Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = aerostructural design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 7353 KB  
Article
A Methodology for the Design and Selection of Multifunctional Carbon Fibre-Reinforced Polymer for Aircraft Structures
by Muhammad Hijaaj Tahir, Catherine E. Jones and Robert Ian Whitfield
Designs 2025, 9(6), 146; https://doi.org/10.3390/designs9060146 - 18 Dec 2025
Viewed by 167
Abstract
Multifunctional aerostructures that carry mechanical loadings while conducting electrical currents offer a promising approach to reduce the weight of Electrical Power Systems (EPS) of aircraft. However, Carbon Fibre-Reinforced Polymer (CFRP), when used for aerostructures, presents challenges in achieving multi-functionality due to anisotropic mechanical, [...] Read more.
Multifunctional aerostructures that carry mechanical loadings while conducting electrical currents offer a promising approach to reduce the weight of Electrical Power Systems (EPS) of aircraft. However, Carbon Fibre-Reinforced Polymer (CFRP), when used for aerostructures, presents challenges in achieving multi-functionality due to anisotropic mechanical, electrical, and thermal properties. These properties are interdependent on both laminate-level design factors (fibre/resin choice, fibre volume fraction, stacking sequence, and electrode configuration) and system-level EPS constraints (allowable voltage drop, current, and installation geometry). State-of-the-art material design and selection methods lack a coupled mechanical–electro–thermal design and selection approach to overcome these challenges of a complex design space to enable identification of multifunctional CFRP (MF-CFRP) solutions. This paper presents the first methodology for the design and selection of MF-CFRP with combined electrical, structural, and thermal properties. The methodology integrates requirement capture, laminate layup determination, electro-thermal assessment, option ranking, and manufacturing route selection. The methodology couples laminate-level design factors with system-level EPS constraints and includes iterative loops to refine either the CFRP design or the EPS parameters when no solution initially exists. The methodology is demonstrated to enable the design of a CFRP component to conduct the electrical current as part of the 28 VDC network in an aircraft. This case study demonstrates the value of the methodology to identify knowledge and dataset gaps necessary for MF-CFRP design, alongside enabling the design of MF-CFRP components to enable increased power density of weight-critical EPS. Although the case study focused on a 28 VDC system, the methodology is generalisable to other aircraft electrical architectures since system-level electrical parameters are used within the methodology as adaptable inputs. Full article
(This article belongs to the Section Mechanical Engineering Design)
Show Figures

Figure 1

21 pages, 10508 KB  
Article
Global Aero-Structural Optimization of Composite Forward-Swept Wings Considering Natural Laminar Flow
by Kai Wang, Xiaoguang Wang, Xiujie Han, Bo Xiao, Zhiyuan Shan, Jie Ding and Tao Wu
Aerospace 2025, 12(12), 1076; https://doi.org/10.3390/aerospace12121076 - 2 Dec 2025
Viewed by 186
Abstract
Forward-swept wings are more suitable for natural laminar flow than backward-swept wings. However, in order to reduce the difficulty of optimization, most aero-structural optimization studies of forward-swept wings do not consider the automatic laminar–turbulent transition, discrete variables, or large-scale constraints, which may result [...] Read more.
Forward-swept wings are more suitable for natural laminar flow than backward-swept wings. However, in order to reduce the difficulty of optimization, most aero-structural optimization studies of forward-swept wings do not consider the automatic laminar–turbulent transition, discrete variables, or large-scale constraints, which may result in undesirable optimization results. In this article, an efficient aero-structural optimization method for the composite forward-swept natural laminar flow (FSNLF) wing is proposed, which can solve MDO problems with those issues. Reynolds-averaged Navier–Stokes (RANS) equations coupled with the dual eN transition method are used to simulate subsonic viscous flows. A surrogate-based optimization (SBO) algorithm combining a discrete variable handling method is developed to solve the multidisciplinary design optimization (MDO) problem involving many discrete ply thickness variables of predefined angles (0°/±45°/90°). The Kreisselmeier–Steinhauser (KS) method is employed to handle large-scale geometric constraints, ply fraction constraints and material failure constraints. To verify the effectiveness of the proposed method, we perform the aero-structural optimization of an A320-class composite FSNLF wing. Results show that the proposed method offers great potential in the aero-structural optimization of the composite FSNLF wing. It can handle 32 discrete variables and 11,089 constraints, the drag coefficient and mass of the wing are reduced significantly, and the area of the laminar flow region on the wing upper surface is increased by 24.3% compared with the baseline. Full article
Show Figures

