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Abstract: Since stringers are often applied in engineering constructions to improve thin-walled
structures’ strength, methods for damage detection at the joints between the stringer and the thin-
walled structure are necessary. A 2D mathematical model was employed to simulate Lamb wave
excitation and sensing via rectangular piezoelectric-wafer active transducers mounted on the surface
of an elastic plate with rectangular surface-bonded obstacles (stiffeners) with interface defects. The
results of a 2D simulation using the finite element method and the semi-analytical hybrid approach
were validated experimentally using laser Doppler vibrometry for fully bonded and semi-debonded
rectangular obstacles. A numerical analysis of fundamental Lamb wave scattering via rectangular
stiffeners in different bonding states is presented. Two kinds of interfacial defects between the stiffener
and the plate are considered: the partial degradation of the adhesive at the interface and an open
crack. Damage indices calculated using the data obtained from a sensor are analyzed numerically.
The choice of an input impulse function applied at the piezoelectric actuator is discussed from the
perspective of the development of guided-wave-based structural health monitoring techniques for
damage detection.

Keywords: guided waves; experiment; computational mechanics; resonance; scattering

1. Introduction

Metals are still among the most popular construction materials, and metallic plate- or
shell-type components are widely employed for buildings, pipelines, bridges, etc. [1–3].
After long-term service, defects may appear in metallic engineering structures. One of
the main methods for improving the strength of thin-walled structures, which are com-
monly used in engineering constructions, is to employ stringers in a proper configuration.
Surface-mounted inhomogeneities on the surfaces of metallic plates are also used to manu-
facture periodic structures called elastic metamaterials, which allow the manipulation of
guided wave transmission [4]. Therefore, methods for damage detection are necessary for
structures with surface-mounted inhomogeneities.

Ultrasonic guided waves (GWs) propagate at relatively long distances in plate-like
structures, and therefore, inspections of large areas are possible with the use of GWs. In
recent decades, guided-wave-based structural health monitoring (SHM) has been devel-
oped with techniques that allow identification and estimation of cracks, delaminations,
debondings, etc. [5–8]. Since GWs are dispersive, multimodal, and attenuating, their use
for the purposes of SHM needs insight into physical phenomena and post-processing of
the acquired signals, which have complex waveforms.

This is also especially true for the resulting features that are extracted from signals
that are sensed by the SHM system. A large variety of feature extraction techniques
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exist; an overview is given in [9], which divides them into statistics-based and physics-
based procedures, as well as time-frequency analyses, time reversal methods, model-
based methods, and methods using artificial intelligence. In many cases, the resulting
feature is extracted from the time-domain data as a damage indicator [10–13]. For damage
localization in particular, additional information about location is available. To achieve this,
several families of approaches exist [10,14–16]. In particular, for the case within this paper,
pure damage detection using extracted damage indicators as features is already sufficient
for an SHM system.

The presence of surface-mounted obstacles or internal inhomogeneities in the in-
spected engineering structure makes the theoretical description of the behavior of GWs
labor-intensive due to the additional structural complexity and multiple scattering. There-
fore, the presence of stiffeners, holes, notches, and other inhomogeneities might reduce the
diagnostic potential of GW SHM methods. In [17], the authors investigated physical phe-
nomena related to resonances, GW scattering, and conversion at a rectangular stiffener. A
significant influence of omega stringer elements on the surface of an isotropic plate on GW
propagation was shown in [7]. Moll et al. [7] demonstrated a damage index (DI) increase
with the growth of the reference damage size; they also observed mode conversion and
stated that their dataset could be used for detailed probability of detection (POD) studies.

Debonding may occur below the stringer itself due to adhesive degradation or an
impact. A common problem is that the disconnection of stringers in stiffened composite
structures—where the stringers can be affected by disbondings—leads to a skin–stringer
separation, which prevents the collaboration of the structural parts [18]. An SHM system for
a stiffened composite structure employing Snell’s Law and negligibility of mode conversion
was verified in [19]. This SHM system was applied for a disbonding assessment focusing
on the analysis of the wave portion scattered by the stringer to detect changes in the
reflections. A comprehensive and detailed comparison of SHM systems based on ultrasonic
propagating–scattering guided waves and edge detection of strain profiles from distributed
fiber optic sensors is presented in this work in terms of stiffener debonding detection
on a full-scale composite wing box panel. Ciminello et al. [18] demonstrated that two
GW-based SHM methodologies based on piezoelectric patches and a distributed fiber optic
sensor provided successful damage detection in a plate with a stiffener and an excellent
agreement with classic nondestructive ultrasonic testing. Sherafat et al. [20] considered GW-
based SHM for inspection of a skin–stringer panel made of quasi-isotropic plates bonded
together with an adhesive film and presented some guidelines related to the selection of
the optimal mode and frequency range for debonding inspection based on a scattering
analysis. Zhang et al. [21] proposed the frequency energy ratio mapping method to detect
a leakage source’s location for stiffened structures using a sensor network and a mapping
matrix formed by the frequency-domain energy ratio vectors.

