Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = acylphloroglucinols

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 4538 KB  
Article
Polyprenylated Acylphloroglucinols from Hypericum rochelii and Hypericum olympicum—Cytotoxic Effects on Non-Tumorigenic Cell Lines and Antibacterial Potential
by Yana Ilieva, Maya M. Zaharieva, Lyudmila Dimitrova, Mila D. Kaleva, Teodor Marinov, Lili I. Dobreva, Tanya Chan Kim, Zlatina Kokanova-Nedialkova, Iliyan Trayanov, Sofia Titorenkova, Stanislava S. Boyadzhieva, Svetla Danova, Paraskev Nedialkov and Hristo Najdenski
Pharmaceuticals 2025, 18(10), 1591; https://doi.org/10.3390/ph18101591 - 21 Oct 2025
Viewed by 749
Abstract
Objectives: Research on the antimicrobial effect of Hypericum plant constituents is very rarely accompanied by studies of the cytotoxic effect on cell lines. In the current study, besides microbiological tests, an investigation of the cytotoxicity of Hypericum active ingredients on five non-tumorigenic [...] Read more.
Objectives: Research on the antimicrobial effect of Hypericum plant constituents is very rarely accompanied by studies of the cytotoxic effect on cell lines. In the current study, besides microbiological tests, an investigation of the cytotoxicity of Hypericum active ingredients on five non-tumorigenic cell lines, as well as research into the effect on other factors of host homeostasis, was performed. Methods: The main methods applied included an MTT assay, the broth microdilution method (BMD), real-time PCR, live cell imaging with Hoechst dye, Western blot, an enzyme-linked immunosorbent assay (ELISA), and skin irritation test on rabbits. Results: The mean inhibitory concentrations (IC50) of six selected agents—previously phytochemically characterized extracts and compounds—ranged from 0.63 to 48 µg/mL. Due to their strong antimicrobial effect and favorable cytotoxic profile, the extract RochC from Hypericum rochelii and the compound olympiforin B from Hypericum olympicum were selected for subsequent studies at their previously determined minimum inhibitory concentrations (MICs) against Staphylococcus aureus—0.625 and 1 µg/mL, respectively. These doses were lower than their IC50 values and the maximum tolerated concentrations (MTCs), according to ISO 10993-5, Annex C, for fibroblast cells, including a human gingival line. The MIC values of RochC and Olympiforin B against the cariogenic Streptococcus mutans were 6 and 3 µg/mL, respectively, values lower than the IC50 values of the gingival cells. Olympiforin B inhibited the gene expression of the staphylococcal biofilm-related genes icaA and icaD, while RochC induced icaA and had a versatile effect on icaD. The MIC values for lactobacilli strains were higher than for S. aureus. The phytoconstituents did not cause cytopathic effects or apoptosis in CCL-1 fibroblasts at 2 × MIC. However, the agents at 1 × MIC significantly induced Atg5 and Atg7, proteins related to autophagy. Cytochrome P450 was not induced in liver cells, with the exception of a dose of 2 × MIC of RochC. The agents did not irritate rabbit skin in vivo at a dose of even 10 × MIC. Conclusions: The extract and compound have potential for further pharmacological development. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

14 pages, 3301 KB  
Article
Targeted Dereplication of H. patulum and H. hookeranium Extracts: Establishing MS/MS Fingerprints for the Identification of Polycyclic Polyprenylated Acylphloroglucinols
by Annabelle Dugay, Florence Souquet, David Hozain, Gilles Alex Pakora, Didier Buisson, Séverine Amand, Marie-Christine Lallemand and Raimundo Gonçalves de Oliveira Junior
Molecules 2025, 30(12), 2531; https://doi.org/10.3390/molecules30122531 - 10 Jun 2025
Viewed by 1011
Abstract
In this study, we combined automated annotation tools with targeted dereplication based on MS/MS fragmentation pathway studies to identify polycyclic polyprenylated acylphloroglucinols (PPAPs) in Hypericum species, using H. patulum and H. hookeranium as a case study. These species, extensively used in traditional medicine, [...] Read more.
In this study, we combined automated annotation tools with targeted dereplication based on MS/MS fragmentation pathway studies to identify polycyclic polyprenylated acylphloroglucinols (PPAPs) in Hypericum species, using H. patulum and H. hookeranium as a case study. These species, extensively used in traditional medicine, exhibit morphological similarities that often result in misidentification. Following UHPLC-HRMS/MS analysis of plant extracts, a molecular network approach facilitated a comprehensive comparison of their chemical composition, assigning specific clusters to O-glycosylated flavonoids and PPAPs. Eight peaks, including quercitrin, isoquercitrin, procyanidins, chlorogenic acid, quercetin, and glycosylated derivatives, were annotated from the GNPS database. For PPAPs, despite the structural complexity posing challenges for automated annotation using public databases, our targeted-dereplication strategy, relying on in-house spectral data, led to the putative identification of 22 peaks for H. patulum and H. hookeranium. Key compounds such as hyperforin, hyperscabrone K, and garcinialliptone M were detected in both species, underscoring their chemical similarity. MS/MS fragmentation pathways, particularly the successive losses of isobutene and isoprenyl units, emerged as a consistent signature for PPAP detection and may be useful for selecting PPAP-enriched extracts or fractions for further phytochemical investigations. Full article
Show Figures

