Durability Assessment of Bonded Piezoelectric Wafer Active Sensors for Aircraft Health Monitoring Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Accelerated Aging
2.2. Inspection Techniques
2.2.1. PWAS Self-Diagnostics
2.2.2. Laser Vibrometry
2.3. Finite Element Modeling
3. Results and Discussion
3.1. Experimental Results
3.2. FEM Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balageas, D. Introduction to Structural Health Monitoring. In Structural Health Monitoring; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; pp. 13–43. [Google Scholar] [CrossRef]
- Staszewski, W.J.; Boller, C.; Tomlinson, G.R. Health Monitoring of Aerospace Structures: Smart Sensor Technologies and Signal Processing; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Cawley, P. Structural health monitoring: Closing the gap between research and industrial deployment. Struct. Health Monit. 2018, 17, 1225–1244. [Google Scholar] [CrossRef]
- Güemes, A. Twenty-five years of evolution of SHM technologies. In Health Monitoring of Structural and Biological Systems XVI; SPIE: Bellingham, WA, USA, 2022; p. 1204802. [Google Scholar]
- Kessler, S.S. Certifying a structural health monitoring system: Characterizing durability, reliability and longevity. In Proceedings of the 1st International Forum on Integrated Systems Health Engineering and Management in Aerospace, Napa, CA, USA, 7–10 November 2005; pp. 7–10. [Google Scholar]
- Giurgiutiu, V. Structural Health Monitoring: With Piezoelectric Wafer Active Sensors; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Qing, X.; Li, W.; Wang, Y.; Sun, H. Piezoelectric Transducer-Based Structural Health Monitoring for Aircraft Applications. Sensors 2019, 19, 545. [Google Scholar] [CrossRef]
- Mei, H.; Haider, M.F.; Joseph, R.; Migot, A.; Giurgiutiu, V. Recent Advances in Piezoelectric Wafer Active Sensors for Structural Health Monitoring Applications. Sensors 2019, 19, 383. [Google Scholar] [CrossRef]
- Aerospace Industry Steering Committee on Structural Health. Guidelines for Implementation of Structural Health Monitoring on Fixed Wing Aircraft; SAE International: Warrendale, PA, USA, 2013. [Google Scholar] [CrossRef]
- RTCA DO-160G for Airborne Equipment DO-160, DO160.org. Available online: https://do160.org/rtca-do-160g/ (accessed on 25 July 2022).
- Blackshire, J.L.; Cooney, A. Evaluation and improvement in sensor performance and durability for structural health monitoring systems. In Proceedings of the Nondestructive Evaluation for Health Monitoring and Diagnostics, San Diego, CA, USA, 16 March 2006; Meyendorf, N., Baaklini, G.Y., Michel, B., Eds.; SPIE: Bellingham, WA, USA, 2006; p. 61790K. [Google Scholar] [CrossRef]
- Sun, H.; Wang, Y.; Qing, X.; Wu, Z. High Strain Survivability of Piezoceramics by Optimal Bonding Adhesive Design. Sensors 2018, 18, 2554. [Google Scholar] [CrossRef]
- Giurgiutiu, V.; Zagrai, A.; Jing Bao, J. Piezoelectric Wafer Embedded Active Sensors for Aging Aircraft Structural Health Monitoring. Struct. Health Monit. 2002, 1, 41–61. [Google Scholar] [CrossRef]
- Schulz, M.J.; Sundaresan, M.J.; McMichael, J.; Clayton, D.; Sadler, R.; Nagel, B. Piezoelectric Materials at Elevated Temperature. J. Intell. Mater. Syst. Struct. 2003, 14, 693–705. [Google Scholar] [CrossRef]
- Gotmare, S.W.; Leontsev, S.O.; Eitel, R.E. Thermal Degradation and Aging of High-Temperature Piezoelectric Ceramics. J. Am. Ceram. Soc. 2010, 93, 1965–1969. [Google Scholar] [CrossRef]
- Thomas, G.R.; Khatibi, A.A. Durability of Structural Health Monitoring Systems under Impact Loading. Procedia Eng. 2017, 188, 340–347. [Google Scholar] [CrossRef]
- Park, G.; Farrar, C.R.; Rutherford, A.C.; Robertson, A.N. Piezoelectric Active Sensor Self-Diagnostics Using Electrical Admittance Measurements. J. Vib. Acoust. 2006, 128, 469–476. [Google Scholar] [CrossRef]
