Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (145)

Search Parameters:
Keywords = afterglow

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7485 KiB  
Review
Organic Afterglow Materials for Tumor Diagnosis and Therapy
by Xiayi Chen, Bin Li, Baoli Yin, Dong Xu and Youjuan Wang
Biosensors 2025, 15(8), 484; https://doi.org/10.3390/bios15080484 - 25 Jul 2025
Viewed by 360
Abstract
Organic afterglow nanoparticles (OANs) represent a unique class of optical materials capable of sustaining luminescence after excitation cessation. Owing to their exceptional design flexibility, tunable optical properties, and favorable biosafety profiles, OAN-based afterglow imaging has emerged as an advanced modality in tumor diagnosis [...] Read more.
Organic afterglow nanoparticles (OANs) represent a unique class of optical materials capable of sustaining luminescence after excitation cessation. Owing to their exceptional design flexibility, tunable optical properties, and favorable biosafety profiles, OAN-based afterglow imaging has emerged as an advanced modality in tumor diagnosis and therapy. These nanostructures demonstrate significant potential in guiding precision surgical interventions and real-time monitoring of tumor treatment, including photodynamic therapy, photothermal therapy, and immunotherapy. This review systematically analyzes and discusses the luminescence mechanisms of OANs under various excitation sources, with particular emphasis on recent developments in tumor detection and treatment. Additionally, we also discuss the current challenges and future perspectives of using these nanoparticles in this field. Full article
(This article belongs to the Special Issue Single-Molecule Biosensing: Recent Advances and Future Challenges)
Show Figures

Figure 1

11 pages, 2045 KiB  
Article
Modulating the Afterglow Time of Mn2+ Doped Metal Halides and Applications in Advanced Optical Information Encryption
by Yu-Lin Hu, Yi-Lin Zhu, Shi-Ying Gu, Jia-Qing Xu, Zhi-Xing Gan and Chuan-Guo Shi
Nanomaterials 2025, 15(13), 1002; https://doi.org/10.3390/nano15131002 - 28 Jun 2025
Viewed by 305
Abstract
Mn2+ doped metal halide that can be grown by a facile solution reaction is a promising low-cost afterglow material. However, the afterglow mechanism is still elusive. Using a facile method to modulate afterglow time is still to be explored. In this work, [...] Read more.
Mn2+ doped metal halide that can be grown by a facile solution reaction is a promising low-cost afterglow material. However, the afterglow mechanism is still elusive. Using a facile method to modulate afterglow time is still to be explored. In this work, we reveal that the afterglow of Cs2Na0.2Ag0.8InCl6:y%Mn can be significantly modulated by Mn2+ concentration. We propose that replacing Ag+ with Mn2+ leads to the appearance of interstitial Ag+, which temporally store the photogenerated electrons (Ag++eAg). After the removal of excitation, the gradual recombination between residual holes and stored electrons [h++Ag++ehν+Ag+] explains the afterglow. However, excessive Mn2+ doping at interstitial sites does not bring about more interstitial Ag+ but instead introduces nonradiative traps. Therefore, as the Mn2+ concentration increases, the afterglow time increases from 350 s to 530 s and then decreases to 230 s, reaching a maximum at y = 40. Thus, a dynamic optical information storage and encryption application is demonstrated based on the modulated afterglow time. Full article
(This article belongs to the Special Issue Photofunctional Nanomaterials and Nanostructure, Second Edition)
Show Figures