Graphical abstract

19 pages, 7441 KB  
Article
Neuroprotective Effect of Nor-Prenylated Acylphloroglucinols from Hypericum perforatum L. (St John’s Wort) in the MPTP-Induced Zebrafish Model
by Wuyang Liu, Peng Zhao, Yihan Liu, Xiangyan Meng, Jinyan Xie, Junmian Tian and Jinming Gao
Int. J. Mol. Sci. 2025, 26(7), 3096; https://doi.org/10.3390/ijms26073096 - 27 Mar 2025
Viewed by 1213
Abstract
Hypericum perforatum L. (St John’s wort) has been widely studied and used for antidepressant treatment, as well as, rarely, featuring in studies on its chemical composition for Parkinson’s disease (PD) treatment. Five new nor-prenylated acylphloroglucinols with a cyclohexanone core, norperforatums A–E ( [...] Read more.
Hypericum perforatum L. (St John’s wort) has been widely studied and used for antidepressant treatment, as well as, rarely, featuring in studies on its chemical composition for Parkinson’s disease (PD) treatment. Five new nor-prenylated acylphloroglucinols with a cyclohexanone core, norperforatums A–E (15), together with four known analogs [(2R,3R,4S,6R)-3-methyl-4,6-di(3-methyl-2-butenyl)-2-(2-methyl-1-oxopropyl)-3-(4-methyl-3-pentenyl)cyclohexanone (6), hyperscabrin B (7), (2R,3R,4S,6R)-6-methoxycarbonyl-3-methyl-4,6-di(3-methyl-2-butenyl)-2-(2-methyl-1-oxopropyl)-3-(4-methyl-3-pentenyl)cyclohexanone (8), and hyperscabin K (9)], were isolated from the aerial parts of H. perforatum. The structures and absolute configurations of the new compounds were characterized by multiple spectroscopic means, including nuclear magnetic resonance (NMR), high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), ultraviolet visible absorption spectroscopy (UV), infrared spectroscopy (IR), calculated electronic circular dichroism (ECD) data, and X-ray signal crystal diffraction. In addition, the efficacy of these isolations was evaluated against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in zebrafish larvae. Compound 9 had the best therapeutic effect, by significantly increasing the total distance traveled and the mean speed of movement in PD dyskinesia zebrafish larvae. Moreover, it enhanced superoxide dismutase (SOD) activity and inhibited reactive oxygen species (ROS) production in a dose-dependent manner. These results suggest that compound 9 may have ameliorative effects on PD symptoms by inhibiting oxidative stress. This study provides new insights into the treatment of H. perforatum for PD. Full article
(This article belongs to the Special Issue Natural Products with Anti-neuroinflammatory Activity)
Show Figures

Figure 1

22 pages, 2872 KB  
Review
The Diverse Activities and Mechanisms of the Acylphloroglucinol Antibiotic Rhodomyrtone: Antibacterial Activity and Beyond
by Rupa Rani, Gabriela Marinho Righetto, Ann-Britt Schäfer and Michaela Wenzel
Antibiotics 2024, 13(10), 936; https://doi.org/10.3390/antibiotics13100936 - 2 Oct 2024
Cited by 2 | Viewed by 2596
Abstract
Background/Objectives: The rose myrtle Rhodomyrtus tomentosa is a medicinal plant used in traditional Asian medicine. The active compound in R. tomentosa leaf extracts is rhodomyrtone, a chiral acylphloroglucinol. Rhodomyrtone exhibits an impressive breadth of activities, including antibacterial, antiviral, antiplasmodial, immunomodulatory, and anticancer properties. [...] Read more.
Background/Objectives: The rose myrtle Rhodomyrtus tomentosa is a medicinal plant used in traditional Asian medicine. The active compound in R. tomentosa leaf extracts is rhodomyrtone, a chiral acylphloroglucinol. Rhodomyrtone exhibits an impressive breadth of activities, including antibacterial, antiviral, antiplasmodial, immunomodulatory, and anticancer properties. Its antibacterial properties have been extensively studied. Methods: We performed a comprehensive literature review on rhodomyrtone and summarized the current knowledge about this promising acylphloroglucinol antibiotic and its diverse functions in this review. Results: Rhodomyrtone shows nano to micromolar activities against a broad range of Gram-positive pathogens, including multidrug-resistant clinical isolates, and possesses a unique mechanism of action. It increases membrane fluidity and creates hyperfluid domains that attract membrane proteins prior to forming large membrane vesicles, effectively acting as a membrane protein trap. This mechanism affects a multitude of cellular processes, including cell division and cell wall synthesis. Additionally, rhodomyrtone reduces the expression of inflammatory cytokines, such as TNF-α, IL-17A, IL1β, and IL8. Generally showing low toxicity against mammalian cells, rhodomyrtone does inhibit the proliferation of cancer cell lines, such as epidermal carcinoma cells. The primary mechanism behind this activity appears to be the downregulation of adhesion kinases and growth factors. Furthermore, rhodomyrtone has shown antioxidant activity and displays cognitive effects, such as decreasing depressive symptoms in mice. Conclusions: Rhodomyrtone shows great promise as therapeutic agent, mostly for antibacterial but also for diverse other applications. Yet, bottlenecks such as resistance development and a better understanding of mammalian cell toxictiy demand careful assessment. Full article
(This article belongs to the Section Plant-Derived Antibiotics)
Show Figures

