Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (131)

Search Parameters:
Keywords = adipose progenitors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 11818 KiB  
Article
Cryopreservation and Validation of Microfragmented Adipose Tissue for Autologous Use in Knee Osteoarthritis Treatment
by Marija Zekušić, Petar Brlek, Lucija Zenić, Vilim Molnar, Maja Ledinski, Marina Bujić Mihica, Adela Štimac, Beata Halassy, Snježana Ramić, Dominik Puljić, Tiha Vučemilo, Carlo Tremolada, Srećko Sabalić, David C. Karli, Dimitrios Tsoukas and Dragan Primorac
Int. J. Mol. Sci. 2025, 26(14), 6969; https://doi.org/10.3390/ijms26146969 - 20 Jul 2025
Viewed by 441
Abstract
Micro-fragmented adipose tissue (MFAT) is a promising autologous therapy for knee osteoarthritis. To avoid repeated liposuction procedures for its clinical application, MFAT obtained from patients with knee osteoarthritis was stored at −80 °C in a tissue bank. This study describes the preparation, cryopreservation, [...] Read more.
Micro-fragmented adipose tissue (MFAT) is a promising autologous therapy for knee osteoarthritis. To avoid repeated liposuction procedures for its clinical application, MFAT obtained from patients with knee osteoarthritis was stored at −80 °C in a tissue bank. This study describes the preparation, cryopreservation, thawing, and washing, as well as comprehensive analysis of cell populations in fresh and MFAT thawed after two years. Immunophenotyping of both fresh and thawed MFAT showed a significant presence of endothelial progenitors and pericytes in the stromal vascular fraction. Viability before (59.75%) and after freezing (55.73%) showed no significant difference. However, the average cell count per gram of MFAT was significantly reduced in thawed samples (3.00 × 105) compared to fresh ones (5.64 × 105), likely due to processing steps. Thawed MFAT samples showed increased CD73 expression on the CD31highCD34high subset of EP and SA-ASC, as well as increased expression of CD105 on EP, the CD31lowCD34low subset of EP, pericytes, and SA-ASC. Microbiological testing confirmed 100% sterility, and double washing efficiently removed DMSO, confirming sample safety. Histological analysis revealed healthy, uniformly shaped adipocytes with intact membranes. This approach allows accurate estimation of cell yield for intra-articular injection, ensuring delivery of the target cell number into the knee. Quality control analysis confirms that cryopreserved MFAT retains high cellular and structural integrity, supporting its safety and suitability for clinical application. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

16 pages, 2433 KiB  
Article
A Single-Cell Assessment of Intramuscular and Subcutaneous Adipose Tissue in Beef Cattle
by Mollie M. Green, Hunter R. Ford, Alexandra P. Tegeler, Oscar J. Benitez, Bradley J. Johnson and Clarissa Strieder-Barboza
Agriculture 2025, 15(14), 1545; https://doi.org/10.3390/agriculture15141545 - 18 Jul 2025
Viewed by 1428
Abstract
Deposition of intramuscular fat (IM), also known as marbling, is the deciding factor of beef quality grade in the U.S. Defining molecular mechanisms underlying the differential deposition of adipose tissue in distinct anatomical areas in beef cattle is key to the development of [...] Read more.
Deposition of intramuscular fat (IM), also known as marbling, is the deciding factor of beef quality grade in the U.S. Defining molecular mechanisms underlying the differential deposition of adipose tissue in distinct anatomical areas in beef cattle is key to the development of strategies for marbling enhancement while limiting the accumulation of excessive subcutaneous adipose tissue (SAT). The objective of this exploratory study was to define the IM and SAT transcriptional heterogeneity at the whole tissue and single-nuclei levels in beef steers. Longissimus dorsi muscle samples (9–11th rib) were collected from two finished beef steers at harvest to dissect matched IM and adjacent SAT (backfat). Total RNA from IM and SAT was isolated and sequenced in an Illumina NovaSeq 6000. Nuclei from the same samples were isolated by dounce homogenization, libraries generated with 10× Genomics, and sequenced in an Illumina NovaSeq 6000, followed by analysis via Cell Ranger pipeline and Seurat in RStudio (v4.3.2) By the expression of signature marker genes, single-nuclei RNA sequencing (snRNAseq) analysis identified mature adipocytes (AD; ADIPOQ, LEP), adipose stromal and progenitor cells (ASPC; PDGFRA), endothelial cells (EC; VWF, PECAM1), smooth muscle cells (SMC; NOTCH3, MYL9) and immune cells (IMC; CD163, MRC1). We detected six cell clusters in SAT and nine in IM. Across IM and SAT, AD was the most abundant cell type, followed by ASPC, SMC, and IMC. In SAT, AD made up 50% of the cellular population, followed by ASPC (31%), EC (14%), IMC (1%), and SMC (4%). In IM depot, AD made up 23% of the cellular population, followed by ASPC at 19% of the population, EC at 28%, IMC at 7% and SMC at 12%. The abundance of ASPC and AD was lower in IM vs. SAT, while IMC was increased, suggesting a potential involvement of immune cells on IM deposition. Accordingly, both bulk RNAseq and snRNAseq analyses identified activated pathways of inflammation and metabolic function in IM. These results demonstrate distinct transcriptional cellular heterogeneity between SAT and IM depots in beef steers, which may underly the mechanisms by which fat deposits in each depot. The identification of depot-specific cell populations in IM and SAT via snRNAseq analysis has the potential to reveal target genes for the modulation of fat deposition in beef cattle. Full article
Show Figures