In general, the choices of the particular joining technique and the form of the stringer
strongly depend on the specific application [22]. In this study, a typical GW-based SHM
system consisting of piezoelectric-wafer active transducers (PWATs) for actuation and
sensing on the surface of a flat metal plate with a rectangular bonded/debonded T-joint
is considered. The specific kind of rectangular block implemented in the experiment is
not often employed in practice compared to omega stringers or T-/L-shaped stringers.
However, the main aim of the study is to investigate the applicability of two-dimensional
mathematical models and the possibility for damage indices to indicate defects at the
interfaces between stringers and elongated structures. To verify the mathematical model
and to exclude deviations caused by imperfections in the production of the experimental
specimen, a very simple specimen was designed.

Mathematical models are able to provide results that are in good agreement with
experimental results; therefore, they are applicable for the analysis of the development
of SHM systems. Benchmark comparisons between guided wave simulations of compos-
ites and experimental data can be found in [23]. Of course, three-dimensional models
provide more accurate predictions of the experiments. Thus, Leckey et al. [24] imple-
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mented a three-dimensional elastodynamic finite integration technique to model Lamb
wave scattering for flaws in an aluminum plate, and Luchinsky et al. [25] demonstrated
good agreement between experimental and numerical voltage signals from PWATs for a
honeycomb plate with impact-induced damage. However, the computational costs related
to three-dimensional simulations are much higher compared to those of two-dimensional
mathematical models, which can be also very efficient for damage detection. For instance,
two-dimensional simulations were used to simulate Lamb wave excitation and sensing
by rectangular PWATs in an elastic plate with a rectangular elastic obstacle bonded on the
surface of the plate [26] and to estimate the properties of guided waves [27–29].

In this study, the standard finite element method (FEM) and an extension of the semi-
analytical hybrid approach (SAHA) [17,30] were used for two-dimensional mathematical
models. The standard FEM was applied for the simulation of the transient problems,
whereas the SAHA, which was in a good agreement with the FEM, was used to compute
eigenfrequencies and to analyze mode conversion/reflection by obstacles. The SAHA is
based on the boundary integral equation method [31] and the spectral element method
(SEM) [32]; these two methods meet in the contact area, where the traction vector is
unknown. One can see that the SAHA is based on an idea similar to the so-called global–
local approach, where a semi-analytical technique is employed to discretize a semi-infinite
or elongated area and the FEM discretizes the “local” portion, which contains scatterers of
various kinds, including stiffeners [33–35].

Two kinds of defects were considered: the partial degradation of the interface simu-
lated by the spring boundary conditions (SBCs) and a one-sided open crack between the
obstacle and the waveguide, simulating a debonding. For the first kind, SBCs were used,
since the analytic relations derived in [36–38] can be used for the estimation of the severity
of damage. It should be noted that the detection of the concentration of micro-cracks is
among the current SHM problems. For instance, Wang et al. [5] proposed an SHM method
for estimating the growth of micro-sized fatigue cracks by employing a breathing-crack
model with a plastic zone to reveal the change in fundamental Lamb waves, and they
showed experimentally that the increasing trend of ultrasonic nonlinearity fits very well to
the FEM analysis results.

For the analysis of the SHM system’s final output, which enables decision-making for
stakeholders, two damage indicators based on statistical feature extraction were applied to
the data of the two kinds of defects. The feature extraction algorithms were used to analyze
the data of the PWATs used as sensors after excitation with two different excitation signal
classes over a variety of frequencies from 120 to 600 kHz.

2. Experimental Setup

In order to investigate the influence of partial debonding between the surface-mounted
elastic obstacle and the plate-like structure, the following experiment was conducted. Two
obstacles with dimensions 5× 15× 150 mm were glued at the surface of the 2 mm thick
aluminum plate with a thin epoxy film of thickness 0.05 mm. One of the obstacles was
fully bonded, while another one was 50% debonded. A sketch of the specimen is presented
in Figure 1.