Figure 1

19 pages, 4975 KiB  
Article
Bio-Based Flame Retardant Superhydrophobic Coatings by Phytic Acid/Polyethyleneimine Layer-by-Layer Assembly on Nylon/Cotton Blend Fabrics
by Yue Shen, Haiyan Zheng, Jiqiang Cao and Xinyun Guo
Coatings 2025, 15(6), 699; https://doi.org/10.3390/coatings15060699 - 10 Jun 2025
Viewed by 645
Abstract
The inherent flammability and hydrophilicity of nylon/cotton (NC) blend fabrics limit their practical applications. Traditional hydrophobic treatments often involve fluorinated compounds or nanomaterials, which raise environmental concerns and exhibit poor durability. To address these issues, this study developed a sustainable multifunctional finishing strategy. [...] Read more.
The inherent flammability and hydrophilicity of nylon/cotton (NC) blend fabrics limit their practical applications. Traditional hydrophobic treatments often involve fluorinated compounds or nanomaterials, which raise environmental concerns and exhibit poor durability. To address these issues, this study developed a sustainable multifunctional finishing strategy. Initially, the nylon/cotton blended fabric was pretreated with 3-glycidyloxypropyltrimethoxy silane (GPTMS). An intumescent flame retardant coating based on bio-derived phytic acid (PA) and polyethyleneimine (PEI) was constructed on NC fabrics via a layer-by-layer (LBL) self-assembly process. Subsequently, polydimethylsiloxane (PDMS) was grafted to reduce surface energy, imparting synergistic flame retardancy and superhydrophobicity. The treated fabric (C-3) showed excellent flame retardant and self-extinguishing behavior, with no afterflame or afterglow during vertical burning and a char length of only 35 mm. Thermogravimetric analysis revealed a residual char rate of 43.9%, far exceeding that of untreated fabric (8.6%). After PDMS modification, the fabric reached a water contact angle of 157.8°, indicating superior superhydrophobic and self-cleaning properties. Durability tests showed that the fabric maintained its flame retardancy (no afterflame or afterglow) and superhydrophobicity (WCA > 150°) after 360 cm of abrasion and five laundering cycles. This fluorine-free, nanoparticle-free, and environmentally friendly approach offers a promising route for developing multifunctional NC fabrics for applications in firefighting clothing and self-cleaning textiles. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Graphical abstract

13 pages, 2788 KiB  
Article
Possible Multi-Band Afterglows of FRB 20171020A and Their Implications
by Ke Bian and Can-Min Deng
Universe 2025, 11(5), 156; https://doi.org/10.3390/universe11050156 - 9 May 2025
Viewed by 311
Abstract
Fast Radio Bursts (FRBs) are millisecond-duration radio transients of mysterious origin, with growing evidence linking at least some of them to magnetars. While FRBs are primarily observed in the radio band, their potential multi-wavelength afterglows remain largely unexplored. We investigate the possible afterglow [...] Read more.
Fast Radio Bursts (FRBs) are millisecond-duration radio transients of mysterious origin, with growing evidence linking at least some of them to magnetars. While FRBs are primarily observed in the radio band, their potential multi-wavelength afterglows remain largely unexplored. We investigate the possible afterglow of FRB 20171020A, a rare nearby and bright FRB localized in a galaxy at only 37 Mpc. Assuming that this source produces a future bright burst, we model the expected afterglow emission in the radio, optical, and X-ray bands under both uniform and wind-like ambient media, within the framework of the magnetar model. Our results show that the optical afterglow is the most promising for detection, but it fades rapidly and requires follow-up within a few hundred seconds post-burst. The radio afterglow may be detectable under favorable conditions in a dense stellar wind, whereas the X-ray counterpart is too faint for current telescopes. These findings suggest that rapid optical follow-up offers the best opportunity to detect the afterglow of the next bright burst from FRB 20171020A, providing unique insights into the progenitor and its environment. To assess observational feasibility, we estimate the event rate of nearby FRBs with sufficient energy to power detectable afterglows, finding a rate of ∼0.3 per year for CHIME surveys. Although this rate is low and the optical detection timescale is short, coordinated fast-response strategies using global telescope networks could significantly improve the chance of success. As more nearby FRBs are discovered, multi-wavelength observations will be essential in unveiling the physical nature of these enigmatic events. Full article
(This article belongs to the Section Space Science)
Show Figures