Figure 1

21 pages, 935 KiB  
Review
From Adipose to Action: Reprogramming Stem Cells for Functional Neural Progenitors for Neural Regenerative Therapy
by Junjie Peng, Zhu Zhang, Min Li, Ken Kin Lam Yung and King-ho Cheung
Int. J. Mol. Sci. 2025, 26(14), 6599; https://doi.org/10.3390/ijms26146599 - 9 Jul 2025
Viewed by 566
Abstract
Neural stem cells have shown great potential in the therapy of neurodegenerative diseases such as Parkinson’s disease (PD), because of their ability to differentiate into various types of neural cells and substitute for damaged neurons. Their clinical application is, however, impeded by limitations [...] Read more.
Neural stem cells have shown great potential in the therapy of neurodegenerative diseases such as Parkinson’s disease (PD), because of their ability to differentiate into various types of neural cells and substitute for damaged neurons. Their clinical application is, however, impeded by limitations such as low survival rates following transplantation, low efficiency of differentiation, the potential for tumorigenesis, and the risk of immune rejection by the host. Adipose-derived stem cells (ADSCs) have become increasingly popular as an alternative tool in regenerative medicine due to their accessibility, multipotency, and low immunogenicity. The recent advance in inducing ADSCs into neural stem cell-like cells (iNSCs) opens up a new avenue for the treatment of PD by restoring dopaminergic neuron populations. Here, the biological characteristics, induction protocols, molecular mechanisms, and prospective applications of ADSCs in neural repair are summarized systematically. We also covered current technical challenges, such as differentiation protocol optimization and functional integration, and future perspectives, including biomaterial and gene editing applications to enhance ADSC-based therapies. With these challenges met, ADSCs hold excellent potential for advancing personalized and combination therapies for neurodegenerative diseases. Full article
(This article belongs to the Special Issue Challenges and Innovation in Neurodegenerative Diseases, 2nd Edition)
Show Figures

Graphical abstract

19 pages, 8196 KiB  
Article
Dual Modulation of Adipogenesis and Apoptosis by PPARG Agonist Rosiglitazone and Antagonist Betulinic Acid in 3T3-L1 Cells
by Patsawee Sriboonaied, Pornwipa Phuangbubpha, Puretat Saetan, Purin Charoensuksai and Adisri Charoenpanich
Biomedicines 2025, 13(6), 1340; https://doi.org/10.3390/biomedicines13061340 - 30 May 2025
Viewed by 726
Abstract
Background/Objectives: Disruptions in adipose tissue dynamics contribute to obesity-related metabolic disorders, emphasizing the need for targeted therapies focusing on adipose tissue cells, including progenitor cells and adipocytes. Peroxisome proliferator-activated receptor gamma (PPARG) ligands are potent insulin sensitizers used in type 2 diabetes treatment. [...] Read more.
Background/Objectives: Disruptions in adipose tissue dynamics contribute to obesity-related metabolic disorders, emphasizing the need for targeted therapies focusing on adipose tissue cells, including progenitor cells and adipocytes. Peroxisome proliferator-activated receptor gamma (PPARG) ligands are potent insulin sensitizers used in type 2 diabetes treatment. This study investigated the effects of rosiglitazone, a PPARG agonist, and betulinic acid, a PPARG antagonist, on adipogenesis and apoptosis in 3T3-L1 pre-adipocytes. Method: 3T3-L1 pre-adipocytes were treated with rosiglitazone or betulinic acid during adipogenic differentiation. Lipid droplet formation was used to evaluate adipogenesis. Cell growth and cell death were assessed using the resazurin-based cell viability assay, trypan blue exclusion assay, LDH assay, and Annexin V/PI staining. Quantitative PCR was conducted to examine the expression of genes associated with adipogenesis and apoptosis. Results: Betulinic acid reduced adipogenesis only when administered daily for eight days. Rosiglitazone did not alter the overall lipid quantity; however, it promoted a shift toward fewer but larger lipid droplets. Both compounds increased Adipoq and Cfd expression, and betulinic acid also elevated Fabp4. Rosiglitazone induced stronger cell aggregation. Despite increased cell death, overall viability was maintained. Apoptotic cell death was enhanced by both compounds and confirmed via Annexin V/PI staining and flow cytometry, accompanied by downregulation of Ccnd1 and Bcl2. Additionally, rosiglitazone markedly increased the expression of Cebpa, a key regulator that can modulate lipid droplet formation and the balance between cell growth and death. Conclusions: Rosiglitazone and betulinic acid differentially modulate adipogenesis and apoptosis in 3T3-L1 cells, revealing a complex interplay between lipid accumulation and programmed cell death. Together, the findings underscore the potential of dual PPARG-targeting approaches for metabolic disease interventions. Full article
(This article belongs to the Special Issue PPARs in Health and Disease, 2nd Edition)
Show Figures