Figure 1

24 pages, 7360 KB  
Article
Phytochemical Analysis, Biological Activities, and Docking of Phenolics from Shoot Cultures of Hypericum perforatum L. Transformed by Agrobacterium rhizogenes
by Oliver Tusevski, Marija Todorovska, Jasmina Petreska Stanoeva and Sonja Gadzovska Simic
Molecules 2024, 29(16), 3893; https://doi.org/10.3390/molecules29163893 - 17 Aug 2024
Cited by 3 | Viewed by 2168
Abstract
Hypericum perforatum transformed shoot lines (TSL) regenerated from corresponding hairy roots and non-transformed shoots (NTS) were comparatively evaluated for their phenolic compound contents and in vitro inhibitory capacity against target enzymes (monoamine oxidase-A, cholinesterases, tyrosinase, α-amylase, α-glucosidase, lipase, and cholesterol esterase). Molecular docking [...] Read more.
Hypericum perforatum transformed shoot lines (TSL) regenerated from corresponding hairy roots and non-transformed shoots (NTS) were comparatively evaluated for their phenolic compound contents and in vitro inhibitory capacity against target enzymes (monoamine oxidase-A, cholinesterases, tyrosinase, α-amylase, α-glucosidase, lipase, and cholesterol esterase). Molecular docking was conducted to assess the contribution of dominant phenolic compounds to the enzyme-inhibitory properties of TSL samples. The TSL extracts represent a rich source of chlorogenic acid, epicatechin and procyanidins, quercetin aglycone and glycosides, anthocyanins, naphthodianthrones, acyl-phloroglucinols, and xanthones. Concerning in vitro bioactivity assays, TSL displayed significantly higher acetylcholinesterase, tyrosinase, α-amylase, pancreatic lipase, and cholesterol esterase inhibitory properties compared to NTS, implying their neuroprotective, antidiabetic, and antiobesity potential. The docking data revealed that pseudohypericin, hyperforin, cadensin G, epicatechin, and chlorogenic acid are superior inhibitors of selected enzymes, exhibiting the lowest binding energy of ligand–receptor complexes. Present data indicate that H. perforatum transformed shoots might be recognized as an excellent biotechnological system for producing phenolic compounds with multiple health benefits. Full article
Show Figures