Figure 1

21 pages, 7944 KB  
Article
Estimation of Surface Normals of Aerospace Fasteners from 3D Terrestrial Laser Scanner Point Clouds
by Kate Pexman, Stuart Robson and Hannah Corcoran
Metrology 2025, 5(4), 68; https://doi.org/10.3390/metrology5040068 - 9 Nov 2025
Viewed by 368
Abstract
Measurement systems such as laser trackers and 3D imaging systems are being increasingly adopted across the manufacturing industry. These metrology technologies can allow for live, high-precision measurement in a digital system, enabling the spatial component of the digital manufacturing twin. In aircraft wing [...] Read more.
Measurement systems such as laser trackers and 3D imaging systems are being increasingly adopted across the manufacturing industry. These metrology technologies can allow for live, high-precision measurement in a digital system, enabling the spatial component of the digital manufacturing twin. In aircraft wing manufacturing, drilling and fastening operations must be guided by precise measurements from a digital design model. With thousands of fasteners on each aircraft wing, even small errors in alignment of surface covers to wing ribs and spars can impact component longevity due to aerodynamic drag. Determining surface conformance of airstream-facing surfaces is currently largely performed though manual gauge checking by human operators. In order to capture the surface details and reverse engineer components to assure tolerance has been achieved, laser scanners could be utilised alongside a precise registration strategy. This work explores the quality of the aerostructure surface in a captured point cloud and the subsequent accuracy of surface normal determination from planar fastener heads. These point clouds were captured with a reference hand-held laser scanner and two terrestrial laser scanners. This study assesses whether terrestrial laser scanners can achieve <0.5° surface normal accuracy for aerospace fastener alignment. Accuracy of the surface normals was achieved with a nominal mean discrepancy of 0.42 degrees with the Leica RTC360 3D Laser Scanner (Leica Geosystems AG, Heerbrugg, Switzerland) and 0.27 degrees with the Surphaser 80HSX Ultra Short Range (Basis Software Inc., Redmond, WA, USA). Full article
(This article belongs to the Special Issue Advances in Optical 3D Metrology)
Show Figures

Figure 1

23 pages, 5673 KB  
Article
Numerical Investigation of a Morphing Wing Section Controlled by Piezoelectric Patches
by Mario Rosario Chiarelli, Vincenzo Binante, Salvatore Bonomo, Stefano Botturi, Luca Giani, Jan Kunzmann, Aniello Cozzolino and Diego Giuseppe Romano
Actuators 2025, 14(10), 499; https://doi.org/10.3390/act14100499 - 15 Oct 2025
Viewed by 952
Abstract
One of the tasks of the FutureWings project, funded by the European Commission within the 7th framework, was to numerically validate the mechanical behavior of a wing whose deflections had to be controlled via a suitable distribution of piezoelectric patches. Starting from a [...] Read more.
One of the tasks of the FutureWings project, funded by the European Commission within the 7th framework, was to numerically validate the mechanical behavior of a wing whose deflections had to be controlled via a suitable distribution of piezoelectric patches. Starting from a reference geometry (a NACA 0012 airfoil), wing profiles were implemented and analyzed using the fluid–structure interaction analysis technique. The wing section was designed with a morphing profile in which both the front and rear parts self-deform via piezoelectric patches that serve actuators glued to the skin of the profile. A Macro Fiber Composite (MFC) was used as the piezoelectric actuator. Aeroelastic analyses were performed at low Mach numbers under the sea-level flight condition. Analysis of the technical solution was based on an examination of the aerodynamic coefficients and polar curves of the profile, as the control voltage of the patches can vary. The results were compared with those available in the literature. As a preliminary step, this work contributes to examining the current technical possibilities of this technology relating to the application of piezoelectric patches as actuators in the field of aerostructures. Full article
(This article belongs to the Special Issue Aerospace Mechanisms and Actuation—Second Edition)
Show Figures