- Lin, B.; Giurgiutiu, V.; Pollock, P.; Xu, B.; Doane, J. Durability and Survivability of Piezoelectric Wafer Active Sensors on Metallic Structure. AIAA J. 2010, 48, 635–643. [Google Scholar] [CrossRef]
- Salmanpour, M.; Sharif Khodaei, Z.; Aliabadi, M. Airborne Transducer Integrity under Operational Environment for Structural Health Monitoring. Sensors 2016, 16, 2110. [Google Scholar] [CrossRef]
- Chambers, T. Durability Testing of an Aircraft Structural Health Monitoring System. Master’s Thesis, University of California, Berkeley, CA, USA, 2006. [Google Scholar]
- Blackshire, J.L.; Giurgiutiu, V.; Cooney, A.; Doane, J. Characterization of sensor performance and durability for structural health monitoring systems. In Proceedings of the Nondestructive Evaluation for Health Monitoring and Diagnostics, San Diego, CA, USA, 9 May 2005; Meyendorf, N., Baaklini, G.Y., Michel, B., Eds.; SPIE: Bellingham, WA, USA, 2005; p. 66. [Google Scholar] [CrossRef]
- Toader, A.; Ursu, I.; Enciu, D. New Advances in Space SHM Project. INCAS Bull. 2015, 7, 65–80. [Google Scholar] [CrossRef]
- Anderson, M.; Zagrai, A.; Daniel, J.D.; Westpfahl, D.J.; Henneke, D. Investigating Effect of Space Radiation Environment on Piezoelectric Sensors: Cobalt-60 Irradiation Experiment. J. Nondestruct. Eval. Diagn. Progn. Eng. Syst. 2017, 1, 011007. [Google Scholar] [CrossRef]
- Giurgiutiu, V.; Postolache, C.; Tudose, M. Radiation, temperature, and vacuum effects on piezoelectric wafer active sensors. Smart Mater. Struct. 2016, 25, 035024. [Google Scholar] [CrossRef]
- Santoni-Bottai, G.; Giurgiutiu, V. Damage detection at cryogenic temperatures in composites using piezoelectric wafer active sensors. Struct. Health Monit. 2012, 11, 510–525. [Google Scholar] [CrossRef]
- Qing, X.P.; Beard, S.J.; Kumar, A.; Sullivan, K.; Aguilar, R.; Merchant, M.; Taniguchi, M. The performance of a piezoelectric-sensor-based SHM system under a combined cryogenic temperature and vibration environment. Smart Mater. Struct. 2008, 17, 055010. [Google Scholar] [CrossRef]
- Mastromatteo, L.; Gavérina, L.; Lavelle, F.; Roche, J.-M.; Irisarri, F.-X. Thermal Cycling Durability of Bonded PZT Transducers Used for the SHM of Reusable Launch Vehicles. In European Workshop on Structural Health Monitoring; Rizzo, P., Milazzo, A., Eds.; Lecture Notes in Civil Engineering; Springer International Publishing: Cham, Switzerland, 2023; pp. 727–736. [Google Scholar] [CrossRef]
- Mueller, I.; Fritzen, C.-P. Failure Assessment of Piezoelectric Actuators and Sensors for Increased Reliability of SHM Systems. In Structural Health Monitoring from Sensing to Processing; Wahab, M.A., Zhou, Y.L., Maia, N.M.M., Eds.; InTech: London, UK, 2018. [Google Scholar] [CrossRef]
- Rugina, C.; Enciu, D.; Tudose, M. Numerical and experimental study of circular disc electromechanical impedance spectroscopy signature changes due to structural damage and sensor degradation. Struct. Health Monit. 2015, 14, 663–681. [Google Scholar] [CrossRef]
- Rébillat, M.; Guskov, M.; Balmés, E.; Mechbal, N. Simultaneous Influence of Static Load and Temperature on the Electromechanical Signature of Piezoelectric Elements Bonded to Composite Aeronautic Structures. J. Vib. Acoust. 2016, 138, 064504. [Google Scholar] [CrossRef]
- Buethe, I.; Eckstein, B.; Fritzen, C.-P. Model-based detection of sensor faults under changing temperature conditions. Struct. Health Monit. 2014, 13, 109–119. [Google Scholar] [CrossRef]
- Yang, Y.; Miao, A. Effect of External Vibration on PZT Impedance Signature. Sensors 2008, 8, 6846. [Google Scholar] [CrossRef]
- Baptista, F.G.; Budoya, D.E.; de Almeida, V.A.D.; Ulson, J.A.C. An Experimental Study on the Effect of Temperature on Piezoelectric Sensors for Impedance-Based Structural Health Monitoring. Sensors 2014, 14, 1208. [Google Scholar] [CrossRef]
