Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,265)

Search Parameters:
Keywords = active MAP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 6505 KiB  
Review
Trends in Oil Spill Modeling: A Review of the Literature
by Rodrigo N. Vasconcelos, André T. Cunha Lima, Carlos A. D. Lentini, José Garcia V. Miranda, Luís F. F. de Mendonça, Diego P. Costa, Soltan G. Duverger and Elaine C. B. Cambui
Water 2025, 17(15), 2300; https://doi.org/10.3390/w17152300 (registering DOI) - 2 Aug 2025
Abstract
Oil spill simulation models are essential for predicting the oil spill behavior and movement in marine environments. In this study, we comprehensively reviewed a large and diverse body of peer-reviewed literature obtained from Scopus and Web of Science. Our initial analysis phase focused [...] Read more.
Oil spill simulation models are essential for predicting the oil spill behavior and movement in marine environments. In this study, we comprehensively reviewed a large and diverse body of peer-reviewed literature obtained from Scopus and Web of Science. Our initial analysis phase focused on examining trends in scientific publications, utilizing the complete dataset derived after systematic screening and database integration. In the second phase, we applied elements of a systematic review to identify and evaluate the most influential contributions in the scientific field of oil spill simulations. Our analysis revealed a steady and accelerating growth of research activity over the past five decades, with a particularly notable expansion in the last two. The field has also experienced a marked increase in collaborative practices, including a rise in international co-authorship and multi-authored contributions, reflecting a more global and interdisciplinary research landscape. We cataloged the key modeling frameworks that have shaped the field from established systems such as OSCAR, OIL-MAP/SIMAP, and GNOME to emerging hybrid and Lagrangian approaches. Hydrodynamic models were consistently central, often integrated with biogeochemical, wave, atmospheric, and oil-spill-specific modules. Environmental variables such as wind, ocean currents, and temperature were frequently used to drive model behavior. Geographically, research has concentrated on ecologically and economically sensitive coastal and marine regions. We conclude that future progress will rely on the real-time integration of high-resolution environmental data streams, the development of machine-learning-based surrogate models to accelerate computations, and the incorporation of advanced biodegradation and weathering mechanisms supported by experimental data. These advancements are expected to enhance the accuracy, responsiveness, and operational value of oil spill modeling tools, supporting environmental monitoring and emergency response. Full article
(This article belongs to the Special Issue Advanced Remote Sensing for Coastal System Monitoring and Management)
Show Figures