Figure 1

13 pages, 8546 KiB  
Article
Flame Retardancy Evolution Behavior and Molecular Mechanism of Polyvinyl Chloride Under the Action of Damp Heat Aging
by Ke Xu, Chenyu Gao, Xin Liu, Xiuzhen Liu, Ganxin Jie, Jun Deng, Xinhan Qiao and Wentian Zeng
Polymers 2025, 17(6), 794; https://doi.org/10.3390/polym17060794 - 17 Mar 2025
Viewed by 697
Abstract
A 56-day aging test of polyvinyl chloride (PVC) cable material under hot and humid conditions was conducted, followed by tests on flame retardancy after varying degrees of wet heat aging, including vertical burning behavior, oxygen index, and afterflame time. Using molecular dynamics simulation [...] Read more.
A 56-day aging test of polyvinyl chloride (PVC) cable material under hot and humid conditions was conducted, followed by tests on flame retardancy after varying degrees of wet heat aging, including vertical burning behavior, oxygen index, and afterflame time. Using molecular dynamics simulation theory, the molecular mechanism behind the changes in flame-retardant properties after wet heat aging was investigated based on experimental observations. The results indicate that, as wet heat aging progresses, the flame brightness decreases, the oxygen index increases, and afterflame and afterglow times significantly decrease in vertical combustion tests. These findings suggest that the flame-retardant properties of PVC improve as moist heat aging deepens. After aging, the combustibles within PVC samples diffuse more easily, and the precipitation of CaCO3 on the PVC surface enhances surface density, intermolecular forces, and thermal stability, which are key factors in the improved flame retardant performance. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

10 pages, 4158 KiB  
Article
Multi-Color Tunable Afterglow Materials Leveraging Energy Transfer Between Host and Guest
by Xiao He, Bo Wang, Xiaoqiang Zhao, Fengqin Ke, Wenhui Feng, Liwen Wang, Jiameng Yang, Guangyu Wen and Denghui Ji
Molecules 2025, 30(6), 1203; https://doi.org/10.3390/molecules30061203 - 7 Mar 2025
Viewed by 669
Abstract
Host/guest doping is an effective approach to achieving room-temperature phosphorescence (RTP). However, the influence of the host matrix on doping systems is still unclear, and it is difficult to select the suitable host species for a certain guest emitter. This study prepared a [...] Read more.
Host/guest doping is an effective approach to achieving room-temperature phosphorescence (RTP). However, the influence of the host matrix on doping systems is still unclear, and it is difficult to select the suitable host species for a certain guest emitter. This study prepared a series of host/guest RTP materials with dynamically adjustable time and color by doping a non-RTP guest material in various host materials that were easy to crystallize. The varying afterglow color originated from the difference in Förster energy transfer between the host and guest. Specifically, the change from yellow to green afterglow was realized by varying the host’s molecular structure. This study further revealed the importance of proper host energy levels, the ability to generate long-aging triplet excitons, and the Förster energy transfer from host to guest. Additionally, multiple information encryption anti-counterfeiting materials were developed by leveraging the different afterglow colors and durations, reflecting the unique performance advantages of the prepared long-afterglow materials in various RTP applications. Full article
Show Figures