Figure 1

30 pages, 3388 KiB  
Article
Bicomponent Cutaneous Cell Therapy for Early Burn Care: Manufacturing Homogeneity and Epidermis-Structuring Functions of Clinical Grade FE002-SK2 Allogeneic Dermal Progenitor Fibroblasts
by Xi Chen, Nathalie Hirt-Burri, Corinne Scaletta, Alexis E. Laurent and Lee Ann Applegate
Pharmaceutics 2025, 17(6), 692; https://doi.org/10.3390/pharmaceutics17060692 - 24 May 2025
Viewed by 561
Abstract
Background: The extracellular matrix (ECM), primarily composed of collagen and elastin synthesized by dermal fibroblasts, is critical for mesenchymal tissue integrity. Fibroblast phenotypes vary significantly with the anatomical location and developmental stage. Fetal skin, particularly prior to 14 weeks of gestation, exhibits a [...] Read more.
Background: The extracellular matrix (ECM), primarily composed of collagen and elastin synthesized by dermal fibroblasts, is critical for mesenchymal tissue integrity. Fibroblast phenotypes vary significantly with the anatomical location and developmental stage. Fetal skin, particularly prior to 14 weeks of gestation, exhibits a simplified structure compared to adult skin, characterized by a thin, loose dermal matrix and a single-layered epithelium. Objectives: This study aimed to characterize and functionally compare homogenous progenitor fetal fibroblast (PFF) populations derived from 14-week-old fetal skin with fibroblasts isolated from adult burn patients. Methods: We evaluated the proliferative capacity, collagen synthesis, and differentiation potential (adipogenesis and osteogenesis) of PFF and adult burn patient fibroblasts. Furthermore, we assessed their ability to support skin regeneration using a de-epidermized dermis (DED) model seeded with both PFF and patient-derived keratinocytes. The stability of PFF characteristics was monitored across multiple passages (P5–P12). Results: PFF demonstrated a 2–4-fold increase in proliferation rate and a 30–50% enhancement in collagen production in vitro compared to adult fibroblasts. Notably, PFF exhibited a consistent lack of adipogenic and osteogenic differentiation, an attribute distinct from adult fibroblasts. In the DED model, PFF, even at a low fibroblast-to-keratinocyte ratio (1:5), effectively facilitated the formation of well-organized skin structures, including rete ridges, surpassing the performance of adult fibroblasts and adipose-derived cells. These properties remained stable over multiple passages. Conclusions: The unique attributes of PFF, likely attributable to the simplified microenvironment (i.e., collagen organization) of developing fetal tissue, positions them as a promising source for cell-based therapies. Their inherent high collagen synthesis capacity is particularly advantageous for wound healing applications. Consequently, PFF represent a consistent and readily available resource for developing “off-the-freezer” cutaneous cell therapies, potentially enabling accelerated and improved treatment of severe burn injuries. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

