Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (95)

Search Parameters:
Keywords = advanced oxidation photocatalytic system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 3004 KiB  
Review
Research and Application of Ga-Based Liquid Metals in Catalysis
by Yu Zhang, Ying Xin and Qingshan Zhao
Nanomaterials 2025, 15(15), 1176; https://doi.org/10.3390/nano15151176 - 30 Jul 2025
Viewed by 184
Abstract
In recent years, Ga-based liquid metals have emerged as a prominent research focus in catalysis, owing to their unique properties, including fluidity, low melting point, high thermal and electrical conductivity, and tunable surface characteristics. This review summarizes the synthesis strategies for Ga-based liquid [...] Read more.
In recent years, Ga-based liquid metals have emerged as a prominent research focus in catalysis, owing to their unique properties, including fluidity, low melting point, high thermal and electrical conductivity, and tunable surface characteristics. This review summarizes the synthesis strategies for Ga-based liquid metal catalysts, with a focus on recent advances in their applications across electrocatalysis, thermal catalysis, photocatalysis, and related fields. In electrocatalysis, these catalysts exhibit potential for reactions such as electrocatalytic CO2 reduction, electrocatalytic ammonia synthesis, electrocatalytic hydrogen production, and the electrocatalytic oxidation of alcohols. As to thermal catalysis, these catalysts are employed in processes such as alkane dehydrogenation, selective hydrogenation, thermocatalytic CO2 reduction, thermocatalytic ammonia synthesis, and thermocatalytic plastic degradation. In photocatalysis, they can be used in other photocatalytic reactions such as organic matter degradation and overall water splitting. Furthermore, Ga-based liquid metal catalysts also exhibit distinct advantages in catalytic reactions within battery systems and mechano-driven catalysis, offering innovative concepts and technical pathways for developing novel catalytic systems. Finally, this review discusses the current challenges and future prospects in Ga-based liquid metal catalysis. Full article
Show Figures

Figure 1

32 pages, 1689 KiB  
Review
Photocatalytic Degradation of Microplastics in Aquatic Environments: Materials, Mechanisms, Practical Challenges, and Future Perspectives
by Yelriza Yeszhan, Kalampyr Bexeitova, Samgat Yermekbayev, Zhexenbek Toktarbay, Jechan Lee, Ronny Berndtsson and Seitkhan Azat
Water 2025, 17(14), 2139; https://doi.org/10.3390/w17142139 - 18 Jul 2025
Viewed by 559
Abstract
Due to its persistence and potential negative effects on ecosystems and human health, microplastic pollution in aquatic environments has become a major worldwide concern. Photocatalytic degradation is a sustainable manner to degrade microplastics to non-toxic by-products. In this review, comprehensive discussion focuses on [...] Read more.
Due to its persistence and potential negative effects on ecosystems and human health, microplastic pollution in aquatic environments has become a major worldwide concern. Photocatalytic degradation is a sustainable manner to degrade microplastics to non-toxic by-products. In this review, comprehensive discussion focuses on the synergistic effects of various photocatalytic materials including TiO2, ZnO, WO3, graphene oxide, and metal–organic frameworks for producing heterojunctions and involving multidimensional nanostructures. Such mechanisms can include the generation of reactive oxygen species and polymer chain scission, which can lead to microplastic breakdown and mineralization. The advancements of material modifications in the (nano)structure of photocatalysts, doping, and heterojunction formation methods to promote UV and visible light-driven photocatalytic activity is discussed in this paper. Reactor designs, operational parameters, and scalability for practical applications are also reviewed. Photocatalytic systems have shown a lot of development but are hampered by shortcomings which include a lack of complete mineralization and production of intermediary secondary products; variability in performance due to the fluctuation in the intensity of solar light, limited UV light, and environmental conditions such as weather and the diurnal cycle. Future research involving multifunctional, environmentally benign photocatalytic techniques—e.g., doped composites or composite-based catalysts that involve adsorption, photocatalysis, and magnetic retrieval—are proposed to focus on the mechanism of utilizing light effectively and the environmental safety, which are necessary for successful operational and industrial-scale remediation. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