Graphical abstract

19 pages, 2024 KB  
Article
Antimicrobial Evaluation of Two Polycyclic Polyprenylated Acylphloroglucinol Compounds: PPAP23 and PPAP53
by Aparna Viswanathan Ammanath, Miki Matsuo, Huanhuan Wang, Frank Kraus, Anton Bleisch, Philipp Peslalz, Majd Mohammad, Meghshree Deshmukh, Anne Grießhammer, Moushumi Purkayastha, Andreas Vorbach, Boris Macek, Heike Brötz-Oesterhelt, Lisa Maier, Dorothee Kretschmer, Andreas Peschel, Tao Jin, Bernd Plietker and Friedrich Götz
Int. J. Mol. Sci. 2024, 25(15), 8023; https://doi.org/10.3390/ijms25158023 - 23 Jul 2024
Cited by 1 | Viewed by 2725
Abstract
Polycyclic polyprenylated acylphloroglucinols (PPAPs) comprise a large group of compounds of mostly plant origin. The best-known compound is hyperforin from St. John’s wort with its antidepressant, antitumor and antimicrobial properties. The chemical synthesis of PPAP variants allows the generation of compounds with improved [...] Read more.
Polycyclic polyprenylated acylphloroglucinols (PPAPs) comprise a large group of compounds of mostly plant origin. The best-known compound is hyperforin from St. John’s wort with its antidepressant, antitumor and antimicrobial properties. The chemical synthesis of PPAP variants allows the generation of compounds with improved activity and compatibility. Here, we studied the antimicrobial activity of two synthetic PPAP-derivatives, the water-insoluble PPAP23 and the water-soluble sodium salt PPAP53. In vitro, both compounds exhibited good activity against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium. Both compounds had no adverse effects on Galleria mellonella wax moth larvae. However, they were unable to protect the larvae from infection with S. aureus because components of the larval coelom neutralized the antimicrobial activity; a similar effect was also seen with serum albumin. In silico docking studies with PPAP53 revealed that it binds to the F1 pocket of human serum albumin with a binding energy of −7.5 kcal/mol. In an infection model of septic arthritis, PPAP23 decreased the formation of abscesses and S. aureus load in kidneys; in a mouse skin abscess model, topical treatment with PPAP53 reduced S. aureus counts. Both PPAPs were active against anaerobic Gram-positive gut bacteria such as neurotransmitter-producing Clostridium, Enterococcus or Ruminococcus species. Based on these results, we foresee possible applications in the decolonization of pathogens. Full article
(This article belongs to the Special Issue Antibacterial and Antioxidant Effects of Plant-Sourced Compounds)
Show Figures

Figure 1

11 pages, 1908 KB  
Article
Four New Polyprenylated Acylphloroglucinols from Hypericum perforatum L.
by Xiaoying Wang, Wuyang Liu, Sheng Chen, Yueshan Gao, Junmian Tian and Jinming Gao
Molecules 2024, 29(8), 1756; https://doi.org/10.3390/molecules29081756 - 12 Apr 2024
Cited by 1 | Viewed by 1795
Abstract
Hyperforatums A–D (14), four new polyprenylated acylphloroglucinols, together with 13 known compounds were isolated and identified from the aerial parts of Hypericum perforatum L. (St. John’s wort). Their structures were confirmed with a comprehensive analysis comprising spectroscopic methods, including [...] Read more.
Hyperforatums A–D (14), four new polyprenylated acylphloroglucinols, together with 13 known compounds were isolated and identified from the aerial parts of Hypericum perforatum L. (St. John’s wort). Their structures were confirmed with a comprehensive analysis comprising spectroscopic methods, including 1D and 2D NMR, HRESIMS, and electronic circular dichroism (ECD) calculations. Hyperforatum A featured an unusual chromene-1,4-dione bicyclic system, and hyperforatums B and C were two rare monocyclic PPAPs with five-membered furanone cores. Compound 1 exhibited a moderate inhibition effect on NO production in BV-2 microglial cells stimulated by LPS. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

27 pages, 5080 KB  
Article
Myrtucommulones and Related Acylphloroglucinols from Myrtaceae as a Promising Source of Multitarget SARS-CoV-2 Cycle Inhibitors
by Simony Carvalho Mendonça, Brendo Araujo Gomes, Mariana Freire Campos, Thamirys Silva da Fonseca, Maria Eduarda Alves Esteves, Bruce Veiga Andriolo, Caio Felipe de Araujo Ribas Cheohen, Larissa Esteves Carvalho Constant, Stephany da Silva Costa, Pedro Telles Calil, Amanda Resende Tucci, Thamara Kelcya Fonseca de Oliveira, Alice dos Santos Rosa, Vivian Neuza dos Santos Ferreira, Julia Nilo Henrique Lima, Milene Dias Miranda, Luciana Jesus da Costa, Manuela Leal da Silva, Marcus Tullius Scotti, Diego Allonso, Gilda Guimarães Leitão and Suzana Guimarães Leitãoadd Show full author list remove Hide full author list
Pharmaceuticals 2024, 17(4), 436; https://doi.org/10.3390/ph17040436 - 28 Mar 2024
Cited by 4 | Viewed by 3032
Abstract
The LABEXTRACT plant extract bank, featuring diverse members of the Myrtaceae family from Brazilian hot spot regions, provides a promising avenue for bioprospection. Given the pivotal roles of the Spike protein and 3CLpro and PLpro proteases in SARS-CoV-2 infection, this study [...] Read more.
The LABEXTRACT plant extract bank, featuring diverse members of the Myrtaceae family from Brazilian hot spot regions, provides a promising avenue for bioprospection. Given the pivotal roles of the Spike protein and 3CLpro and PLpro proteases in SARS-CoV-2 infection, this study delves into the correlations between the Myrtaceae species from the Atlantic Forest and these targets, as well as an antiviral activity through both in vitro and in silico analyses. The results uncovered notable inhibitory effects, with Eugenia prasina and E. mosenii standing out, while E. mosenii proved to be multitarget, presenting inhibition values above 72% in the three targets analyzed. All extracts inhibited viral replication in Calu-3 cells (EC50 was lower than 8.3 µg·mL−1). Chemometric analyses, through LC-MS/MS, encompassing prediction models and molecular networking, identified potential active compounds, such as myrtucommulones, described in the literature for their antiviral activity. Docking analyses showed that one undescribed myrtucommulone (m/z 841 [M − H]) had a higher fitness score when interacting with the targets of this study, including ACE2, Spike, PLpro and 3CLpro of SARS-CoV-2. Also, the study concludes that Myrtaceae extracts, particularly from E. mosenii and E. prasina, exhibit promising inhibitory effects against crucial stages in SARS-CoV-2 infection. Compounds like myrtucommulones emerge as potential anti-SARS-CoV-2 agents, warranting further exploration. Full article
(This article belongs to the Special Issue Antiviral Compounds in Medicinal Plants 2023)
Show Figures