Figure 1

17 pages, 5201 KB  
Article
Equivalent Stress Model-Assisted Aero-Structural Optimization of a Compressor Rotor Using an Adjoint Method
by Jiaxing Li, Zhen Fu and Jiaqi Luo
Modelling 2025, 6(4), 125; https://doi.org/10.3390/modelling6040125 - 11 Oct 2025
Viewed by 434
Abstract
To meet the stringent reliability requirements of rotor blades in turbomachines, greater effort should be devoted to improving both aerodynamic and structural performance in blade design. This paper introduces an aero-structural multi-disciplinary design optimization (MDO) method for compressor rotor blades using a discrete [...] Read more.
To meet the stringent reliability requirements of rotor blades in turbomachines, greater effort should be devoted to improving both aerodynamic and structural performance in blade design. This paper introduces an aero-structural multi-disciplinary design optimization (MDO) method for compressor rotor blades using a discrete adjoint method and an equivalent stress model (ESM). The principles of the ESM are firstly introduced, and its accuracy in calculating equivalent stress is validated through comparison with a commercial program. Both the aerodynamic performance and the maximum equivalent stress (MES) are selected as optimization objectives. To modify the blade profile, the steepest descent optimization method is utilized, in which the necessary sensitivities of the cost function to the design parameters are calculated by solving the adjoint equations. Finally, the aero-structural MDO of a transonic compressor rotor, NASA Rotor 67, is conducted, and the Pareto solutions are obtained. The optimization results demonstrate that the adiabatic efficiency and the MES are competitive in improving multi-disciplinary performance. For most of the Pareto solutions, the MES can be considerably reduced with increased adiabatic efficiency. Full article
Show Figures

Figure 1

19 pages, 2822 KB  
Article
Aero-Structural Design Optimization of a Transonic Fan Rotor Using an Adaptive POD-Based Hybrid Surrogate Model
by Jiaqi Luo, Zhen Fu and Jiaxing Li
Aerospace 2025, 12(6), 504; https://doi.org/10.3390/aerospace12060504 - 2 Jun 2025
Cited by 3 | Viewed by 1070
Abstract
In this study, an optimization framework for turbomachinery blades using a hybrid surrogate model assisted by proper orthogonal decomposition (POD) is introduced and then applied to the aero-structural multidisciplinary design optimization of a transonic fan rotor, NASA Rotor 67. The rotor blade is [...] Read more.
In this study, an optimization framework for turbomachinery blades using a hybrid surrogate model assisted by proper orthogonal decomposition (POD) is introduced and then applied to the aero-structural multidisciplinary design optimization of a transonic fan rotor, NASA Rotor 67. The rotor blade is optimized through blade sweeping controlled by Gaussian radial basis functions. Calculations of aerodynamic and structural performance are achieved through computational fluid dynamics and computational structural mechanics. With a number of performance snapshots, singular value decomposition is employed to extract the basis modes, which are then used as the kernel functions in training the POD-based hybrid model. The inverse multi-quadratic radial basis function is adopted to construct the response surfaces for the coefficients of kernel functions. Aerodynamic design optimization is first investigated to preliminarily explore the impact of blade sweeping. In the aero-structural optimization, the aerodynamic performance, and von Mises stress are considered equally important and incorporated into one single objective function with different weight coefficients. The results are given and compared in detail, demonstrating that the average stress is dependent on the aerodynamic loading, and the configuration with forward sweeping on inner spans and backward sweeping on outer spans is the most effective for increasing the adiabatic efficiency while decreasing the average stress when the total pressure ratio is constrained. Through this study, the optimization framework is validated and a practical configuration for reducing the stress in a transonic fan rotor is provided. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