32 pages, 1477 KiB  
Review
Photochemical Catalysts for Hydrocarbons and Biomass Derivates Reforming in Intensified Processes
by Mattia Boscherini and Francesco Miccio
Processes 2025, 13(7), 2150; https://doi.org/10.3390/pr13072150 - 6 Jul 2025
Viewed by 322
Abstract
Photocatalysts for applications in different sectors, e.g., civil and environmental, are already developed to a mature extent and allow, for example, the purification of gaseous and liquid streams or the self−cleaning surfaces. The application of photocatalysts in the industrial sector is, however, quite [...] Read more.
Photocatalysts for applications in different sectors, e.g., civil and environmental, are already developed to a mature extent and allow, for example, the purification of gaseous and liquid streams or the self−cleaning surfaces. The application of photocatalysts in the industrial sector is, however, quite limited. The review addresses the specific topic of the photocatalytic reforming of methane and biomass derivates. In this regard, recent advances in materials science are reported and discussed, in particular regarding doped and modified oxides (TiO2 and ZrO2) or non−oxidic ceramics. Concerning process integration, a comparison between traditional two−dimensional photoreactors and fluidized bed systems is proposed and design guidelines are drawn, with indications of the possible benefits. Photocatalytic fluidized beds appear more suitable for small− and medium−scale integrated processes of reforming, operating at lower temperatures than traditional ones for distributed hydrogen generation. Full article
(This article belongs to the Special Issue Mechanisms, Devices and Applications of Photocatalytic Processes)
Show Figures

Figure 1

24 pages, 1743 KiB  
Review
Metformin Degradation by Advanced Oxidation Processes: Performance, Limitations, and Environmental Concerns
by Jaime M. Castañeda-Sánchez, Felipe de J. Silerio-Vázquez, Ignacio Villanueva-Fierro, Juan Carlos García-Prieto, Luis A. González-Burciaga and José B. Proal-Nájera
Int. J. Mol. Sci. 2025, 26(13), 5925; https://doi.org/10.3390/ijms26135925 - 20 Jun 2025
Viewed by 593
Abstract
This review provides a descriptive analysis of metformin, highlighting its environmental presence and classification as an emerging contaminant. It examines the risks associated with metformin and evaluates advanced oxidation processes (AOPs) for its degradation, including photolysis, photocatalysis, electrolysis, and ozonation. Metformin, a widely [...] Read more.
This review provides a descriptive analysis of metformin, highlighting its environmental presence and classification as an emerging contaminant. It examines the risks associated with metformin and evaluates advanced oxidation processes (AOPs) for its degradation, including photolysis, photocatalysis, electrolysis, and ozonation. Metformin, a widely used biguanide for type 2 diabetes, is increasingly detected in aquatic environments due to its incomplete metabolism in humans, raising ecological concerns. While certain AOPs, such as ultraviolet (UV) photocatalysis and ozonation, achieve high degradation rates of 99.9% and 100%, respectively, they produce toxic by-products harmful to aquatic systems. Solar photocatalysis, despite a lower degradation rate (74.22%), stands out for operating without artificial energy and generating fewer hazardous by-products. The review identifies gaps in current degradation strategies and underscores the need for clean, sustainable methods. Future research directions include advancing biological and photocatalytic technologies to improve AOPs’ efficiency while minimizing environmental risks. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Graphical abstract