Figure 1

20 pages, 2546 KiB  
Article
A Case Study on the Vertical Distribution and Correlation Between Low-Frequency Lightning Sources and Hydrometeors During a Thunderstorm
by Sulin Jiang, Fanchao Lyu, Steven A. Cummer, Tianxue Zheng, Mingjun Wang, Yan Liu and Weitao Lyu
Remote Sens. 2025, 17(15), 2676; https://doi.org/10.3390/rs17152676 (registering DOI) - 2 Aug 2025
Abstract
Understanding the interplay between lightning activity and hydrometeor distribution is crucial for advancing knowledge of thunderstorm electrification processes. Using three-dimensional lightning mapping and dual-polarization radar observations, this study investigates the spatiotemporal correlations between low-frequency (LF) lightning sources and hydrometeors during a severe thunderstorm [...] Read more.
Understanding the interplay between lightning activity and hydrometeor distribution is crucial for advancing knowledge of thunderstorm electrification processes. Using three-dimensional lightning mapping and dual-polarization radar observations, this study investigates the spatiotemporal correlations between low-frequency (LF) lightning sources and hydrometeors during a severe thunderstorm on 11 June 2014, in North Carolina, USA. The results reveal that lightning sources are predominantly observed above 6 km (near the −10 °C isotherm) and stabilize into a dual-peak vertical distribution as the storm progresses into its mature stage, with peaks located at 6–7 km (−10 °C to −15 °C) and 10–11 km (approximately −40 °C). Low-density graupel (LDG) and aggregates (AGs) dominate at lightning locations. Stronger updrafts lead to higher proportions of LDG and high-density graupel (HDG), and lower proportions of AG. LDG exhibits the strongest positive correlation with LF lightning sources, with a peak correlation coefficient of 0.65 at 9 km. During the vigorous development stage, HDG and hail (Ha) also show positive correlations with LF lightning sources, with peak correlation coefficients of 0.52 at 7 km and 0.42 at 8 km, respectively. As the storm reaches its mature phase, the correlation between LDG and lightning sources also displays a dual-peak vertical distribution, with peaks at 7–8 km and 13–14 km. Both the peak correlation coefficient and its corresponding height increase with the strengthening of updrafts, underscoring the critical role of updrafts in microphysical characteristics and driving electrification processes. Full article
21 pages, 7537 KiB  
Article
Variable Step-Size FxLMS Algorithm Based on Cooperative Coupling of Double Nonlinear Functions
by Jialong Wang, Jian Liao, Lin He, Xiaopeng Tan and Zongbin Chen
Symmetry 2025, 17(8), 1222; https://doi.org/10.3390/sym17081222 (registering DOI) - 2 Aug 2025
Abstract
Based on the principle of symmetry, we propose a variable step-size FxLMS algorithm with double nonlinear functions cooperative coupling (DNVSS-FxLMS), aiming to optimize the contradiction between convergence rate and steady-state error in the active pressure pulsation control system of hydraulic systems. The algorithm [...] Read more.
Based on the principle of symmetry, we propose a variable step-size FxLMS algorithm with double nonlinear functions cooperative coupling (DNVSS-FxLMS), aiming to optimize the contradiction between convergence rate and steady-state error in the active pressure pulsation control system of hydraulic systems. The algorithm innovatively couples two types of nonlinear mechanisms (rational-fractional and exponential-function-based), constructing a refined error-step mapping relationship to achieve a balance between rapid convergence and low steady-state error. Simulation experiments were conducted considering the complex time-varying operating environment of a simulation-based hydraulic system. The results demonstrate that, when the system undergoes unstable random changes, the DNVSS-FxLMS algorithm converges at least twice as fast as traditional and existing variable step size algorithms, while reducing steady-state error by 2–5 dB. The proposed DNVSS-FxLMS algorithm exhibits significant advantages in convergence rate, steady-state error reduction, and tracking capability, providing a highly efficient and robust solution for real-time active control of hydraulic system pressure pulsation under complex operating conditions. Full article
Show Figures

Figure 1

17 pages, 3731 KiB  
Article
Lake Water Depletion Linkages with Seismic Hazards in Sikkim, India: A Case Study on Chochen Lake
by Anil Kumar Misra, Kuldeep Dutta, Rakesh Kumar Ranjan, Nishchal Wanjari and Subash Dhakal
GeoHazards 2025, 6(3), 42; https://doi.org/10.3390/geohazards6030042 (registering DOI) - 1 Aug 2025
Abstract
After the 2011 earthquake, lake water depletion has become a widespread issue in Sikkim, especially in regions classified as high to very high seismic zones, where many lakes have turned into seasonal water bodies. This study investigates Chochen Lake in the Barapathing area [...] Read more.
After the 2011 earthquake, lake water depletion has become a widespread issue in Sikkim, especially in regions classified as high to very high seismic zones, where many lakes have turned into seasonal water bodies. This study investigates Chochen Lake in the Barapathing area of Sikkim’s Pakyong district, which is facing severe water seepage and instability. The problem, intensified by the 2011 seismic event and ongoing local construction, is examined through subsurface fracture mapping using Vertical Electrical Sounding (VES) and profiling techniques. A statistical factor method, applied to interpret VES data, helped identify fracture patterns beneath the lake. Results from two sites (VES-1 and VES-2) reveal significant variations in weathered and semi-weathered soil layers, indicating fractures at depths of 17–50 m (VES-1) and 20–55 m (VES-2). Higher fracture density near VES-1 suggests increased settlement risk and ground displacement compared to VES-2. Contrasting resistivity values emphasize the greater instability in this zone and the need for cautious construction practices. The findings highlight the role of seismic-induced fractures in ongoing water depletion and underscore the importance of continuous dewatering to stabilize the swampy terrain. Full article
Show Figures

