Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = active Lamb wave monitoring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 8761 KiB  
Article
Delamination Depth Detection in Composite Plates Using the Lamb Wave Technique Based on Convolutional Neural Networks
by Asaad Migot, Ahmed Saaudi and Victor Giurgiutiu
Sensors 2024, 24(10), 3118; https://doi.org/10.3390/s24103118 - 14 May 2024
Cited by 9 | Viewed by 2557
Abstract
Delamination represents one of the most significant and dangerous damages in composite plates. Recently, many papers have presented the capability of structural health monitoring (SHM) techniques for the investigation of structural delamination with various shapes and thickness depths. However, few studies have been [...] Read more.
Delamination represents one of the most significant and dangerous damages in composite plates. Recently, many papers have presented the capability of structural health monitoring (SHM) techniques for the investigation of structural delamination with various shapes and thickness depths. However, few studies have been conducted regarding the utilization of convolutional neural network (CNN) methods for automating the non-destructive testing (NDT) techniques database to identify the delamination size and depth. In this paper, an automated system qualified for distinguishing between pristine and damaged structures and classifying three classes of delamination with various depths is presented. This system includes a proposed CNN model and the Lamb wave technique. In this work, a unidirectional composite plate with three samples of delamination inserted at different depths was prepared for numerical and experimental investigations. In the numerical part, the guided wave propagation and interaction with three samples of delamination were studied to observe how the delamination depth can affect the scattered and trapped waves over the delamination region. This numerical study was validated experimentally using an efficient ultrasonic guided waves technique. This technique involved piezoelectric wafer active sensors (PWASs) and a scanning laser Doppler vibrometer (SLDV). Both numerical and experimental studies demonstrate that the delamination depth has a direct effect on the trapped waves’ energy and distribution. Three different datasets were collected from the numerical and experimental studies, involving the numerical wavefield image dataset, experimental wavefield image dataset, and experimental wavenumber spectrum image dataset. These three datasets were used independently with the proposed CNN model to develop a system that can automatically classify four classes (pristine class and three different delamination classes). The results of all three datasets show the capability of the proposed CNN model for predicting the delamination depth with high accuracy. The proposed CNN model results of the three different datasets were validated using the GoogLeNet CNN. The results of both methods show an excellent agreement. The results proved the capability of the wavefield image and wavenumber spectrum datasets to be used as input data to the CNN for the detection of delamination depth. Full article
Show Figures

Figure 1

20 pages, 1593 KiB  
Article
Integration Technology with Thin Films Co-Fabricated in Laminated Composite Structures for Defect Detection and Damage Monitoring
by Rogers K. Langat, Emmanuel De Luycker, Arthur Cantarel and Micky Rakotondrabe
Micromachines 2024, 15(2), 274; https://doi.org/10.3390/mi15020274 - 15 Feb 2024
Cited by 7 | Viewed by 1825
Abstract
Despite the well-established nature of non-destructive testing (NDT) technologies, autonomous monitoring systems are still in high demand. The solution lies in harnessing the potential of intelligent structures, particularly in industries like aeronautics. Substantial downtime occurs due to routine maintenance, leading to lost revenue [...] Read more.
Despite the well-established nature of non-destructive testing (NDT) technologies, autonomous monitoring systems are still in high demand. The solution lies in harnessing the potential of intelligent structures, particularly in industries like aeronautics. Substantial downtime occurs due to routine maintenance, leading to lost revenue when aircraft are grounded for inspection and repairs. This article explores an innovative approach using intelligent materials to enhance condition-based maintenance, ultimately cutting life-cycle costs. The study emphasizes a paradigm shift toward structural health monitoring (SHM), utilizing embedded sensors for real-time monitoring. Active thin film piezoelectric materials are proposed for their integration into composite structures. The work evaluates passive sensing through acoustic emission (AE) signals and active sensing using Lamb wave propagation, presenting amplitude-based and frequency domain approaches for damage detection. A comprehensive signal processing approach is presented, and the damage index and damage size correlation function are introduced to enable continuous monitoring due to their sensitivity to changes in material properties and defect severity. Additionally, finite element modeling and experimental validation are proposed to enhance their understanding and applicability. This research contributes to developing more efficient and cost-effective aircraft maintenance approaches through SHM, addressing the competitive demands of the aeronautic industry. Full article
Show Figures