13 pages, 3875 KiB  
Article
Enhanced Peroxydisulfate Activation via Fe-Doped BiOBr for Visible-Light Photocatalytic Degradation of Paracetamol
by Zhigang Wang, Mengxi Cheng, Qiong Liu and Rong Chen
Catalysts 2025, 15(6), 594; https://doi.org/10.3390/catal15060594 - 16 Jun 2025
Viewed by 417
Abstract
Fe-doped BiOBr nanomaterials with varying Fe concentrations were synthesized using a solvothermal method. Paracetamol (APAP) was selected as the target pollutant to evaluate the visible-light-driven peroxydisulfate (PDS) activation performance of the prepared catalysts. Among all samples, 5% Fe-doped BiOBr (5% Fe-BOB) exhibited the [...] Read more.
Fe-doped BiOBr nanomaterials with varying Fe concentrations were synthesized using a solvothermal method. Paracetamol (APAP) was selected as the target pollutant to evaluate the visible-light-driven peroxydisulfate (PDS) activation performance of the prepared catalysts. Among all samples, 5% Fe-doped BiOBr (5% Fe-BOB) exhibited the highest catalytic efficiency, which can completely degrade APAP in 30 min under visible light irradiation. The degradation kinetics of APAP, PDS consumption, and the dominant reactive species in the 5% Fe-BOB/PDS/visible light system were systematically investigated. Results revealed that both photocatalyst dosage and PDS concentration significantly influenced activation efficiency. The primary active species responsible for APAP degradation were identified as photogenerated holes (h+) and singlet oxygen (1O2). Furthermore, cycling tests and control experiments confirmed that the 5% Fe-BOB/PDS/visible light system maintained high stability and effectively degraded APAP across a wide pH range. This work provides an efficient and stable photocatalytic system for pharmaceutical wastewater treatment through PDS-based advanced oxidation processes. Full article
Show Figures

Figure 1

18 pages, 1196 KiB  
Article
Diazepam Photocatalytic Degradation in Laboratory- vs. Pilot-Scale Systems: Differences in Degradation Products and Reaction Kinetics
by Kristina Tolić Čop, Mia Gotovuša, Dragana Mutavdžić Pavlović, Dario Dabić and Ivana Grčić
Nanomaterials 2025, 15(11), 827; https://doi.org/10.3390/nano15110827 - 29 May 2025
Viewed by 459
Abstract
Industrial growth led to the expansion of existing environmental problems, where different kinds of pollutants can enter the environment by many known routes, particularly through wastewater. Among other contaminants, pharmaceuticals, such as diazepam, once released, pose a significant challenge related to their removal [...] Read more.
Industrial growth led to the expansion of existing environmental problems, where different kinds of pollutants can enter the environment by many known routes, particularly through wastewater. Among other contaminants, pharmaceuticals, such as diazepam, once released, pose a significant challenge related to their removal from complex environmental matrices due to their persistence and potential toxicity. For this reason, it is a great challenge to find suitable methods for the treatment of wastewater. The aim of this paper was to investigate the stability of diazepam, subjecting it to various degradation processes (hydrolysis and photolysis), focusing on photocatalysis, an advanced oxidation process commonly used for the purification of industrial wastewater. The photocatalytic system consisted of UV-A and simulated solar irradiation with titanium dioxide (TiO2) immobilized on a glass mesh as a photocatalyst, with an additional reaction performed in the presence of an oxidizing agent, i.e., hydrogen peroxide, to improve diazepam removal from water matrices. The kinetic rate of diazepam degradation was monitored with a high-performance liquid chromatograph coupled with a photodiode array detector (HPLC-PDA). The target compound was characterized as a hydrolytically and photolytically stable compound with t1/2 = 25 h. The presence of an immobilized TiO2 catalyst contributed significantly to the degradation of diazepam under the influence of UV-A and simulated solar radiation, with t1/2 in the range of 1.61–2.56 h. Five degradation products of diazepam were identified at the laboratory scale by MS analysis (m/z = 267, m/z = 273, m/z = 301, m/z = 271, and m/z = 303), while the toxicity assessment revealed that diazepam exhibited developmental toxicity and a low bioaccumulation factor. The pilot-scale process resulted in significant improvements in diazepam degradation with the fastest degradation kinetics (0.6888 h−1). These results obtained at the pilot scale highlight the potential for industrial-scale implementation, offering a promising and innovative solution for pharmaceutical removal from wastewater. Full article
Show Figures

