day. To address this, the NZP launched a “Meet-A-Kiwi” ambassador program in 1989 to engage the public and raise awareness. The program ran successfully for 28 years until 2017, when renovations closed the Bird House at the zoo in Washington, DC, and the birds were moved to the Front Royal, VA campus. Over time, concerns about the suitability of kiwi as ambassador birds arose as they are nocturnal and do not imprint on people. This study assessed the effects of outreach events, housing, and relocation on adrenal activity in five kiwi (four males, one female) by measuring fecal glucocorticoid metabolite (fGCM) concentrations, a physiological stress indicator, from March to October 2016. Two males participated in outreach (ambassadors), while two males and one female did not (controls). The results showed no significant differences in fGCM concentrations between ambassador and control birds, suggesting that outreach did not cause undue stress. However, individual factors (age, sex, hatching type, and display status) were associated with differences in fGCM concentrations, highlighting the need for personalized management. Further longitudinal studies are needed to explore the physiological responses of kiwi to captive conditions. Full article
(This article belongs to the Section Zoo Animals)
Show Figures

Figure 1

19 pages, 10056 KB  
Article
Urine Metabolome Dynamics Discriminate Influenza Vaccination Response
by Tori C. Rodrick, Yik Siu, Michael A. Carlock, Ted M. Ross and Drew R. Jones
Viruses 2023, 15(1), 242; https://doi.org/10.3390/v15010242 - 14 Jan 2023
Cited by 5 | Viewed by 4181
Abstract
Influenza represents a major and ongoing public health hazard. Current collaborative efforts are aimed toward creating a universal flu vaccine with the goals of both improving responses to vaccination and increasing the breadth of protection against multiple strains and clades from a single [...] Read more.
Influenza represents a major and ongoing public health hazard. Current collaborative efforts are aimed toward creating a universal flu vaccine with the goals of both improving responses to vaccination and increasing the breadth of protection against multiple strains and clades from a single vaccine. As an intermediate step toward these goals, the current work is focused on evaluating the systemic host response to vaccination in both normal and high-risk populations, such as the obese and geriatric populations, which have been linked to poor responses to vaccination. We therefore employed a metabolomics approach using a time-course (n = 5 time points) of the response to human vaccination against influenza from the time before vaccination (pre) to 90 days following vaccination. We analyzed the urinary profiles of a cohort of subjects (n = 179) designed to evenly sample across age, sex, BMI, and other demographic factors, stratifying their responses to vaccination as “High”, “Low”, or “None” based on the seroconversion measured by hemagglutination inhibition assay (HAI) from plasma samples at day 28 post-vaccination. Overall, we putatively identified 15,903 distinct, named, small-molecule structures (4473 at 10% FDR) among the 895 samples analyzed, with the aim of identifying metabolite correlates of the vaccine response, as well as prognostic and diagnostic markers from the periods before and after vaccination, respectively. Notably, we found that the metabolic profiles could unbiasedly separate the high-risk High-responders from the high-risk None-responders (obese/geriatric) within 3 days post-vaccination. The purine metabolites Guanine and Hypoxanthine were negatively associated with high seroconversion (p = 0.0032, p < 0.0001, respectively), while Acetyl-Leucine and 5-Aminovaleric acid were positively associated. Further changes in Cystine, Glutamic acid, Kynurenine and other metabolites implicated early oxidative stress (3 days) after vaccination as a hallmark of the High-responders. Ongoing efforts are aimed toward validating these putative markers using a ferret model of influenza infection, as well as an independent cohort of human seasonal vaccination and human challenge studies with live virus. Full article
(This article belongs to the Special Issue Advances in Universal Influenza Vaccines and Therapies)
Show Figures