Figure 1

17 pages, 5158 KiB  
Article
Durability Assessment of Bonded Piezoelectric Wafer Active Sensors for Aircraft Health Monitoring Applications
by Jesús N. Eiras, Ludovic Gavérina and Jean-Michel Roche
Sensors 2024, 24(2), 450; https://doi.org/10.3390/s24020450 - 11 Jan 2024
Cited by 10 | Viewed by 2394
Abstract
This study conducted experimental and numerical investigations on piezoelectric wafer active sensors (PWASs) bonded to an aluminum plate to assess the impact of bonding degradation on Lamb wave generation. Three surface-bonded PWASs were examined, including one intentionally bonded with a reduced adhesive to [...] Read more.
This study conducted experimental and numerical investigations on piezoelectric wafer active sensors (PWASs) bonded to an aluminum plate to assess the impact of bonding degradation on Lamb wave generation. Three surface-bonded PWASs were examined, including one intentionally bonded with a reduced adhesive to create a defective bond. Thermal cyclic aging was applied, monitoring through laser Doppler vibrometry (LDV) and static capacitance measurements. The PWAS with the initially defective bond exhibited the poorest performance over aging cycles, emphasizing the significance of the initial bond condition. As debonding progressed, modifications in electromechanical behavior were observed, leading to a reduction in wave amplitude and distortion of the generated wave field, challenging the validity of existing analytical modeling of wave-tuning curves for perfectly bonded PWASs. Both numerical simulations and experimental observations substantiated this finding. In conclusion, this study highlights the imperative of a high-integrity bond for the proper functioning of a guided wave-based structural health monitoring (SHM) system, emphasizing ongoing challenges in assessing SHM performance. Full article
Show Figures

Figure 1

23 pages, 12056 KiB  
Article
Elastic Wave Mechanics in Damaged Metallic Plates
by Samuel Chukwuemeka Olisa, Muhammad A. Khan and Andrew Starr
Symmetry 2023, 15(11), 1989; https://doi.org/10.3390/sym15111989 - 27 Oct 2023
Cited by 2 | Viewed by 1576
Abstract
Human health monitoring (HHM) is essential for continued daily task execution, as is structural health monitoring (SHM) for structures to ensure the continual performance of their designed tasks with optimal efficiency. The existence of damage in a structure affects its optimal use through [...] Read more.
Human health monitoring (HHM) is essential for continued daily task execution, as is structural health monitoring (SHM) for structures to ensure the continual performance of their designed tasks with optimal efficiency. The existence of damage in a structure affects its optimal use through stiffness deterioration. Damage of different forms could occur in a structure but have the singular objective of material degradation, leading to its underuse for a task. Guided wave ultrasonics has shown strength in detecting sundry damage in structures, but most of the damage monitored and detected is unfilled with substances. However, some damage could trap and accumulate substances that could hasten material degradation through corrosion activities under favorable conditions, especially in the oil and gas industry. This study used the ultrasonic-guided waves’ pitch–catch inspection technique to identify damage filled with different materials. The assessment was based on the RMSD of the dominant Lamb wave mode’s average maximum amplitude and the response signals’ transmission coefficient (TC). A five-cycle tone burst of excitation signals of different frequencies was created to generate propagating Lamb waves in the structure. The fundamental antisymmetric mode was found to be more sensitive than the fundamental symmetric mode when detecting damage filled with various substances. At 80 kHz, the deviation of the current response signals from the baseline response signals due to different filled substances in the damage was distinct and decreased with increased fluid viscosity. Given that structures in the oil and gas sector are particularly susceptible to substance-induced damage, the outcomes of this study are paramount. Full article
(This article belongs to the Special Issue Advances in Structural Mechanics and Symmetry/Asymmetry)
Show Figures