Graphical abstract

35 pages, 3292 KiB  
Review
Photocatalysis and Photodynamic Therapy in Diabetic Foot Ulcers (DFUs) Care: A Novel Approach to Infection Control and Tissue Regeneration
by Paweł Mikziński, Karolina Kraus, Rafał Seredyński, Jarosław Widelski and Emil Paluch
Molecules 2025, 30(11), 2323; https://doi.org/10.3390/molecules30112323 - 26 May 2025
Viewed by 828
Abstract
Photocatalysis and photodynamic therapy have been increasingly used in the management of diabetic foot ulcers (DFUs), and their integration into increasingly innovative treatment protocols enables effective infection control. Advanced techniques such as antibacterial photodynamic therapy (aPDT), liposomal photocatalytic carriers, nanoparticles, and nanomotors—used alone, [...] Read more.
Photocatalysis and photodynamic therapy have been increasingly used in the management of diabetic foot ulcers (DFUs), and their integration into increasingly innovative treatment protocols enables effective infection control. Advanced techniques such as antibacterial photodynamic therapy (aPDT), liposomal photocatalytic carriers, nanoparticles, and nanomotors—used alone, in combination, or with the addition of antibiotics, lysozyme, or phage enzymes—offer promising solutions for wound treatment. These approaches are particularly effective even in the presence of comorbidities such as angiopathies, neuropathies, and immune system disorders, which are common among diabetic patients. Notably, the use of combination therapies holds great potential for addressing challenges within diabetic foot ulcers, including hypoxia, poor circulation, high glucose levels, increased oxidative stress, and rapid biofilm formation—factors that significantly hinder wound healing in diabetic patients. The integration of modern therapeutic strategies is essential for effective clinical practice, starting with halting infection progression, ensuring its effective eradication, and promoting proper tissue regeneration, especially considering that, according to the WHO, 830 million people worldwide suffer from diabetes. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions, 2nd Edition)
Show Figures

Figure 1

25 pages, 1746 KiB  
Review
The Influence Mechanism of Dissolved Organic Matter on the Photocatalytic Oxidation of Pharmaceuticals and Personal Care Products
by Jie Wang, Minyi Zhu, Anli Sun, Rongfang Yuan, Huilun Chen and Beihai Zhou
Molecules 2025, 30(11), 2266; https://doi.org/10.3390/molecules30112266 - 22 May 2025
Viewed by 580
Abstract
With the worsening global water pollution crisis, pharmaceuticals and personal care products (PPCPs) have been increasingly detected in aquatic environments. The effective removal of PPCPs remains challenging for conventional water treatment technologies, whereas photocatalytic technology has shown distinct promise. Dissolved organic matter (DOM), [...] Read more.
With the worsening global water pollution crisis, pharmaceuticals and personal care products (PPCPs) have been increasingly detected in aquatic environments. The effective removal of PPCPs remains challenging for conventional water treatment technologies, whereas photocatalytic technology has shown distinct promise. Dissolved organic matter (DOM), a ubiquitous component of aquatic ecosystems, exerts multifaceted effects on the photocatalytic oxidation of PPCPs. In this article, the influence of DOM on the performance of various photocatalysts in PPCP removal is systematically summarized and analyzed. This review highlights DOM’s role in altering the migration and transformation of PPCPs via processes including adsorption and complexation. The adsorption of PPCPs on photocatalysts is achieved by competitive adsorption or by providing more adsorption sites. DOM modifies the structural properties of photocatalysts through mechanisms such as ligand exchange, intermolecular forces, electrostatic forces, and hydrophobic interactions. DOM inhibits the formation of active species via light attenuation and shielding effects while simultaneously enhancing their generation through photosensitization and electron transfer facilitation. In this review, the interaction mechanism among DOM, PPCPs, and photocatalysts within the PPCP photocatalytic oxidation system is expounded on. These findings provide novel insights into optimizing photocatalytic reaction conditions and enhancing treatment efficiency, while providing a theoretical foundation for advancing efficient, eco-friendly PPCPs remediation technologies. Full article
(This article belongs to the Special Issue Advanced Oxidation of Emerging Pollutants in Water)
Show Figures