Figure 1

22 pages, 14986 KiB  
Article
Improved Adhesion and Biocompatibility of Chitosan-Coated Super-Hydrophilic PVC Polymer Substrates for Urothelial Catheters
by Alenka Vesel, Helena Motaln, Miran Mozetič, Dane Lojen and Nina Recek
Int. J. Mol. Sci. 2025, 26(5), 2128; https://doi.org/10.3390/ijms26052128 - 27 Feb 2025
Cited by 1 | Viewed by 842
Abstract
Chitosan is a water-soluble polysaccharide with good adherence to negatively charged surfaces and reported antimicrobial and anti-inflammatory properties. Coating the surfaces of medical devices with chitosan is a promising strategy for harnessing these benefits. However, the surface properties of commercial polymers need to [...] Read more.
Chitosan is a water-soluble polysaccharide with good adherence to negatively charged surfaces and reported antimicrobial and anti-inflammatory properties. Coating the surfaces of medical devices with chitosan is a promising strategy for harnessing these benefits. However, the surface properties of commercial polymers need to be altered to enable the bonding of thin chitosan films. In this study, the adhesion of chitosan onto plasma-treated polyvinyl chloride (PVC) and the metabolic activity of urothelial cells on chitosan-coated medical-grade PVC used for the synthesis of urinary catheters were evaluated. To improve the adhesion of chitosan onto the PVC catheters, PVC samples were made “super-hydrophilic”. PVC substrates were briefly treated with a powerful hydrogen plasma and weakly ionised oxygen plasma afterglow to obtain a chlorine-free surface film, which was rich in oxygen functional groups, followed by incubation of the plasma-treated substrates in an aqueous solution of chitosan. Then, urothelial RT4 cells were seeded on the treated and untreated PVC substrates, and their metabolic activity, confluency, and cell morphology were examined. X-ray photoelectron spectroscopy was used to measure the nitrogen concentration, which corresponded to the chitosan concentration on the substrate. The results showed that the substrates were uniformly covered by a thin layer of chitosan only on plasma-treated surfaces and not on untreated surfaces. Moreover, the chitosan coating provided a stimulated environment for cell adhesion and growth. In conclusion, the chitosan-coated super-hydrophilic PVC substrate shows potential to improve the overall performance and safety of medical devices such as urinary catheters. Full article
(This article belongs to the Special Issue Biofunctional Coatings for Medical Applications)
Show Figures

Figure 1

30 pages, 1842 KiB  
Review
The Observed Luminosity Correlations of Gamma-Ray Bursts and Their Applications
by Chen Deng, Yong-Feng Huang, Fan Xu and Abdusattar Kurban
Galaxies 2025, 13(2), 15; https://doi.org/10.3390/galaxies13020015 - 21 Feb 2025
Cited by 1 | Viewed by 1065
Abstract
Gamma-ray bursts (GRBs) are among the most luminous electromagnetic transients in the universe, providing unique insights into extreme astrophysical processes and serving as promising probes for cosmology. Unlike Type Ia supernovae, which have a unified explosion mechanism, GRBs cannot directly act as standard [...] Read more.
Gamma-ray bursts (GRBs) are among the most luminous electromagnetic transients in the universe, providing unique insights into extreme astrophysical processes and serving as promising probes for cosmology. Unlike Type Ia supernovae, which have a unified explosion mechanism, GRBs cannot directly act as standard candles for tracing cosmic evolution at high redshifts due to significant uncertainties in their underlying physical origins. Empirical correlations derived from statistical analyses involving various GRB parameters provide valuable information regarding their intrinsic properties. In this brief review, we describe various correlations among GRB parameters involving the prompt and afterglow phases, discussing possible theoretical interpretations behind them. The scarcity of low-redshift GRBs poses a major obstacle to the application of GRB empirical correlations in cosmology, referred to as the circularity problem. We present various efforts aiming at calibrating GRBs to address this challenge and leveraging established empirical correlations to constrain cosmological parameters. The pivotal role of GRB sample quality in advancing cosmological research is underscored. Some correlations that could potentially be utilized as redshift indicators are also introduced. Full article
Show Figures

Figure 1

17 pages, 8357 KiB  
Article
Aluminum–Silica Core–Shell Nanoparticles via Nonthermal Plasma Synthesis
by Thomas Cameron, Bailey Klause, Kristine Q. Loh and Uwe R. Kortshagen
Nanomaterials 2025, 15(3), 237; https://doi.org/10.3390/nano15030237 - 4 Feb 2025
Viewed by 1098
Abstract
Aluminum nanoparticles (Al NPs) are interesting for energetic and plasmonic applications due to their enhanced size-dependent properties. Passivating the surface of these particles is necessary to avoid forming a native oxide layer, which can degrade energetic and optical characteristics. This work utilized a [...] Read more.
Aluminum nanoparticles (Al NPs) are interesting for energetic and plasmonic applications due to their enhanced size-dependent properties. Passivating the surface of these particles is necessary to avoid forming a native oxide layer, which can degrade energetic and optical characteristics. This work utilized a radiofrequency (RF)-driven capacitively coupled argon/hydrogen plasma to form surface-modified Al NPs from aluminum trichloride (AlCl3) vapor and 5% silane in argon (dilute SiH4). Varying the power and dilute SiH4 flow rate in the afterglow of the plasma led to the formation of varying nanoparticle morphologies: Al–SiO2 core–shell, Si–Al2O3 core–shell, and Al–Si Janus particles. Scanning transmission electron microscopy with a high-angle annular dark-field detector (STEM-HAADF) and energy-dispersive X-ray spectroscopy (EDS) were employed for characterization. The surfaces of the nanoparticles and sample composition were characterized and found to be sensitive to changes in RF power input and dilute SiH4 flow rate. This work demonstrates a tunable range of Al–SiO2 core–shell nanoparticles where the Al-to-Si ratio could be varied by changing the plasma parameters. Thermal analysis measurements performed on plasma-synthesized Al, crystalline Si, and Al–SiO2 samples are compared to those from a commercially available 80 nm Al nanopowder. Core–shell particles exhibit an increase in oxidation temperature from 535 °C for Al to 585 °C for Al–SiO2. This all-gas-phase synthesis approach offers a simple preparation method to produce high-purity heterostructured Al NPs. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