Figure 1

19 pages, 1160 KiB  
Article
Multi-User Satisfaction-Driven Bi-Level Optimization of Electric Vehicle Charging Strategies
by Boyin Chen, Jiangjiao Xu and Dongdong Li
Energies 2025, 18(15), 4097; https://doi.org/10.3390/en18154097 (registering DOI) - 1 Aug 2025
Abstract
The accelerating integration of electric vehicles (EVs) into contemporary transportation infrastructure has underscored significant limitations in traditional charging paradigms, particularly in accommodating heterogeneous user requirements within dynamic operational environments. This study presents a differentiated optimization framework for EV charging strategies through the systematic [...] Read more.
The accelerating integration of electric vehicles (EVs) into contemporary transportation infrastructure has underscored significant limitations in traditional charging paradigms, particularly in accommodating heterogeneous user requirements within dynamic operational environments. This study presents a differentiated optimization framework for EV charging strategies through the systematic classification of user types. A multidimensional decision-making environment is established for three representative user categories—residential, commercial, and industrial—by synthesizing time-variant electricity pricing models with dynamic carbon emission pricing mechanisms. A bi-level optimization architecture is subsequently formulated, leveraging deep reinforcement learning (DRL) to capture user-specific demand characteristics through customized reward functions and adaptive constraint structures. Validation is conducted within a high-fidelity simulation environment featuring 90 autonomous EV charging agents operating in a metropolitan parking facility. Empirical results indicate that the proposed typology-driven approach yields a 32.6% average cost reduction across user groups relative to baseline charging protocols, with statistically significant improvements in expenditure optimization (p < 0.01). Further interpretability analysis employing gradient-weighted class activation mapping (Grad-CAM) demonstrates that the model’s attention mechanisms are well aligned with theoretically anticipated demand prioritization patterns across the distinct user types, thereby confirming the decision-theoretic soundness of the framework. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

27 pages, 3387 KiB  
Article
Landscape Services from the Perspective of Experts and Their Use by the Local Community: A Comparative Study of Selected Landscape Types in a Region in Central Europe
by Piotr Krajewski, Marek Furmankiewicz, Marta Sylla, Iga Kołodyńska and Monika Lebiedzińska
Sustainability 2025, 17(15), 6998; https://doi.org/10.3390/su17156998 (registering DOI) - 1 Aug 2025
Abstract
This study investigates the concept of landscape services (LS), which integrate environmental and sociocultural dimensions of sustainable development. Recognizing landscapes as essential to daily life and well-being, the research aims to support sustainable spatial planning by analyzing both their potential and their actual [...] Read more.
This study investigates the concept of landscape services (LS), which integrate environmental and sociocultural dimensions of sustainable development. Recognizing landscapes as essential to daily life and well-being, the research aims to support sustainable spatial planning by analyzing both their potential and their actual use. The study has three main objectives: (1) to assess the potential of 16 selected landscape types to provide six key LS through expert evaluation; (2) to determine actual LS usage patterns among the local community (residents); and (3) to identify agreements and discrepancies between expert assessments and resident use. The services analyzed include providing space for daily activities; regulating spatial structure through diversity and compositional richness; enhancing physical and mental health; enabling passive and active recreation; supporting personal fulfillment; and fostering social interaction. Expert-based surveys and participatory mapping with residents were used to assess the provision and use of LS. The results indicate consistent evaluations for forest and historical urban landscapes (high potential and use) and mining and transportation landscapes (low potential and use). However, significant differences emerged for mountain LS, rated highly by experts but used minimally by residents. These insights highlight the importance of aligning expert planning with community needs to promote sustainable land use policies and reduce spatial conflicts. Full article
Show Figures