- Baptista, F.G.; Filho, J.V. Transducer loading effect on the performance of PZT-based SHM systems. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2010, 57, 933–941. [Google Scholar] [CrossRef]
- Park, G.; Farrar, C.R.; Lanza di Scalea, F.; Coccia, S. Performance assessment and validation of piezoelectric active-sensors in structural health monitoring. Smart Mater. Struct. 2006, 15, 1673–1683. [Google Scholar] [CrossRef]
- Liu, X.; Xu, Y.; Li, N.; Wang, X.; Zhang, W. Effect of Adhesive Debonding on the Performance of Piezoelectric Sensors in Structural Health Monitoring Systems. Sensors 2019, 19, 5070. [Google Scholar] [CrossRef]
- Lanzara, G.; Yoon, Y.; Kim, Y.; Chang, F.-K. Influence of Interface Degradation on the Performance of Piezoelectric Actuators. J. Intell. Mater. Syst. Struct. 2009, 20, 1699–1710. [Google Scholar] [CrossRef]
- Qing, X.P.; Chan, H.-L.; Beard, S.J.; Ooi, T.K.; Marotta, S.A. Effect of adhesive on the performance of piezoelectric elements used to monitor structural health. Int. J. Adhes. Adhes. 2006, 26, 622–628. [Google Scholar] [CrossRef]
- Crawley, E.F.; de Luis, J. Use of piezoelectric actuators as elements of intelligent structures. AIAA J. 1987, 25, 1373–1385. [Google Scholar] [CrossRef]
- Huang, G.; Song, F.; Wang, X. Quantitative Modeling of Coupled Piezo-Elastodynamic Behavior of Piezoelectric Actuators Bonded to an Elastic Medium for Structural Health Monitoring: A Review. Sensors 2010, 10, 3681–3702. [Google Scholar] [CrossRef]
- Giurgiutiu, V. Tuned Lamb Wave Excitation and Detection with Piezoelectric Wafer Active Sensors for Structural Health Monitoring. J. Intell. Mater. Syst. Struct. 2005, 16, 291–305. [Google Scholar] [CrossRef]
- Ha, S.; Chang, F.-K. Adhesive interface layer effects in PZT-induced Lamb wave propagation. Smart Mater. Struct. 2010, 19, 025006. [Google Scholar] [CrossRef]
- Kirillova, E.V.; Seemann, W.; Shevtsova, M.S. The influence of an adhesive layer on the interaction between a piezo-actuator and an elastic 3D-layer and on the excited wave fields. Mater. Phys. Mech. 2019, 42, 50–53. [Google Scholar] [CrossRef]
- Lee, S.J.; Sohn, H.; Michaels, J.E.; Michaels, T.E.; Thompson, D.O.; Chimenti, D.E. In situ detection of surface mounted PZT transducer defects using linear reciprocity. In Proceedings of the Review of Progress in Quantitative Nondestructive Evaluation, Kingston, RI, USA, 26–31 July 2009; American Institute of Physics: College Park, MD, USA, 2010; Volume 29, pp. 1844–1851. [Google Scholar] [CrossRef]
- Mueller, I.; Fritzen, C.-P. Inspection of Piezoceramic Transducers Used for Structural Health Monitoring. Materials 2017, 10, 71. [Google Scholar] [CrossRef]
- Raghavan, A.; Cesnik, C.E.S. Modeling of piezoelectric-based Lamb wave generation and sensing for structural health monitoring. In Proceedings of the Smart Structures and Materials, San Diego, CA, USA, 29 July 2004; Liu, S.-C., Ed.; SPIE: Bellingham, WA, USA, 2004; p. 419. [Google Scholar] [CrossRef]
- Sohn, H.; Lee, S.J. Lamb wave tuning curve calibration for surface-bonded piezoelectric transducers. Smart Mater. Struct. 2010, 19, 015007. [Google Scholar] [CrossRef]
- Bhalla, S.; Soh, C.K. Electromechanical Impedance Modeling for Adhesively Bonded Piezo-Transducers. J. Intell. Mater. Syst. Struct. 2004, 15, 955–972. [Google Scholar] [CrossRef]
- Liang, C.; Sun, F.P.; Rogers, C.A. Coupled Electro-Mechanical Analysis of Adaptive Material Systems—Determination of the Actuator Power Consumption and System Energy Transfer. J. Intell. Mater. Syst. Struct. 1994, 5, 12–20. [Google Scholar] [CrossRef]
- Fujicera, Catalogue, Fuji Ceramics Co., Ltd. Available online: https://www.fujicera.co.jp/wpkanri/wp-content/uploads/2022/02/39e06c49b38428b2e03aff56b584a225.pdf (accessed on 28 April 2023).