16 pages, 502 KiB  
Review
A Review of Long-Lasting Activities of the Central Engine of Gamma-Ray Bursts
by Bruce Gendre
Galaxies 2025, 13(1), 7; https://doi.org/10.3390/galaxies13010007 - 10 Jan 2025
Viewed by 1400
Abstract
Gamma-ray bursts are known to display various features on top of their canonical behavior. In this short review, we will describe and discuss two of them: the ultra-long gamma-ray bursts, which are defined by an extreme duration of their prompt phase, and the [...] Read more.
Gamma-ray bursts are known to display various features on top of their canonical behavior. In this short review, we will describe and discuss two of them: the ultra-long gamma-ray bursts, which are defined by an extreme duration of their prompt phase, and the plateau phase, which is defined by a steady phase of large duration at the start of the afterglow. We will review the main properties of those two phenomena, and will discuss their possible origin, in light of the standard fireball model of gamma-ray bursts. A final section will discuss the future missions, which could bring new evidence to the study of those objects. Full article
Show Figures

Figure 1

33 pages, 1413 KiB  
Review
Gamma-Ray Bursts: What Do We Know Today That We Did Not Know 10 Years Ago?
by Asaf Pe’er
Galaxies 2025, 13(1), 2; https://doi.org/10.3390/galaxies13010002 - 31 Dec 2024
Viewed by 2174
Abstract
I discuss here the progress made in the last decade on a few of the key open problems in GRB physics. These include (1) the nature of GRB progenitors, and the outliers found to the collapsar/merger scenarios; (2) jet structures, whose existence became [...] Read more.
I discuss here the progress made in the last decade on a few of the key open problems in GRB physics. These include (1) the nature of GRB progenitors, and the outliers found to the collapsar/merger scenarios; (2) jet structures, whose existence became evident following GRB/GW170817; (3) the great progress made in understanding the GRB jet launching mechanisms, enabled by general-relativistic magnetohydrodynamic (GR-MHD) codes; (4) recent studies of magnetic reconnection as a valid energy dissipation mechanism; (5) the early afterglow, which may be highly affected by a wind bubble, as well as recent indication that in many GRBs, the Lorentz factor is only a few tens, rather than a few hundreds. I highlight some recent observational progress, including the major breakthrough in detecting TeV photons and the on-going debate about their origin, polarization measurements, as well as the pair annihilation line recently detected in GRB 221009A, and its implications for prompt emission physics. I probe into some open questions that I anticipate will be at the forefront of GRB research in the next decade. Full article
Show Figures