Graphical abstract

21 pages, 2656 KB  
Article
Implicit and Explicit Solvent Effects on the Global Reactivity and the Density Topological Parameters of the Preferred Conformers of Caespitate
by Andrea Moreno-Ceballos, María Eugenia Castro, Norma A. Caballero, Liliana Mammino and Francisco J. Melendez
Computation 2024, 12(1), 5; https://doi.org/10.3390/computation12010005 - 3 Jan 2024
Cited by 6 | Viewed by 3999
Abstract
In the search to cover the urgent need to combat infectious diseases, natural products have gained attention in recent years. The caespitate molecule, isolated from the plant Helichrysum caespititium of the Asteraceae family, is used in traditional African medicine. Caespitate is an acylphloroglucinol [...] Read more.
In the search to cover the urgent need to combat infectious diseases, natural products have gained attention in recent years. The caespitate molecule, isolated from the plant Helichrysum caespititium of the Asteraceae family, is used in traditional African medicine. Caespitate is an acylphloroglucinol with biological activity. Acylphloroglucinols have attracted attention for treating tuberculosis due to their structural characteristics, highlighting the stabilizing effect of their intramolecular hydrogen bonds (IHBs). In this work, a conformational search for the caespitate was performed using the MM method. Posteriorly, DFT calculations with the APFD functional were used for full optimization and vibrational frequencies, obtaining stable structures. A population analysis was performed to predict the distribution of the most probable conformers. The calculations were performed in the gas phase and solution using the implicit SMD model for water, chloroform, acetonitrile, and DMSO solvents. Additionally, the multiscale ONIOM QM1/QM2 model was used to simulate the explicit solvent. The implicit and explicit solvent effects were evaluated on the global reactivity indexes using the conceptual-DFT approach. In addition, the QTAIM approach was applied to analyze the properties of the IHBs of the most energetically and populated conformers. The obtained results indicated that the most stable and populated conformer is in the gas phase, and chloroform has an extended conformation. However, water, acetonitrile, and DMSO have a hairpin shape. The optimized structures are well preserved in explicit solvent and the interaction energies for the IHBs were lower in explicit than implicit solvents due to non-covalent interactions formed between the solvent molecules. Finally, both methodologies, with implicit and explicit solvents, were validated with 1H and 13C NMR experimental data. In both cases, the results agreed with the experimental data reported in the CDCl3 solvent. Full article
(This article belongs to the Special Issue Calculations in Solution)
Show Figures