Figure 1

7 pages, 259 KB  
Brief Report
Does Aleutian Disease Occur among Domestic Ferrets in Poland? Results of Preliminary Studies Conducted in Two Regions of Poland
by Alicja Blank, Paweł Foksiński, Joanna Małaczewska, Mirosława Blank, Anna Rzepka, Andrzej Krzysztof Siwicki, Roman Wójcik and Edyta Kaczorek-Łukowska
Animals 2022, 12(19), 2673; https://doi.org/10.3390/ani12192673 - 5 Oct 2022
Cited by 4 | Viewed by 2570
Abstract
Although ferrets are becoming increasingly popular as companion animals, their population in households is still far lower compared to cats or dogs. This results in a much smaller number of ferret specialists, and thus poorer diagnosis of various diseases, including the Aleutian disease. [...] Read more.
Although ferrets are becoming increasingly popular as companion animals, their population in households is still far lower compared to cats or dogs. This results in a much smaller number of ferret specialists, and thus poorer diagnosis of various diseases, including the Aleutian disease. Aleutian disease is a slowly progressing viral disease which can cause different symptoms in these animals. The virus can also cause symptoms in different species of animals, but in the case of ferrets, there is relatively less information on about both the prevalence and symptoms of this disease. Therefore, the aim of this study was to determine the presence of antibodies and the virus itself in ferrets from two regions of Poland. Blood samples and rectal swabs were obtained from 61 domestic ferrets from Mazowieckie and Dolnośląskie voivodships. The presence of antibodies was determined using serological methods and real-time PCR analysis was performed to determine presence of viral DNA. Serological analyses demonstrated that 49% (n = 30) of the ferrets had antibodies against Aleutian disease virus (ADV). No relationship was observed between the prevalence of antibodies and age, sex, habitual residence or origin of ferrets. The real-time PCR did not confirm DNA of the ADV in any of the blood and rectal swab samples. Obtained results suggest that ADV circulates in the analyzed population of ferrets, therefore further studies in this direction should be carried out. Full article
(This article belongs to the Section Mammals)
10 pages, 1665 KB  
Article
Infection Route Impacts the Pathogenesis of Severe Fever with Thrombocytopenia Syndrome Virus in Ferrets
by Su-Jin Park, Young-Il Kim, Mark Anthony Casel, Eun-Ha Kim, Se-Mi Kim, Kwang-Min Yu, Rare Rollon, Seung-Gyu Jang, Hye Won Jeong and Young Ki Choi
Viruses 2022, 14(6), 1184; https://doi.org/10.3390/v14061184 - 29 May 2022
Cited by 4 | Viewed by 3216
Abstract
The threat of severe fever with thrombocytopenia syndrome (SFTS) to public health has been increasing due to the rapid spread of the ticks that carry the causative viral agent. The SFTS virus (SFTSV) was first identified in China and subsequently detected in neighboring [...] Read more.
The threat of severe fever with thrombocytopenia syndrome (SFTS) to public health has been increasing due to the rapid spread of the ticks that carry the causative viral agent. The SFTS virus (SFTSV) was first identified in China and subsequently detected in neighboring countries, including South Korea, Japan, and Vietnam. In addition to the tick-mediated infection, human-to-human transmission has been recently reported with a high mortality rate; however, differential study of the pathogen has been limited by the route of infection. In this study, we investigated the pathogenic potential of SFTSV based on the infection route in aged ferrets, which show clinical signs similar to that of human infections. Ferrets inoculated with SFTSV via the intramuscular and subcutaneous routes show clinical signs comparable to those of severe human infections, with a mortality rate of 100%. Contrastingly, intravascularly infected ferrets exhibit a comparatively lower mortality rate of 25%, although their early clinical signs are similar to those observed following infection via the other routes. These results indicate that the infection route could influence the onset of SFTS symptoms and the pathogenicity of SFTSV. Thus, infection route should be considered in future studies on the pathogenesis of SFTSV infection. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