Figure 1

28 pages, 7320 KiB  
Review
Recent Advances in Lead-Free All-Inorganic Perovskite CsCdCl3 Crystals for Anti-Counterfeiting Applications
by Nankai Wang, Zhaojie Zhu, Jianfu Li, Chaoyang Tu, Weidong Chen and Yan Wang
Crystals 2024, 14(12), 1077; https://doi.org/10.3390/cryst14121077 - 13 Dec 2024
Cited by 1 | Viewed by 1280
Abstract
This study reviews the advanced anti-counterfeiting applications of CsCdCl3, a lead-free all-inorganic perovskite crystal exhibiting dynamic luminescent properties responsive to temperature and UV light. Using synthesis methods such as Bridgman and hydrothermal techniques and incorporating dopants like bromine and tellurium, this [...] Read more.
This study reviews the advanced anti-counterfeiting applications of CsCdCl3, a lead-free all-inorganic perovskite crystal exhibiting dynamic luminescent properties responsive to temperature and UV light. Using synthesis methods such as Bridgman and hydrothermal techniques and incorporating dopants like bromine and tellurium, this research achieves improved luminescent stability, spectral diversity, and afterglow characteristics in CsCdCl3. The crystal demonstrates extended afterglow, photochromic shifts, and temperature-sensitive luminescence, enabling applications in 4D encoding for secure data encryption and in cold-chain temperature monitoring for pharmaceuticals. Despite these promising attributes, the challenges related to photostability, batch consistency, and environmental resilience persist, necessitating further exploration into the optimized synthesis and doping strategies to enhance material stability. These findings underscore the potential of CsCdCl3 for high-security information storage, pharmaceutical anti-counterfeiting, and real-time environmental sensing, positioning it as a valuable material for the next generation of secure, intelligent packaging solutions. Full article
(This article belongs to the Special Issue Recent Development and Research Trend of Laser Crystals)
Show Figures

Figure 1

19 pages, 7466 KiB  
Article
Study on Flame Retardancy of Cotton Fabric Modified by Sulfonic Groups Chelated with Ba2+
by Lingling Guo, Hongqin Lin, Zhenming Qi, Jiang Pan, Haiyan Mao, Chunmei Huang, Guoqiang Li and Chunxia Wang
Molecules 2024, 29(22), 5306; https://doi.org/10.3390/molecules29225306 - 10 Nov 2024
Cited by 1 | Viewed by 1477
Abstract
A simple and innovative method was introduced for the production of green and recoverable flame-retardant cotton fabrics, where sulfonated cotton fabric (COT-SC) was synthesized by oxidizing cotton fabric with sodium periodate, followed by a sulfonation step with sodium bisulfite to provide active sites, [...] Read more.
A simple and innovative method was introduced for the production of green and recoverable flame-retardant cotton fabrics, where sulfonated cotton fabric (COT-SC) was synthesized by oxidizing cotton fabric with sodium periodate, followed by a sulfonation step with sodium bisulfite to provide active sites, which further chelated barium ions (Ba2+) to achieve flame retardancy. The morphological and structural characterizations of the fabricated cotton fabrics (COT-SC-Ba) demonstrated that the cleavage of C2-C3 free hydroxy groups within the cellulose macromolecule was chemically modified for grafting a considerable number of sulfonic acid groups, and Ba2+ ions were effectively immobilized on the macromolecule of the cotton fabric through a chelation effect. Results from cone calorimeter tests (CCTs) revealed that COT-SC-Ba became nonflammable, displayed a delayed ignition time, and decreased the values of the heat release rate (HRR), total smoke release (TSR), effective heat of combustion (EHC), and CO/CO2 ratio. TG/DTG analysis demonstrated that COT-SC-Ba possessed greater thermal stability, fewer flammable volatiles, and more of a char layer during burning than that of the original cotton fabric. Its residual mass was increased from 0.02% to 26.9% in air and from 8.05% to 26.76% in N2, respectively. The COT-SC-Ba not only possessed a limiting oxygen index (LOI) of up to 34.4% but could also undergo vertical burning tests evidenced by results such as the non-afterflame, non-afterglow, and a mere 75 mm char length. Those results demonstrated that the combination of SO3 and Ba2+ promoted the formation of a char layer. Moreover, cotton fabric regained its superior flame retardancy after being washed and re-chelated with Ba2+. Additional characteristics of the cotton fabric, such as the rupture strength, white degree, and hygroscopicity, were maintained at an acceptable level. In conclusion, this research can offer a fresh perspective on the design and development of straightforward, efficient, eco-friendly, and recoverable fire-retardant fabrics. Full article
Show Figures