Two piezoelectric transducers were attached at the surface of the plate between the
obstacles so that the distances between the centers of both obstacles and the PWATs were
equal to 110 mm each. The dimensions of the transducers were 5× 30× 0.25 mm and
10× 30× 1 mm. To enable a 2D assumption while modeling, both transducers and obstacles
were chosen to be elongated along the x3 axis. The measurements were taken from the
back side of the plate x2 = 0 along the measurement lines going through the transducers’
centers.

The input voltage signal

p(t) = V0
1
2

cos(2π f t)
(

1− cos
(

2π f t
Nc

))
, 0 < t <

Nc

f
, (1)
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with a central frequency f and Nc = 5 cycles, was applied to the PWATs, and the velocities
of the excited Lamb waves were measured at the surface of the plate with a 3D laser
Doppler vibrometer from Polytec. Photographs of the experimental specimen are presented
in Figure 2, where the usage of the epoxy film to create bonded and debonded contact
conditions between the obstacles and the plate is clearly visible.
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Figure 1. The sketch of the specimen used in the experiment.

Figure 2. The photography of the specimen.

3. Two-Dimensional Mathematical Model
3.1. Governing and Constitutive Equations

At first, a brief description of the mathematical formulations that will be employed is
given. The considered problem is treated by taking into account the plain strain assumption.
The material properties are specified by the tensor of elastic constants Cijkl and the mass
density ρ, while the piezoelectric material is also characterized by the piezoelectric and
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dielectric constants ekij and εik, respectively. The constitutive equations in the general case
of piezoelectric material are written as follows:

σij = Cijklskl − ekijEk, Di = eiklskl + εijEj, (2)

where σij are components of the stress tensor, Di are components of the electric displacement
vector, skl = 1

2 (uk,l + ul,k) is the strain tensor, expressed in terms of derivatives uk,l of
mechanical displacements uk with respect to xl , and Ek = −ϕ,k are the components of the
electric field, expressed in terms of the electric potential ϕ. For elastic media, the electric
part (Ek) is omitted in (2) and elastic constants Cijkl are expressed in terms of the Lame
constants λ and µ (for more details see, e.g., [39]).

Therefore, the governing equations

σij,j = ρ
∂2ui
∂t2 (3)

are employed to describe the dynamics of the elastic and piezoelectric materials, whereas
the relations

Di,i = 0 (4)

are valid for piezoelectric materials only, i.e., for PWATs. In the case of elastic material,
Equation (3) can be simplified to the Lame equations:

(λ + µ)∇divu(x, t) + µ4u(x, t)− ρ
∂2u(x, t)

∂t2 = 0. (5)

3.2. Mathematical Formulation of the Problem with a PWAT and Two Obstacles

Let us consider a two-dimensional mathematical model that allows us to describe
the experiment given in the previous section. The geometry of the problem is demon-
strated in Figure 3. An elastic layer of thickness H = 2 mm occupies the domain
Ω(p) = {|x1| < l/2, 0 ≤ x2 ≤ H}, and a PWAT attached at the surface of the waveg-
uide Ω(p) and is operating like an actuator that is assumed to occupy the rectangular
domain Ω(a) = {|x1| < w(a)/2, 0 ≤ x2 − H ≤ h(a)} of thickness h(a) and width w(a). Two
elastic rectangular blocks of thickness h and width w are attached at the surface of
the waveguide using h(f) = 0.05 mm thick epoxy tape. In the model, the left obstacle
Ω(b1) = {−w ≤ x1 + χ1 ≤ 0, 0 ≤ x2 − H − h(f) ≤ h} is fully bonded with the waveguide
via the film Ω(f1) = {−w ≤ x1 + χ1 ≤ 0, 0 ≤ x2 − H ≤ h(f)}, whereas the right obstacle
Ω(b2) = {0 ≤ x1 − χ2 ≤ w, 0 ≤ x2 − H − h(f) ≤ h} is partially debonded and the epoxy
film occupies the domain Ω(f2) = {a ≤ x1 − χ1 ≤ w, 0 ≤ x2 − H ≤ h(f)}.

x1

Ω
(p)

h = 15 mm

h (f) = 0.05 mm

Debonding

Ω
(b2)

x2

H = 2 mm

w = 5 mm

Ω
(b1)

Ω
(a)