21 pages, 1167 KB  
Article
Towards Optimal Wing Design for Novel Airframe and Propulsion Opportunities
by Nicolas F. M. Wahler and Ali Elham
Aerospace 2025, 12(6), 459; https://doi.org/10.3390/aerospace12060459 - 23 May 2025
Viewed by 992
Abstract
Strict sustainability objectives have been established for the upcoming generation of aircraft. A promising innovative airframe concept is the ultra-high-aspect-ratio Strut-Braced-Wing Aircraft (SBWA). Hydrogen-powered concepts are strong candidates for sustainable propulsion. The study investigates the influence of Liquid Hydrogen (LH2) propulsion on the [...] Read more.
Strict sustainability objectives have been established for the upcoming generation of aircraft. A promising innovative airframe concept is the ultra-high-aspect-ratio Strut-Braced-Wing Aircraft (SBWA). Hydrogen-powered concepts are strong candidates for sustainable propulsion. The study investigates the influence of Liquid Hydrogen (LH2) propulsion on the optimal wing geometry of medium-range SBWA for minimum-cost and minimum-emission objectives. Multiobjective optimizations are performed in two optimization frameworks of differing fidelity for both kerosene- and LH2-propelled SBWA concepts. Furthermore, a range of Pareto-optimal designs show the changes in the optimized planform for variable weighting of the two objectives. The results show that the differences in the optimal wing geometry between the kerosene- and LH2-powered results for each respective objective function are small. For both aircraft, the minimum-emission objective optimizes for lower fuel burns and hence lower emissions, albeit at an increase in wing structural mass. The minimum-cost objective balances the reductions in structural and fuel masses, resulting in a lighter design at lower aspect ratios. Other wing-shape parameters only have minor contributions. Although the wing aspect ratios for both objectives differ by ca. 50%, the actual changes are only 2.5% in fuel and 1.5% in Direct Operating Cost (DOC). Due to a larger set of design variables used in the higher-fidelity optimizations, further parasite and wave drag reduction opportunities result in increased optimal aspect ratios. Full article
Show Figures

Figure 1

23 pages, 2610 KB  
Article
Conceptual Design and Aerostructural Trade-Offs in Hydrogen- Powered Strut-Braced Wing Aircraft: Insights into Dry and Wet Ultra-High Aspect Ratio Wings
by Nicolas F. M. Wahler, Yiyuan Ma and Ali Elham
Aerospace 2025, 12(2), 77; https://doi.org/10.3390/aerospace12020077 - 23 Jan 2025
Cited by 7 | Viewed by 2200
Abstract
Stringent sustainability goals are set for the next generation of aircraft. A promising novel airframe concept is the ultra-high aspect ratio Strut-Braced Wing (SBW) aircraft. Hydrogen-based concepts are active contenders for sustainable propulsion. The study compares a medium-range Liquid Hydrogen (LH2) to a [...] Read more.
Stringent sustainability goals are set for the next generation of aircraft. A promising novel airframe concept is the ultra-high aspect ratio Strut-Braced Wing (SBW) aircraft. Hydrogen-based concepts are active contenders for sustainable propulsion. The study compares a medium-range Liquid Hydrogen (LH2) to a kerosene-based SBW aircraft designed with the same top-level requirements. For both concepts, overall design, operating costs, and emissions are evaluated using the tool SUAVE. Furthermore, aerostructural optimizations are performed for the wing mass of SBW aircraft with and without wing-based fuel tanks. Results show that the main difference in the design point definition results from a higher zero-lift drag due to an extended fuselage housing the LH2 tanks, with a small reduction in the required wing loading. Structural mass increases of the LH2 aircraft due to additional tanks and fuselage structure are mostly offset by fuel mass savings. While the fuel mass accounts for nearly 25% of the kerosene design’s Maximum Take-Off Mass (MTOM), this reduces to 10% for the LH2 design. The LH2 aircraft has 16% higher operating costs with emission levels reduced to 57–82% of the kerosene aircraft, depending on the LH2 production method. For static loads, the absence of fuel acting as bending moment relief in the wing results in an increase in wing structural mass. However, the inclusion of roll rate requirements causes large wing mass increases for both concepts, significantly outweighing dry wing penalties. Full article
Show Figures