Figure 1

12 pages, 3977 KiB  
Article
Hole-Transporting Materials Based on a Fluorene Unit for Efficient Optoelectronic Devices
by Maoli Man, Mingming Zhao and Yunfei Lyu
Materials 2024, 17(22), 5417; https://doi.org/10.3390/ma17225417 - 6 Nov 2024
Cited by 2 | Viewed by 1018
Abstract
Solution-processable hole-transporting materials (HTMs) that form highly soluble films and thermally stable amorphous states are essential for advancing optoelectronic devices. However, the currently commercialized HTM, N,N-bis(3-methylphenyl)-N,N0-bis(phenyl)benzidine (TPD), exhibits poor solubility and limited carrier transport when spin-coated into thin films. Herein, to address these [...] Read more.
Solution-processable hole-transporting materials (HTMs) that form highly soluble films and thermally stable amorphous states are essential for advancing optoelectronic devices. However, the currently commercialized HTM, N,N-bis(3-methylphenyl)-N,N0-bis(phenyl)benzidine (TPD), exhibits poor solubility and limited carrier transport when spin-coated into thin films. Herein, to address these issues, a fluorenyl group was ingeniously incorporated into a series of molecules structurally similar to TPD. The resulting compounds, namely, 2,7-di-(N,N-diphenylamino)-9,9-dimethyl-9H-fluorene (DDF), 2,7-di-p-tolyl-(N,N-diphenylamino)-9,9-dimethyl-9H-fluorene (2M-DDF), and 2,7-di-tetra-p-tolyl-(N,N-diphenylamino)-9,9-dimethyl-9H-fluorene (4M-DDF), offered tunable energy levels, carrier transport, crystallinity, and steric configuration via adjustment of the number of terminal methyl groups. Owing to its satisfactory performance, 2M-DDF can serve as an effective alternative to TPD in OLED devices as well as a guest molecule in host–guest systems for long-afterglow materials. Devices incorporating 2M-DDF as the HTM, with an Alq3 emitter, achieved a maximum CE of 4.78 cd/A and a maximum L (Lmax) of 21,412 cd m−2, with a turn-on voltage (Von) of 3.8 V. The luminous efficiency of 2M-DDF was approximately five times that of TPD (4106 cd m−2). Furthermore, when 2M-DDF and TPD were utilized as guest molecules in afterglow materials, the afterglow duration of 2M-DDF (10 s) was 2.5 times that of TPD (4 s). This study provides a theoretical basis for the development of high-performance HTMs and long-afterglow materials, establishing a framework for the application of fluorene-based compounds in emerging fields such as long-afterglow materials. Full article
Show Figures

Graphical abstract

14 pages, 7974 KiB  
Review
Recent Development of Organic Afterglow Probes for Diagnosis and Treatment of Cancer
by Meiqin Li, Le Tu, Huiling Wang, Junrong Li and Yao Sun
Targets 2024, 2(4), 327-340; https://doi.org/10.3390/targets2040019 - 31 Oct 2024
Viewed by 1517
Abstract
Afterglow imaging plays a crucial role in the cancer treatment field. In contrast to inorganic afterglow imaging agents, organic afterglow imaging agents possess easily modifiable structures and exhibit excellent biocompatibility, thereby presenting significant prospects for application in tumor diagnosis and management. In this [...] Read more.
Afterglow imaging plays a crucial role in the cancer treatment field. In contrast to inorganic afterglow imaging agents, organic afterglow imaging agents possess easily modifiable structures and exhibit excellent biocompatibility, thereby presenting significant prospects for application in tumor diagnosis and management. In this review, we summarize the design principles and applications of afterglow probes in tumor imaging and therapy. Finally, we discuss the future challenges and prospects of organic afterglow probes in cancer diagnosis and therapy. Full article
(This article belongs to the Special Issue Recent Progress in Bioimaging and Targeted Therapy)
Show Figures

Figure 1

Back to TopTop