Figure 1

15 pages, 3668 KiB  
Article
Design of Piezopolymer Interdigital Transducers with Scaled Electrode Geometries Based on FEM Analysis
by Lorenzo Capineri, Luca Bergamaschi and Andrea Bulletti
Actuators 2022, 11(11), 326; https://doi.org/10.3390/act11110326 - 8 Nov 2022
Cited by 1 | Viewed by 2368
Abstract
The design of interdigital transducers (IDT) for active structural health monitoring (SHM) systems often requires a tuning of their characteristics for specific applications. IDTs are generally preferred for the selectivity of Lamb’s guided modes, but the directivity of the radiation pattern is a [...] Read more.
The design of interdigital transducers (IDT) for active structural health monitoring (SHM) systems often requires a tuning of their characteristics for specific applications. IDTs are generally preferred for the selectivity of Lamb’s guided modes, but the directivity of the radiation pattern is a design parameter that is often difficult to customize for complex mechanical structures. This work proposes a comprehensive experimental study of the IDT with regular geometry, highlighting the dimensional parameters that can optimize the overall performance. From this study, a scaled electrode geometry emerged as a possible solution to shape the directivity diagram while maintaining the selectivity of the guided wave modes. This study based on FEM simulators led to a more versatile design of IDTs built with piezopolymer films of polyvinylidene fluoride (PVDF). The experimental validation showed the directivity diagrams and the ultrasonic guided mode selection were in very good agreement with the simulations. Another outcome of the investigation was the off axis propagation due to the contribution of the bus bars for connecting the IDT fingers to the excitation electronic circuit. Full article
Show Figures

Figure 1

13 pages, 4352 KiB  
Article
Active Ultrasonic Structural Health Monitoring Enabled by Piezoelectric Direct-Write Transducers and Edge Computing Process
by Voon-Kean Wong, Sarbudeen Mohamed Rabeek, Szu Cheng Lai, Marilyne Philibert, David Boon Kiang Lim, Shuting Chen, Muthusamy Kumarasamy Raja and Kui Yao
Sensors 2022, 22(15), 5724; https://doi.org/10.3390/s22155724 - 30 Jul 2022
Cited by 13 | Viewed by 4476
Abstract
While the active ultrasonic method is an attractive structural health monitoring (SHM) technology, many practical issues such as weight of transducers and cables, energy consumption, reliability and cost of implementation are restraining its application. To overcome these challenges, an active ultrasonic SHM technology [...] Read more.
While the active ultrasonic method is an attractive structural health monitoring (SHM) technology, many practical issues such as weight of transducers and cables, energy consumption, reliability and cost of implementation are restraining its application. To overcome these challenges, an active ultrasonic SHM technology enabled by a direct-write transducer (DWT) array and edge computing process is proposed in this work. The operation feasibility of the monitoring function is demonstrated with Lamb wave excited and detected by a linear DWT array fabricated in situ from piezoelectric P(VDF-TrFE) polymer coating on an aluminum alloy plate with a simulated defect. The DWT array features lightweight, small profile, high conformability, and implementation scalability, whilst the edge-computing circuit dedicatedly designed for the active ultrasonic SHM is able to perform signal processing at the sensor nodes before wirelessly transmitting the data to a remote host device. The successful implementation of edge-computing processes is able to greatly decrease the amount of data to be transferred by 331 times and decrease the total energy consumption for the wireless module by 224 times. The results and analyses show that the combination of the piezoelectric DWT and edge-computing process provides a promising technical solution for realizing practical wireless active ultrasonic SHM system. Full article
Show Figures