17 pages, 7921 KB  
Article
Cryptosporidium sciurinum n. sp. (Apicomplexa: Cryptosporidiidae) in Eurasian Red Squirrels (Sciurus vulgaris)
by Jitka Prediger, Jana Ježková, Nikola Holubová, Bohumil Sak, Roman Konečný, Michael Rost, John McEvoy, Dušan Rajský and Martin Kváč
Microorganisms 2021, 9(10), 2050; https://doi.org/10.3390/microorganisms9102050 - 28 Sep 2021
Cited by 29 | Viewed by 3506
Abstract
Cryptosporidium spp. are common protozoan pathogens in mammals. The diversity and biology of Cryptosporidium in tree squirrels are not well studied. A total of 258 Eurasian red squirrels (Sciurus vulgaris) from 25 and 15 locations in the Czech Republic and Slovakia, [...] Read more.
Cryptosporidium spp. are common protozoan pathogens in mammals. The diversity and biology of Cryptosporidium in tree squirrels are not well studied. A total of 258 Eurasian red squirrels (Sciurus vulgaris) from 25 and 15 locations in the Czech Republic and Slovakia, respectively, were examined for Cryptosporidium spp. oocysts and specific DNA at the SSU, actin, HSP70, TRAP-C1, COWP, and gp60 loci. Out of 26 positive animals, only juveniles (9/12) were microscopically positive (18,000 to 72,000 OPG), and molecular analyses revealed the presence of Cryptosporidium sp. ferret genotype in all specimens. Oocysts obtained from naturally-infected squirrels measured 5.54–5.22 μm and were not infectious for laboratory mice (BALB/c and SCID), Mongolian gerbils, Guinea pigs, Southern multimammate mice, chickens, or budgerigars. None of naturally infected squirrels showed clinical signs of disease. The frequency of occurrence of the ferret genotype in squirrels did not vary statistically based on host age, gender or country of capture. Phylogenetic analysis of sequences from six loci revealed that Cryptosporidium sp. ferret genotype is genetically distinct from the currently accepted Cryptosporidium species. Morphological and biological data from this and previous studies support the establishment of Cryptosporidium sp. ferret genotype as a new species, Cryptosporidium sciurinum n. sp. Full article
(This article belongs to the Topic Veterinary Infectious Diseases)
Show Figures

Figure 1

13 pages, 653 KB  
Article
Identifying Behavioural Traits and Underlying Personality Dimensions in Domestic Ferrets (Mustela putorius furo)
by Sarah Talbot, Rafael Freire and Skye Wassens
Animals 2021, 11(8), 2173; https://doi.org/10.3390/ani11082173 - 22 Jul 2021
Cited by 4 | Viewed by 5183
Abstract
The aim of this study was to examine the personality structure of domestic ferrets (Mustela putorius furo) by using owner-based reporting of personality traits. A total of 743 ferret owners participated in an online questionnaire, with a total of 1029 ferrets [...] Read more.
The aim of this study was to examine the personality structure of domestic ferrets (Mustela putorius furo) by using owner-based reporting of personality traits. A total of 743 ferret owners participated in an online questionnaire, with a total of 1029 ferrets being assessed. Respondents rated 67 adjectives based on their ferret(s) behavioural traits and personality. Principal component analysis (PCA) of these trait ratings identified four underlying personality dimensions, which accounted for 47.1% of the total variance. These were labelled according to the traits that they encompass: Extraversion, Sociability, Attentiveness, and Neuroticism. Details about ferret sex, de-sexing status, age, and coat colour were also sought, and General Linear Mixed Models were used to test the main effects of these characteristics on the personality dimensions. It was found that sex (p < 0.01) and age (p < 0.001) significantly influenced certain personality components, whereas de-sexing did not. Sociability, Attentiveness, and Neuroticism were found to differ based on sex, whereby males were rated as more sociable than females, but females were rated higher on the Attentiveness and Neuroticism subscales. Finally, Extraversion was found to generally decrease with age. We can use the findings of this study to make cross-species comparisons and further inform the discussion regarding the adaptive relevance of animal personality. Identifying differences in personality types can improve welfare by using this information to satisfy the different needs of individuals. Full article
(This article belongs to the Section Animal Welfare)
Show Figures