21 pages, 2111 KiB  
Review
Key Roles of Brown, Subcutaneous, and Visceral Adipose Tissues in Obesity and Insulin Resistance
by Maria-Zinaida Dobre, Bogdana Virgolici and Olivia Timnea
Curr. Issues Mol. Biol. 2025, 47(5), 343; https://doi.org/10.3390/cimb47050343 - 9 May 2025
Cited by 1 | Viewed by 1555
Abstract
Adipose tissue is a dynamic and heterogeneous organ with distinct depots that play divergent roles in metabolic regulation. This review highlights the functional differences between brown, subcutaneous, and visceral adipose tissue, and their contributions to obesity-related insulin resistance. We explore how chronic low-grade [...] Read more.
Adipose tissue is a dynamic and heterogeneous organ with distinct depots that play divergent roles in metabolic regulation. This review highlights the functional differences between brown, subcutaneous, and visceral adipose tissue, and their contributions to obesity-related insulin resistance. We explore how chronic low-grade inflammation, mitochondrial dysfunction, and fibrosis evolve within specific fat depots and how these changes disrupt systemic energy homeostasis. Visceral white adipose tissue (vWAT) emerges as a critical site of inflammation and metabolic inflexibility, while subcutaneous white adipose tissue (sWAT) may retain protective features in early obesity. The endocrine roles of adipokines and batokines are also discussed, emphasizing depot-specific signaling and systemic effects. Furthermore, we examine emerging therapeutic strategies aimed at modulating immune responses, enhancing mitochondrial function, and reprogramming adipose progenitor cells (APCs) to restore healthy tissue remodeling. A deeper understanding of adipose-depot-specific biology and progenitor cell dynamics offers promising avenues for personalized interventions in metabolic diseases. Full article
Show Figures

Figure 1

12 pages, 3236 KiB  
Article
Perivascular Adipocytes’ Adipogenesis Is Defined by Their Anatomical Location in the Descending Thoracic Aorta
by G. Andres Contreras, C. Javier Rendon, Alyssa Shadowens, Miguel Chirivi, David Salcedo-Tacuma, D. Adam Lauver and Stephanie W. Watts
Cells 2025, 14(8), 579; https://doi.org/10.3390/cells14080579 - 11 Apr 2025
Viewed by 750
Abstract
Cardiovascular diseases such as hypertension alter thoracic aorta structure. The role that the outer layer of the aorta, its perivascular adipose tissue (PVAT), plays in the pathogenesis of these alterations is poorly understood. In the descending thoracic aorta, PVAT is organized into three [...] Read more.
Cardiovascular diseases such as hypertension alter thoracic aorta structure. The role that the outer layer of the aorta, its perivascular adipose tissue (PVAT), plays in the pathogenesis of these alterations is poorly understood. In the descending thoracic aorta, PVAT is organized into three distinct strips: one located anterior to the aorta (AP) and two positioned laterally (LP). Genetic tracing indicates differences in the ontogeny of LP and AP, but the implications of these developmental differences and PVAT distribution on adipocyte development remain unknown. We hypothesize that the anatomical location of adipocyte progenitors influences their adipogenic potential and vasoactive functions. PVAT from LP and AP was collected from male SD rats at 10 wks of age (n = 7) to harvest adipocyte progenitors that were differentiated to adipocytes in adipogenic media. Adipogenesis was evaluated after induction and we performed next-generation RNA-seq on progenitors and adipocytes. We then employed Gene Set Enrichment Analysis for enrichment and network analyses. LP progenitors exhibited a 1.13-fold higher adipogenesis rate compared to those from AP. DEG analysis revealed LP had higher expression of adipogenic regulators and basal collagens Col4a2 and Col4a4. When challenged with angiotensin-II, adipocyte progenitors from LP maintained their adipogenic capacity and adipocytes from the same site maintained their secretion of adiponectin at higher rates than AP cells. However, treatment with a Piezo1 mechanoreceptor agonist reduced LP’s adipogenic capacity and diminished their adiponectin secretion. These findings highlight site-specific differences in adipogenic activity, extracellular matrix composition, and the secretion of the vasoactive adipokine adiponectin between the LP and AP PVAT strips of the thoracic aorta, suggesting potential functional distinctions in vascular health and disease. Full article
(This article belongs to the Special Issue New Insights into Vascular Biology in Health and Disease)
Show Figures