Graphical abstract

17 pages, 3829 KiB  
Article
Innovative Dual-Functional Photocatalyst Design for Precision Water Remediation
by Yike Li and Xian Liu
Crystals 2025, 15(5), 483; https://doi.org/10.3390/cryst15050483 - 21 May 2025
Viewed by 463
Abstract
This study pioneers the development of a synergistic Ag-doped molecularly imprinted TiO2 photocatalyst (MIP-Ag-TiO2) through a multi-strategy engineering approach, integrating molecular imprinting technology with plasmonic metal modification via a precisely optimized sol–gel protocol. Breaking from conventional non-selective photocatalysts, our material [...] Read more.
This study pioneers the development of a synergistic Ag-doped molecularly imprinted TiO2 photocatalyst (MIP-Ag-TiO2) through a multi-strategy engineering approach, integrating molecular imprinting technology with plasmonic metal modification via a precisely optimized sol–gel protocol. Breaking from conventional non-selective photocatalysts, our material features an engineered surface architecture that combines selective molecular recognition sites with enhanced charge separation capabilities, specifically tailored for the targeted degradation of recalcitrant salicylic acid (SA) contaminants. Advanced characterization (XRD, EPR, FT-IR, TEM-EDS) reveals unprecedented structure–activity relationships, demonstrating how template molecule ratios (Ti:SA = 5:1) and calcination parameters (550 °C) collaboratively optimize both adsorption selectivity and quantum efficiency. The optimized MIP-Ag-TiO2 achieves breakthrough performance metrics: 98.6% SA degradation efficiency at 1% Ag doping, coupled with a record selectivity coefficient R = 7.128. Mechanistic studies employing radical trapping experiments identify a dual •OH/O2-mediated degradation pathway enabled by the Ag-TiO2 Schottky junction. This work establishes a paradigm-shifting “capture-and-destroy” photocatalytic system that simultaneously addresses the critical challenges of selectivity and quantum yield limitations in advanced oxidation processes, positioning molecularly imprinted plasmonic photocatalysts as next-generation smart materials for precision water purification. Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
Show Figures

Figure 1

47 pages, 4051 KiB  
Review
Zinc Oxide Nanoparticles in Modern Science and Technology: Multifunctional Roles in Healthcare, Environmental Remediation, and Industry
by Veeranjaneya Reddy Lebaka, Perugu Ravi, Madhava C. Reddy, Chandrasekhar Thummala and Tapas Kumar Mandal
Nanomaterials 2025, 15(10), 754; https://doi.org/10.3390/nano15100754 - 17 May 2025
Cited by 3 | Viewed by 1748
Abstract
Zinc oxide nanoparticles (ZnO NPs) have garnered significant attention across various scientific and technological domains due to their unique physicochemical properties, including high surface area, photostability, biocompatibility, and potent antimicrobial activity. These attributes make ZnO NPs highly versatile, enabling their application in biomedicine, [...] Read more.
Zinc oxide nanoparticles (ZnO NPs) have garnered significant attention across various scientific and technological domains due to their unique physicochemical properties, including high surface area, photostability, biocompatibility, and potent antimicrobial activity. These attributes make ZnO NPs highly versatile, enabling their application in biomedicine, environmental science, industry, and agriculture. They serve as effective antimicrobial agents in medical treatments and as catalysts in environmental purification processes, owing to their ability to generate reactive oxygen species (ROS) and exhibit photocatalytic activity under UV light. Moreover, ZnO NPs are being increasingly employed in advanced drug delivery systems and cancer therapies, highlighting their potential in modern medicine. Their growing popularity is further supported by their ease of synthesis, cost-effectiveness, and capacity for diverse functionalization, which expand their utility across multiple sectors. This review focuses on research from the past five years (2020–2025) on the practical uses of ZnO nanoparticles in the biomedical, environmental, industrial, and agricultural fields. It also highlights current trends, existing challenges, and future perspectives. By examining these aspects, the article provides a comprehensive understanding of the versatile roles of ZnO NPs and their emerging significance in science and technology. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