Figure 1

20 pages, 6900 KiB  
Article
Numerical Investigation on Guided Waves Dispersion and Scattering Phenomena in Stiffened Panels
by Alessandro De Luca, Donato Perfetto, Giuseppe Lamanna, Antonio Aversano and Francesco Caputo
Materials 2022, 15(1), 74; https://doi.org/10.3390/ma15010074 - 23 Dec 2021
Cited by 30 | Viewed by 3516
Abstract
The aim of this work is to propose a numerical methodology based on the finite element (FE) method to investigate the dispersive behavior of guided waves transmitted, converted, and reflected by reinforced aluminum and composite structures, highlighting their differences. The dispersion curves of [...] Read more.
The aim of this work is to propose a numerical methodology based on the finite element (FE) method to investigate the dispersive behavior of guided waves transmitted, converted, and reflected by reinforced aluminum and composite structures, highlighting their differences. The dispersion curves of such modes can help designers in improving the damage detection sensitivity of Lamb wave based structural health monitoring (SHM) systems. A preliminary phase has been carried out to assess the reliability of the modelling technique. The accuracy of the results has been demonstrated for aluminum and composite flat panels by comparing them against experimental tests and semi-analytical data, respectively. Since the good agreement, the FE method has been used to analyze the phenomena of dispersion, scattering, and mode conversion in aluminum and composite panels characterized by a structural discontinuity, as a stiffener. The research activity allowed emphasizing modes conversion at the stiffener, offering new observations with respect to state of the art. Converted modes propagate with a slightly slower speed than the incident ones. Reflected waves, instead, have been found to travel with the same velocity of the incident ones. Moreover, waves reflected in the composite stiffened plate appeared different from those that occurred in the aluminum one for the aspects herein discussed. Full article
Show Figures

Figure 1

18 pages, 6849 KiB  
Article
Modeling Magnetostrictive Transducers for Structural Health Monitoring: Ultrasonic Guided Wave Generation and Reception
by Gaofeng Sha and Cliff J. Lissenden
Sensors 2021, 21(23), 7971; https://doi.org/10.3390/s21237971 - 29 Nov 2021
Cited by 17 | Viewed by 4001
Abstract
Ultrasonic guided waves provide unique capabilities for the structural health monitoring of plate-like structures. They can detect and locate various types of material degradation through the interaction of shear-horizontal (SH) waves and Lamb waves with the material. Magnetostrictive transducers (MSTs) can be used [...] Read more.
Ultrasonic guided waves provide unique capabilities for the structural health monitoring of plate-like structures. They can detect and locate various types of material degradation through the interaction of shear-horizontal (SH) waves and Lamb waves with the material. Magnetostrictive transducers (MSTs) can be used to generate and receive both SH and Lamb waves and yet their characteristics have not been thoroughly studied, certainly not on par with piezoelectric transducers. A series of multiphysics simulations of the MST/plate system is conducted to investigate the characteristics of MSTs that affect guided wave generation and reception. The results are presented in the vein of showing the flexibility that MSTs provide for guided waves in a diverse range of applications. In addition to studying characteristics of the MST components (i.e., the magnetostrictive layer, meander electric coil, and biased magnetic field), single-sided and double-sided MSTs are compared for preferential wave mode generation. The wave mode control principle is based on the activation line for phase velocity dispersion curves, whose slope is the wavelength, which is dictated by the meander coil spacing. A double-sided MST with in-phase signals preferentially excites symmetric SH and Lamb modes, while a double-sided MST with out-of-phase signals preferentially excites antisymmetric SH and Lamb modes. All attempted single-mode actuations with double-sided MSTs were successful, with the SH3 mode actuated at 922 kHz in a 6-mm-thick plate being the highest frequency. Additionally, the results show that increasing the number of turns in the meander coil enhances the sensitivity of the MST as a receiver and substantially reduces the frequency bandwidth. Full article
Show Figures