Figure 1

23 pages, 4295 KB  
Review
A Review on Performance Calculation and Design Methodologies for Horizontal-Axis Wind Turbine Blades
by Rongyu Zha, Siyuan Wu, Chang Cai, Xiaohui Liu, Dian Wang, Chaoyi Peng, Xuebin Feng, Qiuhua Chen, Xiaohui Zhong and Qing’an Li
Energies 2025, 18(2), 435; https://doi.org/10.3390/en18020435 - 20 Jan 2025
Cited by 2 | Viewed by 3181
Abstract
The efficient, low-cost, and large-scale development and utilization of offshore wind energy resources is an inevitable trend for future growth. With the continuous increase in the scale of wind turbines and their expansion into deep-sea locations, there is an urgent need to develop [...] Read more.
The efficient, low-cost, and large-scale development and utilization of offshore wind energy resources is an inevitable trend for future growth. With the continuous increase in the scale of wind turbines and their expansion into deep-sea locations, there is an urgent need to develop ultra-long, flexible blades suitable for future high-capacity turbines. Existing reviews in the field of blade design lack a simultaneous focus on the two core elements of blade performance calculation and design methods, as well as a detailed evaluation of specific methods. Therefore, this paper reviews the performance calculation and design methodologies of horizontal-axis wind turbine blades from three aspects: aerodynamic design, structural design, and coupled aero-structural design. A critical introduction to various methods is provided, along with a key viewpoint centered around design philosophy: there is no global optimal solution; instead, the most suitable solution is chosen from the Pareto set according to the design philosophy. This review not only provides a concise and clear overview for researchers new to the field of blade design to quickly acquire key background knowledge but also offers valuable insights for experienced researchers through critical evaluations of various methods and the presentation of core viewpoints. The paper also includes a refined review of extended areas such as aerodynamic add-ons and fatigue characteristics, which broadens the scope of the review to touch on multiple research areas and inspire further research. In future research, it is crucial to identify new key issues and challenges associated with increased blade length and flexibility, address the challenges faced in integrated aero-structural design, and develop platforms and tools that support multi-objective optimization design of blades, ensuring the safe, stable, and orderly development of wind turbines. Full article
Show Figures

Figure 1

20 pages, 8548 KB  
Article
Integrated Aerodynamic Shape and Aero-Structural Optimization: Applications from Ahmed Body to NACA 0012 Airfoil and Wind Turbine Blades
by Sagidolla Batay, Aigerim Baidullayeva, Erkhan Sarsenov, Yong Zhao, Tongming Zhou, Eddie Yin Kwee Ng and Taldaubek Kadylulu
Fluids 2024, 9(8), 170; https://doi.org/10.3390/fluids9080170 - 25 Jul 2024
Cited by 2 | Viewed by 3227
Abstract
During this research, aerodynamic shape optimization is conducted on the Ahmed body with the drag coefficient as the objective function and the ramp shape as the design variable, while aero-structural optimization is conducted on NACA 0012 to reduce the drag coefficient for the [...] Read more.
During this research, aerodynamic shape optimization is conducted on the Ahmed body with the drag coefficient as the objective function and the ramp shape as the design variable, while aero-structural optimization is conducted on NACA 0012 to reduce the drag coefficient for the aerodynamic performance with the shape as the design variable while reducing structural mass with the thickness of the panels as the design variables. This is accomplished through a gradient-based optimization process and coupled finite element and computational fluid dynamics (CFD) solvers under fluid–structure interaction (FSI). In this study, DAFoam (Discrete Adjoint with OpenFOAM for High-fidelity Multidisciplinary Design Optimization) and TACS (Toolkit for the Analysis of Composite Structures) are integrated to optimize the aero-structural design of an airfoil concurrently under the FSI condition, with TACS and DAFoam as coupled structural and CFD solvers integrated with a gradient-based adjoint optimization solver. One-way coupling between the fluid and structural solvers for the aero-structural interaction is adopted by using Mphys, a package that standardizes high-fidelity multiphysics problems in OpenMDAO. At the end of the paper, we compare and discuss our findings in the context of existing research, specifically highlighting previous results on the aerodynamic and aero-structural optimization of wind turbine blades. Full article
Show Figures