Graphical abstract

20 pages, 9915 KiB  
Article
The Outcome of Cell Therapy Treating Urinary Incontinence Correlates with Precise Cell Localization in the Sphincter Complex
by Niklas Harland, Liv Johnen, Kamal T. Avula, Andrea Buzanich-Ladinig, Lukas Schwarz, Jasmin Knoll, Arnulf Stenzl and Wilhelm K. Aicher
Biomedicines 2025, 13(4), 917; https://doi.org/10.3390/biomedicines13040917 - 9 Apr 2025
Viewed by 512
Abstract
Background/Objectives: Urethral sphincter muscle deficiency is the leading cause of stress urinary incontinence. Preclinical and clinical studies suggested that cell therapy may improve the situation. However, the overall efficacy of cell therapies did often not satisfy the patient’s needs. We, therefore, investigated [...] Read more.
Background/Objectives: Urethral sphincter muscle deficiency is the leading cause of stress urinary incontinence. Preclinical and clinical studies suggested that cell therapy may improve the situation. However, the overall efficacy of cell therapies did often not satisfy the patient’s needs. We, therefore, investigated in a large animal model of incontinence if the localization of injected regenerative cells in the deficient urethral sphincter muscle correlated with the outcome. Methods: Urethral sphincter insufficiency was induced in three cohorts of pigs and confirmed by urodynamics. Then, either myogenic progenitor cells (MPCs) or adipose tissue-derived stromal cells (ADSCs) were injected into the injured sphincter complex by Williams needle under visual using a cystoscope. Sham-treated animals served as controls. Functional sphincter muscle regeneration was monitored by urodynamics over 5 weeks of follow-up. The localization of the injected cells was investigated by histology of cryosections of the tissue targeted. Results: Injection of MPCs near the sphincter muscle yielded better functional recovery when compared to MPC injections in adjacent sides. By contrast, injection of ADSCs in the submucosal tissue adjacent to the muscle led to better regeneration when compared to ADSC injections into the sphincter muscle. After five weeks of follow-up, MPCs yielded an overall robust but not significant improvement when compared to mock-treated controls, while ADSC injections reached significance. Conclusions: This small proof-of-principle study suggests that the clinical outcome of cell therapy for urinary incontinence depends on the choice of therapeutic cells and the precise localization of the cells in the tissue targeted as well. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

13 pages, 1356 KiB  
Article
Changes in the Intracellular Composition of Macro and Microminerals After Cryopreservation of the Rabbit Stem/Progenitor Cells
by Jaromír Vašíček, Andrej Baláži, Mária Tirpáková, Marián Tomka and Peter Chrenek
J. Dev. Biol. 2025, 13(1), 6; https://doi.org/10.3390/jdb13010006 - 21 Feb 2025
Viewed by 1322
Abstract
Cryopreservation is a widely used method for the long-term preservation of reproductive or somatic cells. It is known that this storage method may negatively affect cell viability, proliferation, differentiation, etc. However, there is a lack of information about whether cryostorage can alter the [...] Read more.
Cryopreservation is a widely used method for the long-term preservation of reproductive or somatic cells. It is known that this storage method may negatively affect cell viability, proliferation, differentiation, etc. However, there is a lack of information about whether cryostorage can alter the content of intracellular minerals. Therefore, we focused this study on the analysis of the mineral composition of living cells before and after long-term cold storage. Briefly, three different primary cell lines were established from rabbits as follows: endothelial progenitor cells from peripheral blood (EPCs), endothelial progenitor cells from bone marrow (BEPCs), and mesenchymal stem cells from adipose tissue (AT-MSCs), which were cultured until passage 3 prior to cryopreservation in liquid nitrogen. Samples from freshly cultured and frozen–thawed cells were mineralized and analyzed using inductively coupled plasma-optical emission spectroscopy (ICP-OES) for the content of minerals (macro: Ca, Na, K, and Mg, and micro: Zn, Fe, Cu, Al, Co, Mn, Sr, and Ni). After cryopreservation, we found significantly decreased content of K in frozen–thawed EPCs (p < 0.01) and BEPCs (p < 0.0001) and Ca in AT-MSCs (p < 0.05), while Na was increased in frozen–thawed BEPCs (p < 0.05). Concentrations of Fe and Al were reduced significantly in frozen–thawed EPCs (both p < 0.0001) and AT-MSCs (p < 0.001 and p < 0.0001, respectively). On the contrary, Fe and Al were elevated in frozen–thawed BEPCs (p < 0.0001 and p < 0.01, respectively) together with Ni (p < 0.0001). In addition, decreased Zn (p < 0.05) was observed in cryopreserved AT-MSCs. In conclusion, the ICP-OES technique might be used to analyze the basic elemental composition of animal cells in fresh or frozen–thawed conditions. Nevertheless, additional studies are needed to reveal the possible impact of cryopreservation on cell fate by changing the content of intracellular minerals. Full article
Show Figures