Figure 1

16 pages, 1338 KiB  
Article
Non-Invasive Testing of Physical Systems Using Topological Sensitivity
by María Higuera, José M. Perales, María-Luisa Rapún and José M. Vega
Appl. Sci. 2021, 11(3), 1341; https://doi.org/10.3390/app11031341 - 2 Feb 2021
Cited by 2 | Viewed by 2972
Abstract
A review of available results on non-destructive testing of physical systems, using the concept of topological sensitivity, is presented. This mathematical tool estimates the sensitivity of a set of measurements in some given sensors, distributed along the system, to defects/flaws that produce a [...] Read more.
A review of available results on non-destructive testing of physical systems, using the concept of topological sensitivity, is presented. This mathematical tool estimates the sensitivity of a set of measurements in some given sensors, distributed along the system, to defects/flaws that produce a degradation of the system. Such degradation manifests itself on the properties of the system. The good performance of this general purpose post-processing method is reviewed and illustrated in some applications involving non-destructive testing. These applications include structural health monitoring, considering both elastodynamic ultrasonic guided Lamb waves and active infrared thermography. Related methods can also be used in other fields, such as diagnosis/prognosis of engineering devices, which is also considered. Full article
(This article belongs to the Special Issue Nondestructive Testing (NDT): Volume II)
Show Figures

Figure 1

25 pages, 5391 KiB  
Article
Lamb Wave Scattering Analysis for Interface Damage Detection between a Surface-Mounted Block and Elastic Plate
by Mikhail V. Golub, Alisa N. Shpak, Inka Mueller, Sergey I. Fomenko and Claus-Peter Fritzen
Sensors 2021, 21(3), 860; https://doi.org/10.3390/s21030860 - 28 Jan 2021
Cited by 15 | Viewed by 3097
Abstract
Since stringers are often applied in engineering constructions to improve thin-walled structures’ strength, methods for damage detection at the joints between the stringer and the thin-walled structure are necessary. A 2D mathematical model was employed to simulate Lamb wave excitation and sensing via [...] Read more.
Since stringers are often applied in engineering constructions to improve thin-walled structures’ strength, methods for damage detection at the joints between the stringer and the thin-walled structure are necessary. A 2D mathematical model was employed to simulate Lamb wave excitation and sensing via rectangular piezoelectric-wafer active transducers mounted on the surface of an elastic plate with rectangular surface-bonded obstacles (stiffeners) with interface defects. The results of a 2D simulation using the finite element method and the semi-analytical hybrid approach were validated experimentally using laser Doppler vibrometry for fully bonded and semi-debonded rectangular obstacles. A numerical analysis of fundamental Lamb wave scattering via rectangular stiffeners in different bonding states is presented. Two kinds of interfacial defects between the stiffener and the plate are considered: the partial degradation of the adhesive at the interface and an open crack. Damage indices calculated using the data obtained from a sensor are analyzed numerically. The choice of an input impulse function applied at the piezoelectric actuator is discussed from the perspective of the development of guided-wave-based structural health monitoring techniques for damage detection. Full article
(This article belongs to the Special Issue Smart Sensors for Damage Detection)
Show Figures

Figure 1

25 pages, 3781 KiB  
Article
Analytical and Experimental Study of Fatigue-Crack-Growth AE Signals in Thin Sheet Metals
by Roshan Joseph and Victor Giurgiutiu
Sensors 2020, 20(20), 5835; https://doi.org/10.3390/s20205835 - 15 Oct 2020
Cited by 20 | Viewed by 3195
Abstract
The acoustic emission (AE) method is a very popular and well-developed method for passive structural health monitoring of metallic and composite structures. AE method has been efficiently used for damage source detection and damage characterization in a large variety of structures over the [...] Read more.
The acoustic emission (AE) method is a very popular and well-developed method for passive structural health monitoring of metallic and composite structures. AE method has been efficiently used for damage source detection and damage characterization in a large variety of structures over the years, such as thin sheet metals. Piezoelectric wafer active sensors (PWASs) are lightweight and inexpensive transducers, which recently drew the attention of the AE research community for AE sensing. The focus of this paper is on understanding the fatigue crack growth AE signals in thin sheet metals recorded using PWAS sensors on the basis of the Lamb wave theory and using this understanding for predictive modeling of AE signals. After a brief introduction, the paper discusses the principles of sensing acoustic signals by using PWAS. The derivation of a closed-form expression for PWAS response due to a stress wave is presented. The transformations happening to the AE signal according to the instrumentations we used for the fatigue crack AE experiment is also discussed. It is followed by a summary of the in situ AE experiments performed for recording fatigue crack growth AE and the results. Then, we present an analytical model of fatigue crack growth AE and a comparison with experimental results. The fatigue crack growth AE source was modeled analytically using the dipole moment concept. By using the source modeling concept, the analytical predictive modeling and simulation of the AE were performed using normal mode expansion (NME). The simulation results showed good agreement with experimental results. A strong presence of nondispersive S0 Lamb wave mode due to the fatigue crack growth event was observed in the simulation and experiment. Finally, the analytical method was verified using the finite element method. The paper ends with a summary and conclusions; suggestions for further work are also presented. Full article
(This article belongs to the Special Issue Sensors for Structural Health Monitoring and Condition Monitoring)
Show Figures