χ
1
 = 107.5 mm

χ
2
 = 107.5 mm

Ω
(f1)

l = 550 mm

w = 5 mm

a = 2.5 mm

w (a) = 5 mm

h (a) = 0.25 mm

Elastic plate

Surface-mounted obstacle

Piezoelectric actuator

Epoxy film

Ω
(f2)

Figure 3. The geometry for the boundary value problem corresponding to the experiment.
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The lower boundary of the PWAT is grounded, and the side boundaries are charge-free:

ϕ = 0, x ∈ Ω(a) ∩Ω(p) (6)

D1 = 0, x ∈ ∂Ω(a)\
(

x2 =
{

H, H + h(a)
})

. (7)

An electric potential p(t) is applied on the upper boundary of the PWAT

ϕ = p(t), x ∈ Ω(a) ∩
(

x2 = H + h(a)
)

(8)

to excite guided waves in the waveguide Ω(p). All outer boundaries ∂Ω of the whole
structure Ω are assumed to be stress-free:

σij · nj = 0, x ∈ ∂Ω. (9)

Here, n is the normal vector. For convenience, the traction vector τ = {σ12, σ22}
composed of tangential and normal stresses is introduced. The continuity of stresses and
displacements is assumed in the contact areas between the surface-mounted objects and
the waveguide, i.e.,

[u] = [τ] = 0, x ∈
(

Ω(p) ∩
(

Ω(f1) ∪Ω(f2) ∪Ω(a)
))
∪
(

Ω(f1) ∩Ω(b1)
)
∪
(

Ω(f2) ∩Ω(b2)
)

. (10)

Here, square brackets [ f ] denote the jump of a given function f .

3.3. Experimental Verification of the Mathematical Model

To validate the obtained mathematical model, a comparison with the experimental
measurements in the case of the thin PWAT with dimensions 5 × 30 × 0.25 mm was
performed. The standard FEM software “Comsol Multiphysics” was used to solve the
mathematical problem with the following dimensions of the actuator (h(a) = 0.25 mm,
w(a) = 5 mm), the obstacles (h = 15 mm, w = 5 mm, χ1 = χ2 = 107.5 mm), and the plate
(l = 275 mm, H = 2 mm). The material properties used for the simulations are given in
Table 1.

Table 1. Material properties.

Material Elastic Constants Piezoelectric Constants Dielectric Constants Density
[GPa] [C/m2] 10−9 [F/m] [kg/m3]

Aluminum λ = 51.1 — — 2700
µ = 26.3

Epoxy film λ = 0.227 — — 930
µ = 1.396

PIC 155 C1111 = 120 e211 = −7.24 ε11 = 9.12 7800
C1112 = 67.3 e212 = 13.77 ε22 = 7.55
C2222 = 94.4 e112 = 11.91
C1212 = 22.3

For better interpretation of the results presented below, e.g., time of flights of the
incident and scattered Lamb waves, the group velocities of non-attenuating Lamb waves
in a 2 mm thickness aluminum plate—predicted theoretically—are depicted in Figure 4.

The velocities of vertical (v2 = u2,t) and horizontal (v1 = u1,t) motion measured on
the back side of the plate were compared with the transient signal calculated within the
employed FEM model. The points x1 = ±130 mm were specified for comparison. The
comparison of the vertical velocities v2 measured and calculated at a central frequency
f = 300 kHz is demonstrated in Figure 5. A good agreement of the signals is clearly
visible for both bonded and debonded obstacles. In the case of debonding, a small phase
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shift can be distinguished due to deviation of the real measurement point from nominal
x1 = 130 mm from the PWAT’s center.
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Figure 4. Group velocities of Lamb waves in a 2 mm thickness aluminum plate.
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Figure 5. Vertical velocities at the surface of the plate for bonded (a) and debonded (b) obstacles, which were measured and
calculated at central frequency f = 300 kHz at the points x1 = ±130 mm.

Debonding of the obstacle leads to a growth of the amplitudes and a phase shift; the
same effect was predicted by the mathematical model. Still, a discrepancy in the first part
of the signals could be noticed, especially in the point x1 = −130 mm, and the same effect
is visible in Figure 6, where horizontal velocities of the motion v1 measured and calculated
with a central frequency f = 300 kHz are presented. Again, debonding of the obstacle
results in the amplitudes’ growth for both experimental and simulation signals.