Figure 1

13 pages, 1293 KiB  
Article
Integration of an OS-Based Machine Learning Score (AS Score) and Immunoscore as Ancillary Tools for Predicting Immunotherapy Response in Sarcomas
by Isidro Machado, Raquel López-Reig, Eduardo Giner, Antonio Fernández-Serra, Celia Requena, Beatriz Llombart, Francisco Giner, Julia Cruz, Victor Traves, Javier Lavernia, Antonio Llombart-Bosch and José Antonio López Guerrero
Cancers 2025, 17(15), 2551; https://doi.org/10.3390/cancers17152551 (registering DOI) - 1 Aug 2025
Viewed by 28
Abstract
Background: Angiosarcomas (ASs) represent a heterogeneous and highly aggressive subset of tumors that respond poorly to systemic treatments and are associated with short progression-free survival (PFS) and overall survival (OS). The aim of this study was to develop and validate an immune-related [...] Read more.
Background: Angiosarcomas (ASs) represent a heterogeneous and highly aggressive subset of tumors that respond poorly to systemic treatments and are associated with short progression-free survival (PFS) and overall survival (OS). The aim of this study was to develop and validate an immune-related prognostic model—termed the AS score—using data from two independent sarcoma cohorts. Methods: A prognostic model was developed using a previously characterized cohort of 25 angiosarcoma samples. Candidate genes were identified via the Maxstat algorithm (Maxstat v0.7-25 for R), combined with log-rank testing. The AS score was then computed by weighing normalized gene expression levels according to Cox regression coefficients. For external validation, transcriptomic data from TCGA Sarcoma cohort (n = 253) were analyzed. The Immunoscore—which reflects the tumor immune microenvironment—was inferred using the ESTIMATE package (v1.0.13) in R. All statistical analyses were performed in RStudio (v 4.0.3). Results: Four genes—IGF1R, MAP2K1, SERPINE1, and TCF12—were ultimately selected to construct the prognostic model. The resulting AS score enabled the classification of angiosarcoma cases into two prognostically distinct groups (p = 0.00012). Cases with high AS score values, which included both cutaneous and non-cutaneous forms, exhibited significantly poorer outcomes, whereas cases with low AS scores were predominantly cutaneous. A significant association was observed between the AS score and the Immunoscore (p = 0.025), with higher Immunoscore values found in high-AS score tumors. Validation using TCGA sarcoma cohort confirmed the prognostic value of both the AS score (p = 0.0066) and the Immunoscore (p = 0.0029), with a strong correlation between their continuous values (p = 2.9 × 10−8). Further survival analysis, integrating categorized scores into four groups, demonstrated robust prognostic significance (p = 0.00021). Notably, in tumors with a low Immunoscore, AS score stratification was not prognostic. In contrast, among cases with a high Immunoscore, the AS score effectively distinguished outcomes (p < 0.0001), identifying a subgroup with poor prognosis but potential sensitivity to immunotherapy. Conclusions: This combined classification using the AS score and Immunoscore has prognostic relevance in sarcoma, suggesting that angiosarcomas with an immunologically active microenvironment (high Immunoscore) and poor prognosis (high AS score) may be prime candidates for immunotherapy and this approach warrants prospective validation. Full article
(This article belongs to the Special Issue Genomics and Transcriptomics in Sarcoma)
Show Figures