Figure 1

14 pages, 1052 KiB  
Review
The Role of Erythropoietin in Metabolic Regulation
by Weiqin Yin and Constance T. Noguchi
Cells 2025, 14(4), 280; https://doi.org/10.3390/cells14040280 - 14 Feb 2025
Cited by 1 | Viewed by 2848
Abstract
Erythropoietin (EPO) is a key regulator of erythrocyte production, promoting erythroid progenitor cell survival, division, and differentiation in the fetal liver and adult bone marrow. Mice lacking EPO or its receptor (EPOR) die in utero due to severe anemia. Beyond hematopoiesis, EPO influences [...] Read more.
Erythropoietin (EPO) is a key regulator of erythrocyte production, promoting erythroid progenitor cell survival, division, and differentiation in the fetal liver and adult bone marrow. Mice lacking EPO or its receptor (EPOR) die in utero due to severe anemia. Beyond hematopoiesis, EPO influences non-hematopoietic tissues, including glucose and fat metabolism in adipose tissue, skeletal muscle, and the liver. EPO is used to treat anemia associated with chronic kidney disease clinically and plays a role in maintaining metabolic homeostasis and regulating fat mass. EPO enhances lipolysis while inhibiting lipogenic gene expression in white adipose tissue, brown adipose tissue, skeletal muscle, and the liver, acting through the EPO-EPOR-RUNX1 axis. The non-erythroid EPOR agonist ARA290 also improves diet-induced obesity and glucose tolerance providing evidence for EPO regulation of fat metabolism independent of EPO stimulated erythropoiesis. Therefore, in addition to the primary role of EPO to stimulate erythropoiesis, EPO contributes significantly to EPOR-dependent whole-body metabolic response. Full article
(This article belongs to the Special Issue Highlights in Red Blood Cell Research)
Show Figures

Figure 1

13 pages, 7237 KiB  
Article
Skeletal Site-Specific Lipid Profile and Hematopoietic Progenitors of Bone Marrow Adipose Tissue in Patients Undergoing Primary Hip Arthroplasty
by Drenka Trivanović, Marko Vujačić, Aleksandra Arsić, Tamara Kukolj, Milica Rajković, Nikola Bogosavljević, Zoran Baščarević, Mirjana Maljković Ružičić, Jovana Kovačević and Aleksandra Jauković
Metabolites 2025, 15(1), 16; https://doi.org/10.3390/metabo15010016 - 4 Jan 2025
Cited by 2 | Viewed by 1187
Abstract
Background/Objectives: Bone marrow adipose tissue (BMAT) has been described as an important biomechanic and lipotoxic factor with negative impacts on skeletal and hematopoietic system regeneration. BMAT undergoes metabolic and cellular adaptations with age and disease, being a source of potential biomarkers. However, there [...] Read more.
Background/Objectives: Bone marrow adipose tissue (BMAT) has been described as an important biomechanic and lipotoxic factor with negative impacts on skeletal and hematopoietic system regeneration. BMAT undergoes metabolic and cellular adaptations with age and disease, being a source of potential biomarkers. However, there is no evidence on the lipid profile and cellularity at different skeletal locations in osteoarthritis patients undergoing primary hip arthroplasty. Methods: Acetabular and femoral bone marrow (BM) and gluteofemoral subcutaneous adipose tissue (gfSAT) were obtained from matched patients undergoing hip replacement surgery. BM, BMAT, and gfSAT were explored at the levels of total lipids, fatty acids, and cells by using thin-layerand gas chromatography, ex vivo cellular assays, and flow cytometry. Results: BMAT content was significantly higher in femoral than in acetabular BM. Total lipid analyses revealed significantly lower triglyceride content in femoral than in acetabular BMAT and gfSAT. Frequencies of saturated palmitic, myristic, and stearic acids were higher in femoral than in acetabular BMAT and gfSAT. The content of CD45+CD34+ cells within femoral BMAT was higher than in acetabular BMAT or gfSAT. This was associated with a higher incidence of total clonogenic hematopoietic progenitors and late erythroid colonies CFU-E in femoral BMAT when compared to acetabular BMAT, similar to their BM counterparts. Conclusions: Collectively, our results indicate that the lipid profiles of hip bone and femoral BMAT impose significantly different microenvironments and distributions of cells with hematopoietic potential. These findings might bring forth new inputs for defining BMAT biology and setting novel directions in OA disease investigations. Full article
(This article belongs to the Special Issue Profiling of Bone Marrow Adipose Tissue Cells and Metabolism)
Show Figures