- Lavrentyev, A.I.; Rokhlin, S.I. Models for ultrasonic characterization of environmental degradation of interfaces in adhesive joints. J. Appl. Phys. 1994, 76, 4643–4650. [Google Scholar] [CrossRef]
- Drozdz, M.; Moreau, L.; Castaings, M.; Lowe, M.; Cawley, P. Efficient Numerical Modelling of Absorbing Regions for Boundaries Of Guided Waves Problems. In AIP Conference Proceedings, Brunswick, ME, USA, 31 July–5 August 2005; American Institute of Physics: College Park, MD, USA, 2006; pp. 126–133. [Google Scholar] [CrossRef]
- Pettit, J.R.; Walker, A.; Cawley, P.; Lowe, M.J.S. A Stiffness Reduction Method for efficient absorption of waves at boundaries for use in commercial Finite Element codes. Ultrasonics 2014, 54, 1868–1879. [Google Scholar] [CrossRef]
- Ke, W.; Castaings, M.; Bacon, C. 3D finite element simulations of an air-coupled ultrasonic NDT system. NDT E Int. 2009, 42, 524–533. [Google Scholar] [CrossRef]
- Center for Lightweight-Production-Technology—The Dispersion Calculator: An Open Source Software for Calculating Dispersion Curves and Mode Shapes of Guided Waves. Available online: https://www.dlr.de/zlp/en/desktopdefault.aspx/tabid-14332/24874_read-61142/ (accessed on 20 September 2022).
- Schubert, F.; Frankenstein, B.; Röllig, M.; Schubert, L.; Lautenschläger, G. Characterizing the Performance of Lamb Wave Based SHM Systems—A Two-Step Approach Based on Simulation-Supported POD and Reliability Aspects. In Proceedings of the 5th European-American Workshop on Reliability of NDE, Berlin, Germany, 7–10 October 2013; Available online: https://www.ndt.net/?id=15638 (accessed on 7 December 2023).
- Haider, M.F.; Giurgiutiu, V.; Lin, B.; Yu, L. Irreversibility effects in piezoelectric wafer active sensors after exposure to high temperature. Smart Mater. Struct. 2017, 26, 095019. [Google Scholar] [CrossRef]
- Raghavan, A.; Cesnik, C.E.S. Finite-dimensional piezoelectric transducer modeling for guided wave-based structural health monitoring. Smart Mater. Struct. 2005, 14, 1448–1461. [Google Scholar] [CrossRef]
- Eiras, J.N.; Gavérina, L.; Mastromatteo, L.; Roche, J.M. Effects of thermally induced distress on adhesively bonded piezoelectric wafer active sensors and implications on damage detection and localization. In Proceedings of the International Workshop on Structural Health Monitoring, Stanford, CA, USA, 12–14 September 2023. [Google Scholar] [CrossRef]
- Falcetelli, F.; Yue, N.; Sante, R.D.; Zarouchas, D. Probability of detection, localization, and sizing: The evolution of reliability metrics in Structural Health Monitoring. Struct. Health Monit. 2022, 21, 2990–3017. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eiras, J.N.; Gavérina, L.; Roche, J.-M. Durability Assessment of Bonded Piezoelectric Wafer Active Sensors for Aircraft Health Monitoring Applications. Sensors 2024, 24, 450. https://doi.org/10.3390/s24020450
Eiras JN, Gavérina L, Roche J-M. Durability Assessment of Bonded Piezoelectric Wafer Active Sensors for Aircraft Health Monitoring Applications. Sensors. 2024; 24(2):450. https://doi.org/10.3390/s24020450
Chicago/Turabian StyleEiras, Jesús N., Ludovic Gavérina, and Jean-Michel Roche. 2024. "Durability Assessment of Bonded Piezoelectric Wafer Active Sensors for Aircraft Health Monitoring Applications" Sensors 24, no. 2: 450. https://doi.org/10.3390/s24020450
APA StyleEiras, J. N., Gavérina, L., & Roche, J.-M. (2024). Durability Assessment of Bonded Piezoelectric Wafer Active Sensors for Aircraft Health Monitoring Applications. Sensors, 24(2), 450. https://doi.org/10.3390/s24020450