Figure 1

17 pages, 3062 KiB  
Article
Spatiotemporal Risk-Aware Patrol Planning Using Value-Based Policy Optimization and Sensor-Integrated Graph Navigation in Urban Environments
by Swarnamouli Majumdar, Anjali Awasthi and Lorant Andras Szolga
Appl. Sci. 2025, 15(15), 8565; https://doi.org/10.3390/app15158565 (registering DOI) - 1 Aug 2025
Viewed by 38
Abstract
This study proposes an intelligent patrol planning framework that leverages reinforcement learning, spatiotemporal crime forecasting, and simulated sensor telemetry to optimize autonomous vehicle (AV) navigation in urban environments. Crime incidents from Washington DC (2024–2025) and Seattle (2008–2024) are modeled as a dynamic spatiotemporal [...] Read more.
This study proposes an intelligent patrol planning framework that leverages reinforcement learning, spatiotemporal crime forecasting, and simulated sensor telemetry to optimize autonomous vehicle (AV) navigation in urban environments. Crime incidents from Washington DC (2024–2025) and Seattle (2008–2024) are modeled as a dynamic spatiotemporal graph, capturing the evolving intensity and distribution of criminal activity across neighborhoods and time windows. The agent’s state space incorporates synthetic AV sensor inputs—including fuel level, visual anomaly detection, and threat signals—to reflect real-world operational constraints. We evaluate and compare three learning strategies: Deep Q-Network (DQN), Double Deep Q-Network (DDQN), and Proximal Policy Optimization (PPO). Experimental results show that DDQN outperforms DQN in convergence speed and reward accumulation, while PPO demonstrates greater adaptability in sensor-rich, high-noise conditions. Real-map simulations and hourly risk heatmaps validate the effectiveness of our approach, highlighting its potential to inform scalable, data-driven patrol strategies in next-generation smart cities. Full article
(This article belongs to the Special Issue AI-Aided Intelligent Vehicle Positioning in Urban Areas)
Show Figures

Figure 1

44 pages, 8269 KiB  
Article
Contributions of AGN to the Morphological Parameters of Their Host Galaxies up to Intermediate Redshifts of z ∼ 2
by Tilahun Getachew-Woreta, Mirjana Pović, Jaime Perea, Isabel Marquez, Josefa Masegosa, Antoine Mahoro and Shimeles Terefe Mengistue
Galaxies 2025, 13(4), 84; https://doi.org/10.3390/galaxies13040084 (registering DOI) - 1 Aug 2025
Viewed by 47
Abstract
The presence of Active Galaxy Nuclei (AGN) can affect the morphological classification of galaxies. This work aims to determine how the contribution of AGN affects the most-used morphological parameters down to the redshift of z ∼ 2 in COSMOS-like conditions. We use a [...] Read more.
The presence of Active Galaxy Nuclei (AGN) can affect the morphological classification of galaxies. This work aims to determine how the contribution of AGN affects the most-used morphological parameters down to the redshift of z ∼ 2 in COSMOS-like conditions. We use a sample of >2000 local non-active galaxies, with a well-known visual morphological classification, and add an AGN as an unresolved component that contributes to the total galaxy flux with 5–75%. We moved all the galaxies to lower magnitudes (higher redshifts) to map the conditions in the COSMOS field, and we measured six morphological parameters. The greatest impact on morphology occurs when considering the combined effect of magnitude, redshift, and AGN, with spiral galaxies being the most affected. In general, all the concentration parameters change significantly if the AGN contribution is >25% and the magnitude > 23. We find that the GINI coefficient is the most stable in terms of AGN and magnitude/redshift, followed by the moment of light (M20), Conselice–Bershady (CCON), and finally the Abraham (CABR) concentration indexes. We find that, when using morphological parameters, the combination of CABR, CCON, and asymmetry is the most effective in classifying active galaxies at high-redshift, followed by a combination of CABR and GINI. Full article
Show Figures