17 pages, 4566 KiB  
Article
Visible-Light Photocatalytic Degradation of Methylene Blue by Yb3+-Doped 3D Nanosheet Arrays BiOI Anchored on High-Chloride Fly Ash Composites
by Shuxian Qiu, Danhua Zhao, Runtong Luo, Xiaohong Liu, Jianping Yang, Lijun Xie, Xingyuan Gao and Liaochuan Jiang
Inorganics 2025, 13(5), 147; https://doi.org/10.3390/inorganics13050147 - 6 May 2025
Viewed by 660
Abstract
A Yb3+-doped BiOI 3D nanosheet array composite was successfully fabricated through a solvothermal deposition strategy on flexible carbon cloth (CC). This composite was subsequently integrated with high-chlorine fly ash (FA) blocks to form the Yb-BiOI/CC/FA hybrid material. Comprehensive characterization was performed [...] Read more.
A Yb3+-doped BiOI 3D nanosheet array composite was successfully fabricated through a solvothermal deposition strategy on flexible carbon cloth (CC). This composite was subsequently integrated with high-chlorine fly ash (FA) blocks to form the Yb-BiOI/CC/FA hybrid material. Comprehensive characterization was performed using multiple analytical techniques for crystalline phase identification, morphological analysis, valence state, band structure evaluation, and charge carrier separation assessment. Electrochemical measurements were conducted to evaluate the material’s electronic properties. Experimental results demonstrated superior photocatalytic performance under visible light irradiation, with the Yb-BiOI/CC/FA composite achieving 52.87% methylene blue degradation efficiency. The reaction rate constant of this modified nanomaterial was approximately 2.1 times higher than that of pristine BiOI/CC/FA. Radical trapping experiments revealed that superoxide radicals (·O2) served as the predominant oxidative species. This study presents a dual-benefit strategy for environmental remediation by simultaneously achieving sustainable waste valorization of industrial byproducts (FA) and developing high-efficiency photocatalytic materials. The successful integration of rare-earth metal modification with substrate engineering provides valuable insights for designing advanced photocatalytic systems for pollutant degradation. Full article
Show Figures

Graphical abstract

14 pages, 4461 KiB  
Article
Photo-Enhanced Peroxymonosulfate Activation via Well-Dispersed Cobalt Nanoparticles Encapsulated on Carbon Nitride for 2,8-Dichlorodibenzo-p-dioxin Removal
by Yao Yue, Teer Wen, Yunfei He, Xuetong Qu, Jibo Dou, Yuchi Zhong, Jiafeng Ding and Hangjun Zhang
Molecules 2025, 30(9), 1917; https://doi.org/10.3390/molecules30091917 - 25 Apr 2025
Viewed by 407
Abstract
The removal of polychlorinated dibenzo-p-dioxins (PCDDs) via advanced oxidation processes (AOPs) poses a significant challenge due to their high toxicity and chemical stability. In this study, a series of well-dispersed cobalt nanoparticles supported on carbon nitrides (xCoCNs) was synthesized to activate peroxymonosulfate (PMS) [...] Read more.
The removal of polychlorinated dibenzo-p-dioxins (PCDDs) via advanced oxidation processes (AOPs) poses a significant challenge due to their high toxicity and chemical stability. In this study, a series of well-dispersed cobalt nanoparticles supported on carbon nitrides (xCoCNs) was synthesized to activate peroxymonosulfate (PMS) for 2,8-dichlorodibenzo-p-dioxin (2,8-DCDD) degradation under visible light. The catalysts prepared were characterized using SEM, XPS, photoluminescence (PL), and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). Among them, 2CoCN with an optimal Co content exhibited the highest photocatalytic efficiency, achieving 90.5% degradation of 2,8-DCDD within 160 min under visible light/persulfate oxidation (Vis+PMS+2CoCN system). Compared with other catalysts, 2CoCN exhibited superior optical performance and a narrower bandgap, enabling efficient excitation under visible light (Vis). Notably, all xCoCNs demonstrated pH adaptability, achieving complete degradation of 2,8-DCDD under neutral conditions (pH = 7) without additional acid/alkali adjustment. Through rigorous free radical capture experiments, it was demonstrated that SO4•−, OH and 1O2 were the primary reactive oxygen species (ROS) in the Vis+PMS+2CoCN system. The catalyst exhibited excellent reusability, with stable activity retained over five cycles. Based on these findings, degradation pathways and mechanisms of 2,8-DCDD in the 2CoCN+Vis+PMS system were proposed. This study presents an effective approach for PCDD abatement in wastewater treatment applications. Full article
Show Figures