Figure 1

24 pages, 959 KB  
Review
The Intersection of Age and Influenza Severity: Utility of Ferrets for Dissecting the Age-Dependent Immune Responses and Relevance to Age-Specific Vaccine Development
by Melissa Rioux, Magen E. Francis, Cynthia L. Swan, Anni Ge, Andrea Kroeker and Alyson A. Kelvin
Viruses 2021, 13(4), 678; https://doi.org/10.3390/v13040678 - 15 Apr 2021
Cited by 12 | Viewed by 5127
Abstract
Many factors impact the host response to influenza virus infection and vaccination. Ferrets have been an indispensable reagent for influenza virus research for almost one hundred years. One of the most significant and well-known factors affecting human disease after infection is host age. [...] Read more.
Many factors impact the host response to influenza virus infection and vaccination. Ferrets have been an indispensable reagent for influenza virus research for almost one hundred years. One of the most significant and well-known factors affecting human disease after infection is host age. Another significant factor is the virus, as strain-specific disease severity is well known. Studying age-related impacts on viral infection and vaccination outcomes requires an animal model that reflects both the physiological and immunological changes that occur with human aging, and sensitivity to differentially virulent influenza viruses. The ferret is uniquely susceptible to a plethora of influenza viruses impacting humans and has proven extremely useful in studying the clinical and immunological pictures of influenza virus infection. Moreover, ferrets developmentally have several of the age-related physiological changes that occur in humans throughout infancy, adulthood, old age, and pregnancy. In this review, we discuss ferret susceptibility to influenza viruses, summarize previous influenza studies using ferrets as models of age, and finally, highlight the application of ferret age models in the pursuit of prophylactic and therapeutic agents to address age-related influenza disease severity. Full article
(This article belongs to the Special Issue Animal Models for Influenza Virus Research)
Show Figures

Figure 1

21 pages, 1343 KB  
Review
The Power of First Impressions: Can Influenza Imprinting during Infancy Inform Vaccine Design?
by Melissa Rioux, Mara McNeil, Magen E. Francis, Nicholas Dawe, Mary Foley, Joanne M. Langley and Alyson A. Kelvin
Vaccines 2020, 8(3), 546; https://doi.org/10.3390/vaccines8030546 - 19 Sep 2020
Cited by 11 | Viewed by 9626
Abstract
Influenza virus infection causes severe respiratory illness in people worldwide, disproportionately affecting infants. The immature respiratory tract coupled with the developing immune system, and lack of previous exposure to the virus is thought to synergistically play a role in the increased disease severity [...] Read more.
Influenza virus infection causes severe respiratory illness in people worldwide, disproportionately affecting infants. The immature respiratory tract coupled with the developing immune system, and lack of previous exposure to the virus is thought to synergistically play a role in the increased disease severity in younger age groups. No influenza vaccines are available for those under six months, although maternal influenza immunization is recommended. In children aged six months to two years, vaccine immunogenicity is dampened compared to older children and adults. Unlike older children and adults, the infant immune system has fewer antigen-presenting cells and soluble immune factors. Paradoxically, we know that a person’s first infection with the influenza virus during infancy or childhood leads to the establishment of life-long immunity toward that particular virus strain. This is called influenza imprinting. We contend that by understanding the influenza imprinting event in the context of the infant immune system, we will be able to design more effective influenza vaccines for both infants and adults. Working through the lens of imprinting, using infant influenza animal models such as mice and ferrets which have proven useful for infant immunity studies, we will gain a better understanding of imprinting and its implications regarding vaccine design. This review examines literature regarding infant immune and respiratory development, current vaccine strategies, and highlights the importance of research into the imprinting event in infant animal models to develop more effective and protective vaccines for all including young children. Full article
(This article belongs to the Special Issue Vaccinology of Influenza Infection)
Show Figures