Figure 1

20 pages, 27453 KiB  
Article
Natural and Anthropogenic Influence on the Physicochemical Characteristics of Spring Water: The Case Study of Medvednica Mountain (Central Croatia)
by Ivan Martinić and Ivan Čanjevac
Limnol. Rev. 2025, 25(3), 36; https://doi.org/10.3390/limnolrev25030036 (registering DOI) - 1 Aug 2025
Viewed by 28
Abstract
During the period from 2020 to 2024, 900 springs were mapped on the southern slopes of Medvednica Mountain Nature Park. Physicochemical parameters (temperature, pH, and electrical conductivity) were measured at 701 of these springs using a portable multimeter, and results were analyzed in [...] Read more.
During the period from 2020 to 2024, 900 springs were mapped on the southern slopes of Medvednica Mountain Nature Park. Physicochemical parameters (temperature, pH, and electrical conductivity) were measured at 701 of these springs using a portable multimeter, and results were analyzed in relation to local lithology and human activities. This research provides the first results of this kind in this study area, aiming to expand the knowledge on local springs and to support the future protection and management of spring ecosystems. Springs on the Medvednica mountain showed substantial variation in measured parameters. The temperature ranged from 3.4 to 18.9 °C, reflecting local hydrological conditions, aquifer characteristics, and seasonal variability. Electrical conductivity (EC) ranged between 41 μS/cm and 2062 μS/cm, determined by both hydrogeological settings and anthropogenic impacts such as winter road salting. The pH values showed moderate variability, remaining mostly within neutral levels. These results emphasize the importance of continued monitoring and further research of Medvednica springs, in order to highlight their importance and to preserve their ecological and hydrological roles. Full article
Show Figures

Graphical abstract

15 pages, 4258 KiB  
Article
Complex-Scene SAR Aircraft Recognition Combining Attention Mechanism and Inner Convolution Operator
by Wansi Liu, Huan Wang, Jiapeng Duan, Lixiang Cao, Teng Feng and Xiaomin Tian
Sensors 2025, 25(15), 4749; https://doi.org/10.3390/s25154749 (registering DOI) - 1 Aug 2025
Viewed by 50
Abstract
Synthetic aperture radar (SAR), as an active microwave imaging system, has the capability of all-weather and all-time observation. In response to the challenges of aircraft detection in SAR images due to the complex background interference caused by the continuous scattering of airport buildings [...] Read more.
Synthetic aperture radar (SAR), as an active microwave imaging system, has the capability of all-weather and all-time observation. In response to the challenges of aircraft detection in SAR images due to the complex background interference caused by the continuous scattering of airport buildings and the demand for real-time processing, this paper proposes a YOLOv7-MTI recognition model that combines the attention mechanism and involution. By integrating the MTCN module and involution, performance is enhanced. The Multi-TASP-Conv network (MTCN) module aims to effectively extract low-level semantic and spatial information using a shared lightweight attention gate structure to achieve cross-dimensional interaction between “channels and space” with very few parameters, capturing the dependencies among multiple dimensions and improving feature representation ability. Involution helps the model adaptively adjust the weights of spatial positions through dynamic parameterized convolution kernels, strengthening the discrete strong scattering points specific to aircraft and suppressing the continuous scattering of the background, thereby alleviating the interference of complex backgrounds. Experiments on the SAR-AIRcraft-1.0 dataset, which includes seven categories such as A220, A320/321, A330, ARJ21, Boeing737, Boeing787, and others, show that the mAP and mRecall of YOLOv7-MTI reach 93.51% and 96.45%, respectively, outperforming Faster R-CNN, SSD, YOLOv5, YOLOv7, and YOLOv8. Compared with the basic YOLOv7, mAP is improved by 1.47%, mRecall by 1.64%, and FPS by 8.27%, achieving an effective balance between accuracy and speed, providing research ideas for SAR aircraft recognition. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