Figure 1

18 pages, 8603 KiB  
Article
Local Application of Minimally Manipulated Autologous Stromal Vascular Fraction (SVF) Reduces Inflammation and Improves Bilio-Biliary Anastomosis Integrity
by Ilya Klabukov, Garnik Shatveryan, Nikolay Bagmet, Olga Aleshina, Elena Ivanova, Victoria Savina, Ilmira Gilmutdinova, Dmitry Atiakshin, Michael Ignatyuk, Denis Baranovskii, Peter Shegay, Andrey Kaprin, Ilya Eremin and Nikita Chardarov
Int. J. Mol. Sci. 2025, 26(1), 222; https://doi.org/10.3390/ijms26010222 - 30 Dec 2024
Viewed by 1022
Abstract
Bilio-biliary anastomosis (BBA) is a critical surgical procedure that is performed with the objective of restoring bile duct continuity. This procedure is often required in cases where there has been an injury to the extrahepatic bile ducts or during liver transplantation. Despite advances [...] Read more.
Bilio-biliary anastomosis (BBA) is a critical surgical procedure that is performed with the objective of restoring bile duct continuity. This procedure is often required in cases where there has been an injury to the extrahepatic bile ducts or during liver transplantation. Despite advances in surgical techniques, the healing of BBA remains a significant challenge, with complications such as stricture formation and leakage affecting patient outcomes. The stromal vascular fraction (SVF), a heterogeneous cell population derived from adipose tissue, has demonstrated promise in regenerative medicine due to its rich content of stem cells, endothelial progenitor cells, and growth factors. The objective of this study was to evaluate the potential of locally administered autologous SVF to enhance the healing of BBAs. Bilio-biliary anastomosis was performed on a swine model (female Landrace pigs). Six swine were divided into two groups: the treatment group (n = 3) received a local application of autologous SVF around the anastomosis site immediately following BBA formation, while the control group (n = 3) received saline. The primary outcomes were assessed over an eight-week period post-surgery, and included anastomosis healing, stricture formation, and bile leakage. Histological analysis was performed to evaluate fibrosis, angiogenesis, and inflammation. Immunohistochemistry was conducted to assess healing-related markers (CD34, α-SMA) and the immunological microenvironment (CD3, CD10, tryptase). The SVF-treated group exhibited significantly enhanced healing of the BBA. Histological examination revealed increased angiogenesis and reduced fibrosis in the SVF group. Immunohistochemical staining demonstrated higher vascular density in the anastomosed area of the SVF-treated group (390 vs. 210 vessels per 1 mm2, p = 0.0027), as well as a decrease in wall thickness (1.9 vs. 1.0 mm, p = 0.0014). There were no statistically significant differences in mast cell presence (p = 0.40). Immunohistochemical staining confirmed the overexpression of markers associated with tissue repair. Local injections of autologous SVF at the site of BBA have been demonstrated to significantly enhance healing and promote tissue regeneration. These findings suggest that SVF could be a valuable adjunctive therapy in BBA surgery, potentially improving surgical outcomes. However, further investigation is needed to explore the clinical applicability and long-term benefits of this novel approach in clinical practice as a minimally manipulated cell application. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

17 pages, 4889 KiB  
Article
Crosstalk Between Omental Adipose-Derived Stem Cells and Gastric Cancer Cells Regulates Cancer Stemness and Chemotherapy Resistance
by Jun Kinoshita, Kenta Doden, Yusuke Sakimura, Saki Hayashi, Hiroto Saito, Toshikatsu Tsuji, Daisuke Yamamoto, Hideki Moriyama, Toshinari Minamoto and Noriyuki Inaki
Cancers 2024, 16(24), 4275; https://doi.org/10.3390/cancers16244275 - 23 Dec 2024
Viewed by 1174
Abstract
Background: Peritoneal metastasis (PM) remains a major challenge in patients with gastric cancer (GC) and occurs preferentially in adipose-rich organs, such as the omentum. Adipose-derived stem cells (ASCs) may influence cancer behavior. This study aimed to investigate whether ASCs isolated from the omentum [...] Read more.
Background: Peritoneal metastasis (PM) remains a major challenge in patients with gastric cancer (GC) and occurs preferentially in adipose-rich organs, such as the omentum. Adipose-derived stem cells (ASCs) may influence cancer behavior. This study aimed to investigate whether ASCs isolated from the omentum can act as progenitors of cancer-associated fibroblasts (CAFs) and analyze their effects on the cancer stem cell (CSC) niche and the treatment resistance of GC cells. Methods: ASCs were isolated from the human omentum and their cellular characteristics were analyzed during co-culturing with GC cells. Results: ASCs express CAF markers and promote desmoplasia in cancer stroma in a mouse xenograft model. When co-cultured with GC cells, ASCs enhanced the sphere-forming efficiency of MKN45 and MKN74 cells. ASCs increased IL-6 secretion and enhanced the expression of Nanog and CD44v6 in GC cells; however, these changes were suppressed by the inhibition of IL-6. Xenograft mouse models co-inoculated with MKN45 cells and ASCs showed enhanced CD44v6 and Nanog expression and markedly reduced apoptosis induced by 5-FU treatment. Conclusion: This study improves our understanding of ASCs’ role in PM treatment resistance and has demonstrated the potential for new treatment strategies targeting ASCs. Full article
(This article belongs to the Special Issue Insights into Cancer Stem Cells)
Show Figures