Figure 1

21 pages, 4636 KB  
Article
Antiviral Activity and Molecular Dynamics Simulation of Hops Compounds against Oropouche Virus (Peribunyaviridae)
by Tsvetelina Mandova, Marielena Vogel Saivish, Gabriela de Lima Menezes, Katyanna Sales Bezerra, Umberto Laino Fulco, Roosevelt Alves da Silva, Fernando Batista Da Costa and Maurício Lacerda Nogueira
Pharmaceutics 2023, 15(12), 2769; https://doi.org/10.3390/pharmaceutics15122769 - 13 Dec 2023
Cited by 7 | Viewed by 2971
Abstract
The Oropouche virus (OROV) is a member of the family Peribunyaviridae (order Bunyavirales) and the cause of a dengue-like febrile illness transmitted mainly by biting midges and mosquitoes. In this study, we aimed to explore acylphloroglucinols and xanthohumol from hops (Humulus [...] Read more.
The Oropouche virus (OROV) is a member of the family Peribunyaviridae (order Bunyavirales) and the cause of a dengue-like febrile illness transmitted mainly by biting midges and mosquitoes. In this study, we aimed to explore acylphloroglucinols and xanthohumol from hops (Humulus lupulus L.) as a promising alternative for antiviral therapies. The evaluation of the inhibitory potential of hops compounds on the viral cycle of OROV was performed through two complementary approaches. The first approach applies cell-based assay post-inoculation experiments to explore the inhibitory potential on the latest steps of the viral cycle, such as genome translation, replication, virion assembly, and virion release from the cells. The second part covers in silico methods evaluating the ability of those compounds to inhibit the activity of the endonuclease domain, which is essential for transcription, binding, and cleaving RNA. In conclusion, the beta acids showed strongest inhibitory potential in post-treatment assay (EC50 = 26.7 µg/mL). Xanthohumol had the highest affinity for OROV endonuclease followed by colupulone and cohumulone. This result contrasts with that observed for docking and MM/PBSA analysis, where cohumulone was found to have a higher affinity. Finally, among the three tested ligands, Lys92 and Arg33 exhibited the highest affinity with the protein. Full article
(This article belongs to the Section Biologics and Biosimilars)
Show Figures

Graphical abstract

35 pages, 4242 KB  
Article
Comparison of the Molecular Properties of Euglobals Differing by the Mutual Positions of the Two R–C=O Groups (R = H and CH2CH(CH3)2): A Computational Study
by Neani Tshilande and Liliana Mammino
Chemistry 2023, 5(4), 2120-2154; https://doi.org/10.3390/chemistry5040144 - 12 Oct 2023
Cited by 2 | Viewed by 1919
Abstract
Euglobals are a subclass of acylphloroglucinols, mostly found in plants of the Eucalyptus genus. They possess anticancer activity, being potent inhibitors of the Epstein–Barr virus activation. Their molecules can be viewed as acylphloroglucinol monoterpene or sesquiterpene adducts, with the former having greater activity [...] Read more.
Euglobals are a subclass of acylphloroglucinols, mostly found in plants of the Eucalyptus genus. They possess anticancer activity, being potent inhibitors of the Epstein–Barr virus activation. Their molecules can be viewed as acylphloroglucinol monoterpene or sesquiterpene adducts, with the former having greater activity than the latter. The acylphloroglucinol moiety contains two mutually meta acyl (R–C=O) groups, respectively, in ortho and meta positions with respect to the two C atoms shared by the two moieties. The current work focuses on euglobal molecules in which R = H is in one acyl group and R = isobutyl is in the other. It aims to identify the property differences between molecules having the same terpene moiety and the two acyl groups in reversed positions. Ten such pairs were studied computationally using different levels of theory (HF, DFT, and MP2). The results highlight considerable differences between the two molecules of each pair, regarding molecular features such as relative energies, characteristics of the intramolecular hydrogen bonds (IHBs), dipole moment, bond vibrational frequencies, and frequency changes caused by the IHBs. A comparison of the results from the different levels of theory utilised shows similar patterns for the influence of position reversal on the same characteristic. Full article
(This article belongs to the Section Theoretical and Computational Chemistry)
Show Figures

Figure 1

27 pages, 2068 KB  
Article
Phytochemical Profiling, Antioxidant and Cognitive-Enhancing Effect of Helichrysum italicum ssp. italicum (Roth) G. Don (Asteraceae)
by Reneta Gevrenova, Ivanka Kostadinova, Alexandra Stefanova, Vessela Balabanova, Gokhan Zengin, Dimitrina Zheleva-Dimitrova and Georgi Momekov
Plants 2023, 12(15), 2755; https://doi.org/10.3390/plants12152755 - 25 Jul 2023
Cited by 12 | Viewed by 2929
Abstract
This study aimed at the evaluation of the antioxidant and cognitive-enhancing effect of methanol–aqueous extract from Helichrysum italicum ssp. italicum aerial parts. Significant radical scavenging activity (110.33 ± 3.47 and 234.70 ± 5.21 mg TE/g for DPPH and ABTS) and reducing power (354.23 [...] Read more.
This study aimed at the evaluation of the antioxidant and cognitive-enhancing effect of methanol–aqueous extract from Helichrysum italicum ssp. italicum aerial parts. Significant radical scavenging activity (110.33 ± 3.47 and 234.70 ± 5.21 mg TE/g for DPPH and ABTS) and reducing power (354.23 ± 17.51 and 210.24 ± 8.68 mg TE/g for CUPRAC and FRAP) were observed. The extract showed average acetylcholinesterase and low butyrylcholinesterase inhibitory potential. H. italicum extract (200 mg/kg/po) administered in combination with galantamine (3 mg/kg/po) for 12 days significantly improved the memory and learning process compared with galantamine alone in the passive avoidance test. The effect was comparable to that of Ginkgo biloba extract (100 mg/kg/po). In deep secondary metabolite annotation of the extract by UHPLC-HRMS, more than 90 hydroxybenzoic and hydroxicinnamic acid-glycosides, phenylethanoid glycosides, a series of acylquinic and caffeoylhexaric acids, methoxylated derivatives of scutellarein, quercetagetin and 6-hydroxyluteolin, and prenylated phloroglucinol-α-pyrones were reported for the first time in H. italicum. Fragmentation patterns of four subclasses of heterodimer-pyrones were proposed. In-depth profiling of the pyrones revealed 23 compounds undescribed in the literature. Pyrones and acylphloroglucinols together with acylquinic acids could account for memory improvement. The presented research advanced our knowledge of H. italicum, highlighting the species as a rich source of secondary metabolites with cognitive-enhancing potential. Full article
Show Figures