23 pages, 3099 KiB  
Article
Explainable Multi-Scale CAM Attention for Interpretable Cloud Segmentation in Astro-Meteorological Applications
by Qing Xu, Zichen Zhang, Guanfang Wang and Yunjie Chen
Appl. Sci. 2025, 15(15), 8555; https://doi.org/10.3390/app15158555 (registering DOI) - 1 Aug 2025
Viewed by 130
Abstract
Accurate cloud segmentation is critical for astronomical observations and solar forecasting. However, traditional threshold- and texture-based methods suffer from limited accuracy (65–80%) under complex conditions such as thin cirrus or twilight transitions. Although the deep-learning segmentation method based on U-Net effectively captures low-level [...] Read more.
Accurate cloud segmentation is critical for astronomical observations and solar forecasting. However, traditional threshold- and texture-based methods suffer from limited accuracy (65–80%) under complex conditions such as thin cirrus or twilight transitions. Although the deep-learning segmentation method based on U-Net effectively captures low-level and high-level features and achieves significant progress in accuracy, current methods still lack interpretability and multi-scale feature integration and usually produce fuzzy boundaries or fragmented predictions. In this paper, we propose multi-scale CAM, an explainable AI (XAI) framework that integrates class activation mapping (CAM) with hierarchical feature fusion to quantify pixel-level attention across hierarchical features, thereby enhancing the model’s discriminative capability. To achieve precise segmentation, we integrate CAM into an improved U-Net architecture, incorporating multi-scale CAM attention for adaptive feature fusion and dilated residual modules for large-scale context extraction. Experimental results on the SWINSEG dataset demonstrate that our method outperforms existing state-of-the-art methods, improving recall by 3.06%, F1 score by 1.49%, and MIoU by 2.21% over the best baseline. The proposed framework balances accuracy, interpretability, and computational efficiency, offering a trustworthy solution for cloud detection systems in operational settings. Full article
(This article belongs to the Special Issue Explainable Artificial Intelligence Technology and Its Applications)
Show Figures

Figure 1

26 pages, 3030 KiB  
Article
Predicting Landslide Susceptibility Using Cost Function in Low-Relief Areas: A Case Study of the Urban Municipality of Attecoube (Abidjan, Ivory Coast)
by Frédéric Lorng Gnagne, Serge Schmitz, Hélène Boyossoro Kouadio, Aurélia Hubert-Ferrari, Jean Biémi and Alain Demoulin
Earth 2025, 6(3), 84; https://doi.org/10.3390/earth6030084 (registering DOI) - 1 Aug 2025
Viewed by 146
Abstract
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and [...] Read more.
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and frequency ratio models. The analysis is based on a dataset comprising 54 mapped landslide scarps collected from June 2015 to July 2023, along with 16 thematic predictor variables, including altitude, slope, aspect, profile curvature, plan curvature, drainage area, distance to the drainage network, normalized difference vegetation index (NDVI), and an urban-related layer. A high-resolution (5-m) digital elevation model (DEM), derived from multiple data sources, supports the spatial analysis. The landslide inventory was randomly divided into two subsets: 80% for model calibration and 20% for validation. After optimization and statistical testing, the selected thematic layers were integrated to produce a susceptibility map. The results indicate that 6.3% (0.7 km2) of the study area is classified as very highly susceptible. The proportion of the sample (61.2%) in this class had a frequency ratio estimated to be 20.2. Among the predictive indicators, altitude, slope, SE, S, NW, and NDVI were found to have a positive impact on landslide occurrence. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), demonstrating strong predictive capability. These findings can support informed land-use planning and risk reduction strategies in urban areas. Furthermore, the prediction model should be communicated to and understood by local authorities to facilitate disaster management. The cost function was adopted as a novel approach to delineate hazardous zones. Considering the landslide inventory period, the increasing hazard due to climate change, and the intensification of human activities, a reasoned choice of sample size was made. This informed decision enabled the production of an updated prediction map. Optimal thresholds were then derived to classify areas into high- and low-susceptibility categories. The prediction map will be useful to planners in helping them make decisions and implement protective measures. Full article
Show Figures