Figure 1

19 pages, 1816 KiB  
Review
Forty Years of the Use of Cells for Cartilage Regeneration: The Research Side
by Livia Roseti, Carola Cavallo, Giovanna Desando, Martina D’Alessandro and Brunella Grigolo
Pharmaceutics 2024, 16(12), 1622; https://doi.org/10.3390/pharmaceutics16121622 - 22 Dec 2024
Viewed by 1930
Abstract
Background: The treatment of articular cartilage damage has always represented a problem of considerable practical interest for orthopedics. Over the years, many surgical techniques have been proposed to induce the growth of repairing tissue and limit degeneration. In 1994, the turning point occurred: [...] Read more.
Background: The treatment of articular cartilage damage has always represented a problem of considerable practical interest for orthopedics. Over the years, many surgical techniques have been proposed to induce the growth of repairing tissue and limit degeneration. In 1994, the turning point occurred: implanted autologous cells paved the way for a new treatment option based more on regeneration than repair. Objectives: This review aims to outline biological and clinical advances, from the use of mature adult chondrocytes to cell-derived products, going through progenitor cells derived from bone marrow or adipose tissue and their concentrates for articular cartilage repair. Moreover, it highlights the relevance of gene therapy as a valuable tool for successfully implementing current regenerative treatments, and overcoming the limitations of the local delivery of growth factors. Conclusions: Finally, this review concludes with an outlook on the importance of understanding the role and mechanisms of action of the different cell compounds with a view to implementing personalized treatments. Full article
(This article belongs to the Special Issue Osteoarthritis and Cartilage Biologics)
Show Figures

Figure 1

15 pages, 3221 KiB  
Article
Curcumin Inhibits Oxidative Stress and Apoptosis Induced by H2O2 in Bovine Adipose-Derived Stem Cells (bADSCs)
by Enhui Jiang, Xuanbo Chen, Yi Bi, Chuanying Pan, Xiangchen Li and Xianyong Lan
Animals 2024, 14(23), 3421; https://doi.org/10.3390/ani14233421 - 26 Nov 2024
Cited by 4 | Viewed by 1107
Abstract
In livestock production, oxidative stress (OS) is ubiquitous, reducing animal productivity and product quality. Hence, investigating the mechanisms of oxidative stress in livestock and inhibiting oxidative stress-induced damage is crucial. Curcumin, a plant-derived bioactive compound, exhibits antioxidant and anti-apoptotic properties. Adipose-derived stem cells [...] Read more.
In livestock production, oxidative stress (OS) is ubiquitous, reducing animal productivity and product quality. Hence, investigating the mechanisms of oxidative stress in livestock and inhibiting oxidative stress-induced damage is crucial. Curcumin, a plant-derived bioactive compound, exhibits antioxidant and anti-apoptotic properties. Adipose-derived stem cells (ADSCs) from animal adipose tissue are easily accessible and possess multilineage differentiation potential. Therefore, this work utilized bovine ADSCs to establish an oxidative stress model and investigated the effects of curcumin on oxidative stress and apoptosis. Firstly, bovine ADSCs were isolated and cultured from fetal calf subcutaneous adipose tissue. Their surface markers were identified by immunofluorescence, confirming the expression of CD29, CD44, CD73, CD90, CD105 and Vimentin, but not CD34, indicative of mesenchymal stem/progenitor cell characteristics. Secondly, to explore the effects of curcumin on oxidative damage and apoptosis in bovine ADSCs, an oxidative stress model was induced using H2O2. CCK-8 assays showed significantly reduced cell viability and SOD activity, along with increased malondialdehyde (MDA) and reactive oxygen species (ROS) levels, indicating successful modeling. RT-qPCR further confirmed that 500 μM of H2O2 treatment for 24 h promoted apoptosis. Herein, CCK-8 assays indicated a significant reduction in cell viability at >8 μM of curcumin. Thirdly, using 4 μM and 8 μM of curcumin for pre-protection, 8 μM maintained SOD activity, reduced MDA and ROS, inhibited apoptosis-related gene changes (Bcl-2, Bax, Caspase-3), and suppressed apoptosis according to a TUNEL assay. Fourthly, curcumin’s autophagy-inducing potential was hypothesized, which was confirmed by increased LC3-II and decreased P62 expression upon co-treatment with 3-MA. 3-MA inhibited curcumin’s antioxidant and anti-apoptotic effects, suggesting that curcumin’s antioxidant and anti-apoptotic roles may involve autophagy induction. In conclusion, bovine ADSCs are abundant, easily accessible, and multipotent, making them suitable for in vitro expansion. Curcumin alleviated H2O2-induced oxidative stress in bovine ADSCs, with curcumin also inhibiting apoptosis, likely through autophagy induction. This study validates the protective role of curcumin in bovine ADSCs, with potential applications in livestock production. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

Back to TopTop