Figure 1

18 pages, 2749 KB  
Article
Hyperforin Enhances Heme Oxygenase-1 Expression Triggering Lipid Peroxidation in BRAF-Mutated Melanoma Cells and Hampers the Expression of Pro-Metastatic Markers
by Alessia Cardile, Carlotta Passarini, Valentina Zanrè, Alessandra Fiore and Marta Menegazzi
Antioxidants 2023, 12(7), 1369; https://doi.org/10.3390/antiox12071369 - 30 Jun 2023
Cited by 10 | Viewed by 3522
Abstract
Hyperforin (HPF) is an acylphloroglucinol compound found abundantly in Hypericum perforatum extract which exhibits antidepressant, anti-inflammatory, antimicrobial, and antitumor activities. Our recent study revealed a potent antimelanoma effect of HPF, which hinders melanoma cell proliferation, motility, colony formation, and induces apoptosis. Furthermore, we [...] Read more.
Hyperforin (HPF) is an acylphloroglucinol compound found abundantly in Hypericum perforatum extract which exhibits antidepressant, anti-inflammatory, antimicrobial, and antitumor activities. Our recent study revealed a potent antimelanoma effect of HPF, which hinders melanoma cell proliferation, motility, colony formation, and induces apoptosis. Furthermore, we have identified glutathione peroxidase-4 (GPX-4), a key enzyme involved in cellular protection against iron-induced lipid peroxidation, as one of the molecular targets of HPF. Thus, in three BRAF-mutated melanoma cell lines, we investigated whether iron unbalance and lipid peroxidation may be a part of the molecular mechanisms underlying the antimelanoma activity of HPF. Initially, we focused on heme oxygenase-1 (HO-1), which catalyzes the heme group into CO, biliverdin, and free iron, and observed that HPF treatment triggered the expression of this inducible enzyme. In order to investigate the mechanism involved in HO-1 induction, we verified that HPF downregulates the BTB and CNC homology 1 (BACH-1) transcription factor, an inhibitor of the heme oxygenase 1 (HMOX-1) gene transcription. Remarkably, we observed a partial recovery of cell viability and an increase in the expression of the phosphorylated and active form of retinoblastoma protein when we suppressed the HMOX-1 gene using HMOX-1 siRNA while HPF was present. This suggests that the HO-1 pathway is involved in the cytostatic effect of HPF in melanoma cells. To explore whether lipid peroxidation is induced, we conducted cytofluorimetric analysis and observed a significant increase in the fluorescence of the BODIPY C-11 probe 48 h after HPF administration in all tested melanoma cell lines. To discover the mechanism by which HPF triggers lipid peroxidation, along with the induction of HO-1, we examined the expression of additional proteins associated with iron homeostasis and lipid peroxidation. After HPF administration, we confirmed the downregulation of GPX-4 and observed low expression levels of SLC7A11, a cystine transporter crucial for the glutathione production, and ferritin, able to sequester free iron. A decreased expression level of these proteins can sensitize cells to lipid peroxidation. On the other hand, HPF treatment resulted in increased expression levels of transferrin, which facilitates iron uptake, and LC3B proteins, a molecular marker of autophagy induction. Indeed, ferritin and GPX-4 have been reported to be digested during autophagy. Altogether, these findings suggest that HPF induced lipid peroxidation likely through iron overloading and decreasing the expression of proteins that protect cells from lipid peroxidation. Finally, we examined the expression levels of proteins associated with melanoma cell invasion and metastatic potential. We observed the decreased expression of CD133, octamer-4, tyrosine-kinase receptor AXL, urokinase plasminogen activator receptor, and metalloproteinase-2 following HPF treatment. These findings provide further support for our previous observations, demonstrating the inhibitory effects of HPF on cell motility and colony formation in soft agar, which are both metastasis-related processes in tumor cells. Full article
(This article belongs to the Special Issue Pharmacological and Clinical Significance of Heme Oxygenase-1 2022)
Show Figures