Figure 1

21 pages, 23129 KiB  
Article
Validation of Global Moderate-Resolution FAPAR Products over Boreal Forests in North America Using Harmonized Landsat and Sentinel-2 Data
by Yinghui Zhang, Hongliang Fang, Zhongwen Hu, Yao Wang, Sijia Li and Guofeng Wu
Remote Sens. 2025, 17(15), 2658; https://doi.org/10.3390/rs17152658 (registering DOI) - 1 Aug 2025
Viewed by 63
Abstract
The fraction of absorbed photosynthetically active radiation (FAPAR) stands as a pivotal parameter within the Earth system, quantifying the energy exchange between vegetation and solar radiation. Accordingly, there is an urgent need for comprehensive validation studies to accurately quantify uncertainties and improve the [...] Read more.
The fraction of absorbed photosynthetically active radiation (FAPAR) stands as a pivotal parameter within the Earth system, quantifying the energy exchange between vegetation and solar radiation. Accordingly, there is an urgent need for comprehensive validation studies to accurately quantify uncertainties and improve the reliability of FAPAR-based applications. This study validated five global FAPAR products, MOD15A2H, MYD15A2H, VNP15A2H, GEOV2, and GEOV3, over four boreal forest sites in North America. Qualitative quality flags (QQFs) and quantitative quality indicators (QQIs) of each product were analyzed. Time series high-resolution reference FAPAR maps were developed using the Harmonized Landsat and Sentinel-2 dataset. The reference FAPAR maps revealed a strong agreement with the in situ FAPAR from AmeriFlux (correlation coefficient (R) = 0.91; root mean square error (RMSE) = 0.06). The results revealed that global FAPAR products show similar uncertainties (RMSE: 0.16 ± 0.04) and moderate agreement with the reference FAPAR (R = 0.75 ± 0.10). On average, 34.47 ± 6.91% of the FAPAR data met the goal requirements of the Global Climate Observing System (GCOS), while 54.41 ± 6.89% met the threshold requirements of the GCOS. Deciduous forests perform better than evergreen forests, and the products tend to underestimate the reference data, especially for the beginning and end of growing seasons in evergreen forests. There are no obvious quality differences at different QQFs, and the relative QQI can be used to filter high-quality values. To enhance the regional applicability of global FAPAR products, further algorithm improvements and expanded validation efforts are essential. Full article
Show Figures

Figure 1

21 pages, 12325 KiB  
Article
Inspection of Damaged Composite Structures with Active Thermography and Digital Shearography
by João Queirós, Hernâni Lopes, Luís Mourão and Viriato dos Santos
J. Compos. Sci. 2025, 9(8), 398; https://doi.org/10.3390/jcs9080398 (registering DOI) - 1 Aug 2025
Viewed by 131
Abstract
This study comprehensively compares the performance of two non-destructive testing (NDT) techniques—active thermography (AT) and digital shearography (DS)—for identifying various damage types in composite structures. Three distinct composite specimens were inspected: a carbon-fiber-reinforced polymer (CFRP) plate with flat-bottom holes, an aluminum honeycomb core [...] Read more.
This study comprehensively compares the performance of two non-destructive testing (NDT) techniques—active thermography (AT) and digital shearography (DS)—for identifying various damage types in composite structures. Three distinct composite specimens were inspected: a carbon-fiber-reinforced polymer (CFRP) plate with flat-bottom holes, an aluminum honeycomb core sandwich plate with a circular skin-core disbond, and a CFRP plate with two low-energy impacts damage. The research highlights the significant role of post-processing methods in enhancing damage detectability. For AT, algorithms such as fast Fourier transform (FFT) for temperature phase extraction and principal component thermography (PCT) for identifying significant temperature components were employed, generally making anomalies brighter and easier to locate and size. For DS, a novel band-pass filtering approach applied to phase maps, followed by summing the filtered maps, remarkably improved the visualization and precision of damage-induced anomalies by suppressing background noise. Qualitative image-based comparisons revealed that DS consistently demonstrated superior performance. The sum of DS filtered phase maps provided more detailed and precise information regarding damage location and size compared to both pulsed thermography (PT) and lock-in thermography (LT) temperature phase and amplitude. Notably, DS effectively identified shallow flat-bottom holes and subtle imperfections that AT struggled to clearly resolve, and it provided a more comprehensive representation of the impacts damage location and extent. This enhanced capability of DS is attributed to the novel phase map filtering approach, which significantly improves damage identification compared to the thermogram post-processing methods used for AT. Full article
Show Figures

Figure 1

Back to TopTop