Figure 1

19 pages, 2444 KiB  
Article
Application of Instantaneous Parameter Characteristic in Active Lamb Wave Based Monitoring of Plate Structural Health
by Baochun Xu, Mulan Wang, Peijuan Li, Qihua Cheng and Yunlong Sheng
Appl. Sci. 2020, 10(16), 5664; https://doi.org/10.3390/app10165664 - 14 Aug 2020
Cited by 4 | Viewed by 2239
Abstract
In the active Lamb wave based monitoring of plate structural health, it is difficult to extract damage information from active Lamb waves based on single sensor collection. Based on the Hilbert–Huang transform (HHT) instantaneous processing method, this paper proposes to study the damage [...] Read more.
In the active Lamb wave based monitoring of plate structural health, it is difficult to extract damage information from active Lamb waves based on single sensor collection. Based on the Hilbert–Huang transform (HHT) instantaneous processing method, this paper proposes to study the damage information carried by a single sensor monitoring signal from the instantaneous parameter characteristics of the signal. The instantaneous phase change caused by the phase difference between the damage scattering wave and the direct wave is studied. The change of the marginal spectrum amplitude in the effective range caused by the damage scattering wave is studied in continuous multiple frequency bands. Finally, the damage information extraction based on a single sensor monitoring signal is realized. From the model analysis and experimental results, it is reliable and feasible to realize the active Lamb wave based monitoring of plate structural health according to the instantaneous parameter change characteristics from a single sensor signal. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

12 pages, 3256 KiB  
Article
An Omnidirectional Near-Field Comprehensive Damage Detection Method for Composite Structures
by Zhiling Wang, Zhenwei Xiao, Yonglin Li and Yudong Jiang
Appl. Sci. 2019, 9(3), 567; https://doi.org/10.3390/app9030567 - 8 Feb 2019
Cited by 5 | Viewed by 2779
Abstract
As one of the active structural health monitoring methods based on the Lamb wave, the ultrasonic phased-array damage detection method can provide information such as damage location and range more intuitively, which is why this method is a research hotspot in the field [...] Read more.
As one of the active structural health monitoring methods based on the Lamb wave, the ultrasonic phased-array damage detection method can provide information such as damage location and range more intuitively, which is why this method is a research hotspot in the field of Lamb wave-based damage monitoring. However, the ultrasonic phased-array damage detection method intended for the far field is not applicable to near-field damage monitoring. In addition, the traditional one-dimensional piezoelectric phased-array damage imaging method suffers from a blind area in the near field, and the data collection time of its angle scanning is relatively long. In view of these problems, this paper proposes an omnidirectional damage imaging monitoring method, combining the near-field sampling phased-array damage monitoring algorithm and the two-dimensional phased-array. The proposed method is verified by experiments using complex composite materials, and the results obtained show that the proposed omnidirectional near-field sampling phased-array damage imaging method is suitable for real-time damage detection in complex composite materials. Full article
(This article belongs to the Special Issue Damage Inspection of Composite Structures)
Show Figures