Figure 1

25 pages, 5338 KiB  
Review
Advances in Selective Photocatalytic Oxidation of p-Xylene to Terephthalic Acid as a Sustainable Route: A Short Review on Photocatalyst Formulation and Related Reaction Mechanisms
by Antonietta Mancuso, Olga Sacco and Vincenzo Vaiano
Photochem 2025, 5(2), 11; https://doi.org/10.3390/photochem5020011 - 23 Apr 2025
Viewed by 1340
Abstract
This review examines the production of terephthalic acid via the oxidation of p-xylene, comparing catalytic and photocatalytic approaches. The commercial AMOCO process employs a cobalt/manganese/bromide catalyst system but requires harsh conditions, including high temperatures and acidic environments, raising environmental and safety concerns. [...] Read more.
This review examines the production of terephthalic acid via the oxidation of p-xylene, comparing catalytic and photocatalytic approaches. The commercial AMOCO process employs a cobalt/manganese/bromide catalyst system but requires harsh conditions, including high temperatures and acidic environments, raising environmental and safety concerns. While effective, its complexity and severe reaction conditions highlight the need for further optimization. In contrast, photocatalytic oxidation under milder conditions offers a more sustainable alternative. However, research on truly heterogeneous photocatalysts remains limited. The development of hybrid catalysts that exclude expensive noble metals holds promise for selective terephthalic acid production with minimal by-products. Advances in photocatalyst design—particularly in non-metallic and hybrid systems—could address key challenges such as limited light absorption and charge recombination, enhancing overall efficiency. Despite these advancements, maintaining high selectivity for terephthalic acid while minimizing by-product formation remains a critical challenge. Additionally, scaling up the photocatalytic process for industrial applications requires overcoming issues related to catalyst stability, recyclability, and cost-effectiveness. Continued research on improving catalyst performance and long-term stability will be essential for establishing photocatalytic oxidation of p-xylene as a viable and environmentally friendly route for terephthalic acid production. Full article
(This article belongs to the Special Issue Feature Review Papers in Photochemistry)
Show Figures