Figure 1

29 pages, 5662 KB  
Article
Computational Tool for Aircraft Fuel System Analysis
by Marcela A. D. Di Marzo, Pedro G. Calil, Hossein Nadali Najafabadi, Viviam Lawrence Takase, Carlos H. B. Mourão and Jorge H. Bidinotto
Aerospace 2024, 11(5), 362; https://doi.org/10.3390/aerospace11050362 - 1 May 2024
Cited by 1 | Viewed by 4497
Abstract
Fuel level gauging in aircraft presents a significant flight mechanics challenge due to the influence of aircraft movements on measurements. Moreover, it constitutes a multidimensional problem where various sensors distributed within the tank must converge to yield a precise and single measurement, independent [...] Read more.
Fuel level gauging in aircraft presents a significant flight mechanics challenge due to the influence of aircraft movements on measurements. Moreover, it constitutes a multidimensional problem where various sensors distributed within the tank must converge to yield a precise and single measurement, independent of the aircraft’s attitude. Furthermore, fuel distribution across multiple tanks of irregular geometries complicates the readings even further. These issues critically impact safety and economy, as gauging errors may compromise flight security and lead to carrying excess weight. In response to these challenges, this research introduces a multi-stage project in aircraft fuel gauging systems, as a continuum of studies, where this first article presents a computational tool designed to simulate aircraft fuel sensor data readings as a function of fuel level, fuel tank geometry, sensor location, and aircraft attitude. Developed in an open-source environment, the tool aims to support the statistical inference required for accurate modeling in which synthetic data generation becomes a crucial component. A discretization procedure accurately maps fuel tank geometries and their mass properties. The tool, then, intersects these geometries with fuel-level planes and calculates each new volume. It integrates descriptive geometry to intersect these fuel planes with representative capacitive level-sensing probes and computes the sensor readings for the simulated flight conditions. The method is validated against geometries with analytical solutions. This process yields detailed fuel measurement responses for each sensor inside the tank, and for different analyzed fuel levels, providing insights into the sensors’ signals’ non-linear behavior at each analyzed aircraft attitude. The non-linear behavior is also influenced by the sensor saturation readings at 0 when above the fuel level and at 1 when submerged. The synthetic fuel sensor readings lay the baseline for a better understanding on how to compute the true fuel level from multiple sensor readings, and ultimately optimizing the amount of used sensors and their placement. The tool’s design offers significant improvements in aircraft fuel gauging accuracy, directly impacting aerostructures and instrumentation, and it is a key aspect of flight safety, fuel management, and navigation in aerospace technology. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

23 pages, 7311 KB  
Article
Optimization of Sensor Placement for Modal Testing Using Machine Learning
by Todd Kelmar, Maria Chierichetti and Fatemeh Davoudi Kakhki
Appl. Sci. 2024, 14(7), 3040; https://doi.org/10.3390/app14073040 - 4 Apr 2024
Cited by 3 | Viewed by 3765
Abstract
Modal testing is a common step in aerostructure design, serving to validate the predicted natural frequencies and mode shapes obtained through computational methods. The strategic placement of sensors during testing is crucial for accurately measuring the intended natural frequencies. However, conventional methodologies for [...] Read more.
Modal testing is a common step in aerostructure design, serving to validate the predicted natural frequencies and mode shapes obtained through computational methods. The strategic placement of sensors during testing is crucial for accurately measuring the intended natural frequencies. However, conventional methodologies for sensor placement are often time-consuming and involve iterative processes. This study explores the potential of machine learning techniques to enhance sensor selection methodologies. Three machine learning-based approaches are introduced and assessed, and their efficiencies are compared with established techniques. The evaluation of these methodologies is conducted using a numerical model of a beam to simulate real-world scenarios. The results offer insights into the efficacy of machine learning in optimizing sensor placement, presenting an innovative perspective on enhancing the efficiency and precision of modal testing procedures in aerostructure design. Full article
(This article belongs to the Special Issue Vibration Problems in Engineering Science)
Show Figures

Figure 1

29 pages, 13988 KB  
Article
A Road Map to the Structural Optimization of a Type-C Composite UAV
by Christoforos S. Rekatsinas, Dimitris K. Dimitriou and Nikolaos A. Chrysochoidis
Aerospace 2024, 11(3), 211; https://doi.org/10.3390/aerospace11030211 - 8 Mar 2024
Cited by 5 | Viewed by 4582
Abstract
The present paper investigates the design process and the dimensioning of a tailless type-C composite sandwich unmanned aerial vehicle (UAV). The objective is to investigate an innovative aircraft configuration which exceeds the standard approach of ribs and spars and replaces them with a [...] Read more.
The present paper investigates the design process and the dimensioning of a tailless type-C composite sandwich unmanned aerial vehicle (UAV). The objective is to investigate an innovative aircraft configuration which exceeds the standard approach of ribs and spars and replaces them with a sandwich structure for future unmanned aerial systems. The necessity of carbon fiber-reinforced materials arose due to the weight constraint of a Class C UAV, i.e., the whole vehicle must be under 25 kg, which limits the mass of the structure to 9 kg. The structural design of composite structures differs from the one of traditional isotropic structures. The number of holes should be limited, as drilling down the composite aerostructure would conclude to the generation of delaminations. In addition, the joints between sections with different thicknesses could lead to stress concentrations and disbands. Therefore, the present report is crucial for the continuance of the present project as it has contributed both to the structural design and assessment of the UAV. This work focusses on the computation of loads, the process of structural sizing through a multi-disciplinary optimization approach, and the simulation-based structural proof. Particular attention is paid to the specifically developed semi-analytical method for predicting the aero-elastic load. Based on the detailed finite element model of the global structure, the applicability of the minimum number of bolts as a major structural joining variant is proven. The design process from single components to the assembly of the overall aircraft results in the realization of the demonstrator structure. Full article
Show Figures