Figure 1

15 pages, 1337 KB  
Article
Chemical Characterization and Antioxidant Activity of Nine Hypericum Species from Greece
by Eleni Kakouri, Panayiotis Trigas, Dimitra Daferera, Efstathia Skotti, Petros A. Tarantilis and Charalabos Kanakis
Antioxidants 2023, 12(4), 899; https://doi.org/10.3390/antiox12040899 - 8 Apr 2023
Cited by 25 | Viewed by 4084
Abstract
Hypericum L. comprises about 500 species distributed almost worldwide. Research has mainly focused on H. perforatum with confirmed biological activity on the alleviation of depression symptoms, among others. The compounds responsible for such activity are considered naphthodianthrones and acylphloroglucinols. Other Hypericum species are [...] Read more.
Hypericum L. comprises about 500 species distributed almost worldwide. Research has mainly focused on H. perforatum with confirmed biological activity on the alleviation of depression symptoms, among others. The compounds responsible for such activity are considered naphthodianthrones and acylphloroglucinols. Other Hypericum species are less studied or not studied, and further research is needed to complete the characterization of the genus. In this study we evaluated the qualitative and quantitative phytochemical profile of nine Hypericum species native to Greece, namely H. perforatum, H. tetrapterum, H. perfoliatum, H. rumeliacum subsp. apollinis, H. vesiculosum, H. cycladicum, H. fragile, H. olympicum and H. delphicum. Qualitative analysis was performed using the LC/Q-TOF/HRMS technique, while quantitative data were calculated with the single point external standard method. Additionally, we estimated the antioxidant activity of the extracts using DPPH and ABTS assays. Three species endemic to Greece (H. cycladicum, H. fragile, H. delphicum) were studied for the first time. Our results indicated that all studied species are rich in secondary metabolites, mainly of the flavonoids family, with strong antioxidant activity. Full article
(This article belongs to the Special Issue Biological Potential of Antioxidant Compounds from Vegetable Sources)
Show Figures

Figure 1

32 pages, 4087 KB  
Article
Cytotoxic and Antibacterial Prenylated Acylphloroglucinols from Hypericum olympicum L.
by Yana Ilieva, Georgi Momekov, Maya Margaritova Zaharieva, Teodor Marinov, Zlatina Kokanova-Nedialkova, Hristo Najdenski and Paraskev T. Nedialkov
Plants 2023, 12(7), 1500; https://doi.org/10.3390/plants12071500 - 29 Mar 2023
Cited by 4 | Viewed by 4267
Abstract
Two new bicyclo[3.3.1]nonane type bicyclic polyprenylated acylphloroglucinol derivatives (BPAPs), olympiforin A and B as well as three known prenylated phloroglucinols, were isolated from the aerial parts of Hypericum olympicum L. The structures of the isolated compounds were established by means of spectral techniques (HRESIMS [...] Read more.
Two new bicyclo[3.3.1]nonane type bicyclic polyprenylated acylphloroglucinol derivatives (BPAPs), olympiforin A and B as well as three known prenylated phloroglucinols, were isolated from the aerial parts of Hypericum olympicum L. The structures of the isolated compounds were established by means of spectral techniques (HRESIMS and 1D and 2D NMR). All compounds were tested on a panel of human tumor (MDA-MB-231, EJ, K-562, HL-60 and HL-60/DOX) and non- tumorigenic (HEK-293 and EA.hy926) cell lines using the MTT assay. All tested compounds exerted significant in vitro cytotoxicity with IC50 values ranging from 1.2 to 24.9 μM and from 0.9 to 34 μM on tumor and non-cancerous cell lines, respectively. Most of the compounds had good selectivity and were more cytotoxic to the tumor cell lines than to the normal ones. A degradation of the precursor caspase 9 for some of the compounds was observed; therefore, the intrinsic pathway of apoptosis is the most likely mechanism of cytotoxic activity. The BPAPs were examined for antibacterial and antibiofilm activity through the broth microdilution method and the protocol of Stepanović. They showed a moderate effect against Enterococcus faecalis and Streptococcus pyogenes but a very profound activity against Staphylococcus aureus with minimum inhibitory concentrations (MIC) in the range of 0.78–2 mg/L. Olympiforin B also had a great effect against methicillin-resistant S. aureus (MRSA) with an MIC value of 1 mg/L and a very significant antibiofilm activity on that strain with a minimum biofilm inhibition concentration (MBIC) value of 0.5 mg/L. The structures of the isolated compounds were in silico evaluated using ADME and drug likeness tests. Full article
Show Figures

Graphical abstract

Back to TopTop