Figure 1

13 pages, 30717 KiB  
Article
Damage Detection in a Composite T-Joint Using Guided Lamb Waves
by Marilyne Philibert, Constantinos Soutis, Matthieu Gresil and Kui Yao
Aerospace 2018, 5(2), 40; https://doi.org/10.3390/aerospace5020040 - 9 Apr 2018
Cited by 37 | Viewed by 7268
Abstract
Low velocity impact induces barely visible damage in the form of matrix cracking or delamination that can grow under hydro-thermo-mechanical loading and possibly lead to catastrophic failure if not detected at an early stage. A network of piezoelectric transducers can be used to [...] Read more.
Low velocity impact induces barely visible damage in the form of matrix cracking or delamination that can grow under hydro-thermo-mechanical loading and possibly lead to catastrophic failure if not detected at an early stage. A network of piezoelectric transducers can be used to monitor a structure over time for life prognosis through generation and sensing of guided ultrasonic waves. The aim of this study is to design and develop such a sensing method for damage assessment in a composite T-joint subjected to mechanical impacts. In this context, monitoring of Lamb waves in a carbon fibre reinforced polymer (CFRP) T-joint has been completed where dispersion and tuning curves have been obtained. Guided waves are transmitted into the structure through different specified pairs of surface-bonded lead-zirconate-titanate (PZT) transducers in a pitch–catch active structural health monitoring (SHM) approach. With these experiments, Lamb wave fundamental modes (A0 and S0) are identified for monitoring impact damage by signal comparison with a prior obtained baseline. Detecting 4J and 10J inner impacts within the central region of the specimen is challenging when using conventional non-destructive techniques (NDT) because of the complex geometry and interference with the web. Signals are compared for the same selected sensing path; and amplitude differences have been observed in tuning curves after the 10J impact, which implies the occurrence of a structural change related to the impact. Full article
(This article belongs to the Special Issue Selected Papers from IWSHM 2017)
Show Figures

Graphical abstract

18 pages, 6114 KiB  
Article
Multiphysics Simulation of Low-Amplitude Acoustic Wave Detection by Piezoelectric Wafer Active Sensors Validated by In-Situ AE-Fatigue Experiment
by Md Yeasin Bhuiyan and Victor Giurgiutiu
Materials 2017, 10(8), 962; https://doi.org/10.3390/ma10080962 - 17 Aug 2017
Cited by 16 | Viewed by 6362
Abstract
Piezoelectric wafer active sensors (PWAS) are commonly used for detecting Lamb waves for structural health monitoring application. However, in most applications of active sensing, the signals are of high-amplitude and easy to detect. In this article, we have shown a new avenue of [...] Read more.
Piezoelectric wafer active sensors (PWAS) are commonly used for detecting Lamb waves for structural health monitoring application. However, in most applications of active sensing, the signals are of high-amplitude and easy to detect. In this article, we have shown a new avenue of using the PWAS transducer for detecting the low-amplitude fatigue-crack related acoustic emission (AE) signals. Multiphysics finite element (FE) simulations were performed with two PWAS transducers bonded to the structure. Various configurations of the sensors were studied by using the simulations. One PWAS was placed near to the fatigue-crack and the other one was placed at a certain distance from the crack. The simulated AE event was generated at the crack tip. The simulation results showed that both PWAS transducers were capable of sensing the AE signals. To validate the multiphysics simulation results, an in-situ AE-fatigue experiment was performed. Two PWAS transducers were bonded to the thin aerospace test coupon. The fatigue crack was generated in the test coupon which had produced low-amplitude acoustic waves. The low-amplitude fatigue-crack related AE signals were successfully captured by the PWAS transducers. The distance effect on the captured AE signals was also studied. It has been shown that some high-frequency contents of the AE signal have developed as they travel away from the crack. Full article
(This article belongs to the Special Issue Structural Health Monitoring for Aerospace Applications 2017)
Show Figures

Figure 1

Back to TopTop