Figure 1

10 pages, 895 KB  
Article
Antigenic Change in Human Influenza A(H2N2) Viruses Detected by Using Human Plasma from Aged and Younger Adult Individuals
by Yukimasa Matsuzawa, Kiyoko Iwatsuki-Horimoto, Yoshinori Nishimoto, Yukiko Abe, Satoshi Fukuyama, Taiki Hamabata, Moe Okuda, Yui Go, Tokiko Watanabe, Masaki Imai, Yasumichi Arai, Ron A.M. Fouchier, Seiya Yamayoshi and Yoshihiro Kawaoka
Viruses 2019, 11(11), 978; https://doi.org/10.3390/v11110978 - 23 Oct 2019
Cited by 4 | Viewed by 4657
Abstract
Human influenza A(H2N2) viruses emerged in 1957 and were replaced by A(H3N2) viruses in 1968. The antigenicity of human H2N2 viruses has been tested by using ferret antisera or mouse and human monoclonal antibodies. Here, we examined the antigenicity of human H2N2 viruses [...] Read more.
Human influenza A(H2N2) viruses emerged in 1957 and were replaced by A(H3N2) viruses in 1968. The antigenicity of human H2N2 viruses has been tested by using ferret antisera or mouse and human monoclonal antibodies. Here, we examined the antigenicity of human H2N2 viruses by using human plasma samples obtained from 50 aged individuals who were born between 1928 and 1933 and from 33 younger adult individuals who were born after 1962. The aged individuals possessed higher neutralization titers against H2N2 viruses isolated in 1957 and 1963 than those against H2N2 viruses isolated in 1968, whereas the younger adults who were born between 1962 and 1968 possessed higher neutralization titers against H2N2 viruses isolated in 1963 than those against other H2N2 viruses. Antigenic cartography revealed the antigenic changes that occurred in human H2N2 viruses during circulation in humans for 11 years, as detected by ferret antisera. These results show that even though aged individuals were likely exposed to more recent H2N2 viruses that are antigenically distinct from the earlier H2N2 viruses, they did not possess high neutralizing antibody titers to the more recent viruses, suggesting immunological imprinting of these individuals with the first H2N2 viruses they encountered and that this immunological imprinting lasts for over 50 years. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

12 pages, 2847 KB  
Article
Inhibition of Influenza A Virus by Human Infant Saliva
by Brad Gilbertson, Kathryn Edenborough, Jodie McVernon and Lorena E. Brown
Viruses 2019, 11(8), 766; https://doi.org/10.3390/v11080766 - 20 Aug 2019
Cited by 6 | Viewed by 4992
Abstract
Innate antiviral factors in saliva play a role in protection against respiratory infections. We tested the anti-influenza virus activities of saliva samples taken from human infants, 1–12 months old, with no history of prior exposure to influenza. In contrast to the inhibitory activity [...] Read more.
Innate antiviral factors in saliva play a role in protection against respiratory infections. We tested the anti-influenza virus activities of saliva samples taken from human infants, 1–12 months old, with no history of prior exposure to influenza. In contrast to the inhibitory activity we observed in mouse and ferret saliva, the activity of human infant saliva was complex, with both sialic acid-dependent and independent components, the proportion of which differed between individuals. Taken as a whole, we showed that the major anti-influenza activity of infant saliva is acquired over the first year of life and is associated with sialic acid-containing molecules. The activity of sialic acid-independent inhibitors was lower overall, more variable between individuals, and less dependent on age. The results show that the saliva of very young infants can provide a degree of protection against influenza, which may be critical in the absence of adaptive immunity. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

11 pages, 2014 KB  
Article
Transmission of Human Respiratory Syncytial Virus in the Immunocompromised Ferret Model
by Leon De Waal, Saskia L. Smits, Edwin J. B. Veldhuis Kroeze, Geert Van Amerongen, Marie O. Pohl, Albert D. M. E. Osterhaus and Koert J. Stittelaar
Viruses 2018, 10(1), 18; https://doi.org/10.3390/v10010018 - 2 Jan 2018
Cited by 11 | Viewed by 6216
Abstract
Human respiratory syncytial virus (HRSV) causes substantial morbidity and mortality in vulnerable patients, such as the very young, the elderly, and immunocompromised individuals of any age. Nosocomial transmission of HRSV remains a serious challenge in hospital settings, with intervention strategies largely limited to [...] Read more.
Human respiratory syncytial virus (HRSV) causes substantial morbidity and mortality in vulnerable patients, such as the very young, the elderly, and immunocompromised individuals of any age. Nosocomial transmission of HRSV remains a serious challenge in hospital settings, with intervention strategies largely limited to infection control measures, including isolation of cases, high standards of hand hygiene, cohort nursing, and use of personal protective equipment. No vaccines against HRSV are currently available, and treatment options are largely supportive care and expensive monoclonal antibody or antiviral therapy. The limitations of current animal models for HRSV infection impede the development of new preventive and therapeutic agents, and the assessment of their potential for limiting HRSV transmission, in particular in nosocomial settings. Here, we demonstrate the efficient transmission of HRSV from immunocompromised ferrets to both immunocompromised and immunocompetent contact ferrets, with pathological findings reproducing HRSV pathology in humans. The immunocompromised ferret-HRSV model represents a novel tool for the evaluation of intervention strategies against nosocomial transmission of HRSV. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