Figure 1

17 pages, 4471 KB  
Article
Aerostructural Design Optimization of Wind Turbine Blades
by Sagidolla Batay, Aigerim Baidullayeva, Yong Zhao, Dongming Wei, Akerke Baigarina, Erkhan Sarsenov and Yerkin Shabdan
Processes 2024, 12(1), 22; https://doi.org/10.3390/pr12010022 - 21 Dec 2023
Cited by 8 | Viewed by 8760
Abstract
This study presents an aerostructural optimization process for wind turbine blades aimed at enhancing the turbine’s performance. The optimization framework integrates DAFoam as the computational fluid dynamics (CFD) solver, TACS as the finite element method (FEM) solver, Mphys for fluid–structure coupling, and SNOPT [...] Read more.
This study presents an aerostructural optimization process for wind turbine blades aimed at enhancing the turbine’s performance. The optimization framework integrates DAFoam as the computational fluid dynamics (CFD) solver, TACS as the finite element method (FEM) solver, Mphys for fluid–structure coupling, and SNOPT as the optimizer within the OpenMDAO framework. The objective is to simultaneously increase the torque generated by the wind turbine while decreasing the mass of the blade, thereby improving its efficiency. The design variables in this optimization process are the blade shape and panel thickness. The aerodynamic objective function is torque, a key performance indicator for wind turbine efficiency. The structural objective function is the blade mass, as reducing mass is essential to minimize material and manufacturing costs. The optimization process utilizes the integrated capabilities of DAFoam, TACS, Mphys, and SNOPT to iteratively evaluate and modify the blade shape and panel thickness. The OpenMDAO framework facilitates seamless communication between the solvers and the optimizer, ensuring a well-coordinated, efficient optimization process. The results of the optimization show a 6.78% increase in torque, which indicates a significant improvement in the wind turbine’s energy production capacity. Additionally, a 4.22% decrease in blade mass demonstrates a successful reduction in material usage without compromising structural integrity. These findings highlight the potential of the proposed aerostructural optimization process to enhance the performance and cost-effectiveness of wind turbine blades, contributing to the advancement of sustainable energy solutions. This work represents the first attempt to implement DAFoam for wind turbine aerostructural design optimization. Full article
Show Figures

Figure 1

26 pages, 14250 KB  
Article
Experimental and Numerical Modal Analysis of a Composite Rocket Structure
by Taruansh Qaumi and Seyed M. Hashemi
Aerospace 2023, 10(10), 867; https://doi.org/10.3390/aerospace10100867 - 4 Oct 2023
Cited by 9 | Viewed by 7141
Abstract
Finite Element Analysis (FEA) is a powerful tool that can aid in the engineering design process to reduce cost and time. However, it is best used in conjunction with experimental data, through which its numerical results can be verified. This paper presents the [...] Read more.
Finite Element Analysis (FEA) is a powerful tool that can aid in the engineering design process to reduce cost and time. However, it is best used in conjunction with experimental data, through which its numerical results can be verified. This paper presents the experimental and numerical modal analyses of an experimental rocket aerostructure to verify the accuracy of the numerical models. This aerostructure has been through flight loads and a recovery. The first numerical results for the rocket showed a 96% difference with the experimental ones. Subsequently, three mass refinements were made to create calibrated FEM models whose results differed from the experimental ones by 19% to 8%. Additionally, as expected, the FEM results tended to overestimate the stiffness of structures. The numerical simulations for all components were performed through ANSYS software, and the experiments were conducted using the hammer tap test with laser vibrometers as sensors. Full article
(This article belongs to the Special Issue Structural Dynamics and Control (2nd Edition))
Show Figures

Figure 1

Back to TopTop