Figure 1

15 pages, 2440 KiB  
Article
Synergistic Effects of Photocatalysis, Ozone Treatment, and Metal Catalysts on the Decomposition of Acetaldehyde
by Tsuyoshi Ochiai, Kengo Hamada and Michifumi Okui
Catalysts 2025, 15(2), 141; https://doi.org/10.3390/catal15020141 - 3 Feb 2025
Viewed by 1920
Abstract
This study explores the synergistic interactions between photocatalysis, ozone treatment, and metal catalysts in the decomposition of acetaldehyde, a representative volatile organic compound (VOC). The study addresses the growing need for efficient air purification technologies by integrating advanced oxidation processes. Metal catalysts, particularly [...] Read more.
This study explores the synergistic interactions between photocatalysis, ozone treatment, and metal catalysts in the decomposition of acetaldehyde, a representative volatile organic compound (VOC). The study addresses the growing need for efficient air purification technologies by integrating advanced oxidation processes. Metal catalysts, particularly manganese oxide-based materials, were combined with photocatalysis and ozonation to investigate their impact on acetaldehyde removal efficiency. Experimental results revealed that the treatment integrating these methods significantly outperformed conventional single-process treatments. Metal catalysts facilitated the initial oxidation of acetaldehyde, while photocatalysis accelerated subsequent stages, including the mineralisation of intermediates. Ozone contributed additional reactive oxidative species, further enhancing decomposition rates. These findings provide valuable insights into the design of efficient VOC removal systems, demonstrating that integrating metal catalysts with photocatalytic and ozonation processes offers a promising strategy for improving air purification technologies. This approach has potential applications in environmental remediation and indoor air quality management. Full article
(This article belongs to the Special Issue TiO2 Photocatalysts: Design, Optimization and Application)
Show Figures

Graphical abstract

30 pages, 4050 KiB  
Article
Surfactant-Assisted Manipulation of CeO2@poly(acrylic Acid-Co-Acryl Amide) Nanocomposite for Visible-Light-Driven Persulfate-Activated Photocatalytic Oxidation of Organic Pollutants from Wastewater
by Fadya A. Saadoon, Mohamed A. Mekewi, Al-Saeed H. Al-Musalmee and Atef S. Darwish
Catalysts 2025, 15(1), 86; https://doi.org/10.3390/catal15010086 - 17 Jan 2025
Viewed by 801
Abstract
Herein, anionic (sodium dodecylbenzene sulfonate, SDBS) and cationic (cetyltrimethylammonium bromide, CTAB) surfactants are involved in the synthesis of a poly(acrylic acid-co-acrylamide) copolymer, p(AA-co-AM), containing nanoceria (CeO2). The physicochemical and optical properties of CTAB-CeO2@p(AA-co-AM) and SDBS-CeO2@p(AA-co-AM) nanocomposites can [...] Read more.
Herein, anionic (sodium dodecylbenzene sulfonate, SDBS) and cationic (cetyltrimethylammonium bromide, CTAB) surfactants are involved in the synthesis of a poly(acrylic acid-co-acrylamide) copolymer, p(AA-co-AM), containing nanoceria (CeO2). The physicochemical and optical properties of CTAB-CeO2@p(AA-co-AM) and SDBS-CeO2@p(AA-co-AM) nanocomposites can be studied using different techniques. The physicochemical properties of nanoceria-immobilized p(AA-co-AM) are significantly developed when handled with SDBS. Compared to the CTAB-CeO2@p(AA-co-AM) nanocomposite, SDBS-CeO2@p(AA-co-AM) exhibits pronounced negatively charged mesoporous surfaces with Corel reef-like morphology. SDBS-CeO2@p(AA-co-AM) contains ceria nano-cubes of ~30 nm size, evenly dispersed along a copolymeric moiety, displaying narrower energy bandgap. The photocatalytic efficiency of this nanocomposite is performed in activating persulfate-ions (PS) under visible light irradiation, yielding reactive oxygen species that effectively treat dye wastewater. Advanced SDBS-CeO2@p(AA-co-AM)/PS/Vis photocatalytic oxidation system possesses ~100% methylene blue degradation efficiency within 2 h for five consecutive purification-cycles with thorough mineralization performance. Such superior photo-degradability consults efficacious synergistic combinations gathering the nanocomposite, persulphate-ions, and visible light radiation, yielding an escalated synergy-index value (SI = 6) with intensive generation of reactive-oxidizing species (SO4•−/h+ synergistic ratio 1:5.6). Including anionic-surfactant molecules in the synthesis of metal-containing copolymer nanocomposites is indispensably profitable in the future for the treatment of industrial wastewater. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Figure 1

Back to TopTop