11 pages, 2839 KB  
Article
Age-Dependent Sexually-Dimorphic Asymmetric Development of the Ferret Cerebellar Cortex
by Kazuhiko Sawada and Ichio Aoki
Symmetry 2017, 9(3), 40; https://doi.org/10.3390/sym9030040 - 14 Mar 2017
Cited by 6 | Viewed by 5186
Abstract
A three-dimensional (3D) T1-weighted Magnetic Resonance Imaging (MRI) at 7-Tesla system was acquired with a high spatial resolution from fixed brains of male and female ferrets at postnatal days (PDs) 4 to 90, and their age-related sexual difference and laterality were [...] Read more.
A three-dimensional (3D) T1-weighted Magnetic Resonance Imaging (MRI) at 7-Tesla system was acquired with a high spatial resolution from fixed brains of male and female ferrets at postnatal days (PDs) 4 to 90, and their age-related sexual difference and laterality were evaluated by MRI-based ex vivo volumetry. The volume of both left and right sides of cerebellar cortex was larger in males than in females on PD 10 and thereafter. When the cerebellar cortex was divided into four transverse domains, i.e., anterior zone (AZ; lobules I–V), central zone (CZ; lobules VI and VII), posterior zone (PZ; lobules VIII–IXa), and nodular zone (NZ; lobules IXb and X), an age-related significantly greater volume in males than in females was detected on either side of all four domains on PD 42 and of the AZ on PD 90, but only on the left side of the PZ on PD 90. Regarding the volume laterality, significant leftward asymmetry was obtained in the CZ and PZ volumes in males, but not in females on PD 90. From asymmetry quotient (AQ) analysis, AQ scores were rightward in the AZ in both sexes already on PD 21, but gradually left-lateralized only in males in the CZ, PZ, and NZ during PDs 42 to 90. The present study suggests that a characteristic counterclockwise torque asymmetry (rostrally right-biased, and caudally left-biased or symmetrical) is acquired in both sexes of ferrets during PDs 42 to 90, although the leftward laterality of the posterior half of the cerebellum was more enhanced in males. Full article
(This article belongs to the Special Issue Symmetry in Human Evolutionary Biology)
Show Figures

Figure 1

34 pages, 261 KB  
Review
Animal Models for Influenza Virus Pathogenesis and Transmission
by Nicole M. Bouvier and Anice C. Lowen
Viruses 2010, 2(8), 1530-1563; https://doi.org/10.3390/v20801530 - 27 Jul 2010
Cited by 313 | Viewed by 22569
Abstract
Influenza virus infection of humans results in a respiratory disease that ranges in severity from sub-clinical infection to primary viral pneumonia that can result in death. The clinical effects of infection vary with the exposure history, age and immune status of the host, [...] Read more.
Influenza virus infection of humans results in a respiratory disease that ranges in severity from sub-clinical infection to primary viral pneumonia that can result in death. The clinical effects of infection vary with the exposure history, age and immune status of the host, and also the virulence of the influenza strain. In humans, the virus is transmitted through either aerosol or contact-based transfer of infectious respiratory secretions. As is evidenced by most zoonotic influenza virus infections, not all strains that can infect humans are able to transmit from person-to-person. Animal models of influenza are essential to research efforts aimed at understanding the viral and host factors that contribute to the disease and transmission outcomes of influenza virus infection in humans. These models furthermore allow the pre-clinical testing of antiviral drugs and vaccines aimed at reducing morbidity and mortality in the population through amelioration of the virulence or transmissibility of influenza viruses. Mice, ferrets, guinea pigs, cotton rats, hamsters and macaques have all been used to study influenza viruses and therapeutics targeting them. Each model presents unique advantages and disadvantages, which will be discussed herein. Full article
(This article belongs to the Special Issue Antivirals Against Influenza)
Back to TopTop