To investigate the differences inside the first 80 µs of the measured and simulated
signals, the complete wave patterns are presented in Figure 7 for the vertical component
and in Figure 8 for the horizontal component measured and calculated at the central
frequency f = 300 kHz. These plots illustrate the surfaces of the Hilbert transform of the
velocities of the motion v(x1, 0, 0, t) measured in the experiment and calculated with the
2D model with dependence on the x1 coordinate and time t. The propagation of the S0 and
A0 Lamb wave modes is clearly visible for both the experimental and simulation signals.
In the case of the vertical component, the amplitudes of the A0 mode are higher compared
with those of the S0 mode.
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Figure 6. Horizontal velocities at the surface of the plate for bonded (a) and debonded (b) obstacles measured and calculated
at the central frequency f = 300 kHz at the points x1 = ±130 mm.

Figure 7. Vertical velocities at the surface of the plate for bonded (a) and debonded (b) obstacles measured and calculated
with the central frequency f = 300 kHz.
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Figure 8. Horizontal velocities at the surface of the plate for bonded (a) and debonded (b) obstacles measured and calculated
with the central frequency f = 300 kHz.

At the same time, for the horizontal component, the amplitudes of symmetric and
antisymmetric modes are at least of the same value. Moreover, the 2D model provides a
stronger excitation of the S0 mode than is visible in the experiment. This effect leads to the
discrepancy in the first part of the A-scans, which are depicted in Figures 5 and 6. Both
experiments also show that the piezoelectric transducer does not show a perfect symmetric
actuation, as the signals are also not symmetric for locations x ≤ 107.5 mm. This is possibly
caused by a non-symmetric bonding layer thickness and was not taken into account for the
modeling, leading to additional discrepancies. The soldering points’ orientations and the
cables attached at the plate’s face can cause non-symmetric wave excitation as well. Still,
the behavior of the measured and simulated wavefronts is the same, and, more importantly,
the effect of the obstacle debonding is correctly predicted by the model. Such comparison
results allow further analysis of the Lamb wave scattering due to debonding in the contact
zone between the surface-mounted obstacle and the plate-like structure by means of the
obtained 2D model.

4. Analysis: Wave Phenomena
4.1. Mathematical Formulation of the Problem for the Incidence of a Selected Lamb Wave

To investigate interaction of guided waves with the surface-mounted block with
interface defects, the in-plane harmonic steady-state motion with the angular frequency
ω = 2π f is considered. An elastic rectangular block Ω(b) = {0 ≤ x1 ≤ w, 0 ≤ x2 − H ≤ h}
with dimensions w× h mm is attached at the surface of the infinite elastic layer Ω(p) =
{|x1| < ∞, 0 ≤ x2 ≤ H} mm, as shown in Figure 9. Correspondingly, displacements in the
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elastic waveguide and in the elastic obstacle satisfy the Lame equations obtained from (3)
after applying the Fourier transform with respect to t:

(λ + µ)∇divu(x) + µ4u(x) + ρω2u(x) = 0. (11)

Two kinds of damaged interfaces S = Ω(b) ∩Ω(p) between the waveguide and the
obstacle are considered in this section: debonding at the interface and degradation of the
interface. In the case of debonding, a crack of width a at the interface S is assumed so that
the interface S = Sd ∪ Sc consists of the debonded area Sd, where the stress-free boundary
conditions (9) are assumed, and contact area Sc, where wave-fields satisfy continuous
boundary conditions (10). For degradation modeling, i.e., for the the second kind of
damage, the spring boundary condition [36,37]

[τ] = 0, τ = S[u], x,∈ S (12)

with diagonal stiffness matrix S = diag(κ, κ), is introduced. SBC (12) assumes the con-
tinuity of the traction vector at the interface, where the displacement vector has a jump
proportional to the traction vector. In both cases, the outer surfaces of the waveguide and
the obstacle are stress-free. The mathematical model was constructed with the following
dimensions of the obstacle (h = 15 mm, w = 5 mm) and the plate (H = 2 mm), while the
material properties are given in Table 1.

x1

Ω
(p)

x2

H = 2 mm

h = 15 mm

w = 5 mm

Ω
(b)

Elastic plate

Surface-mounted

obstacle

Damaged interface

x

a

contact area S
cDebonding S

d

a) Debonding

x2

d

Ω
(p)

imperfect contact S
c

 S
d 
= Ø

b) Degradation

x2

Figure 9. The geometry for the mathematical model.

The stated problem is solved with the SAHA, which is more suitable for the problem
of sole guided wave scattering [17]. In this case, the displacement field u(in)(x) of the
Lamb wave with wavenumber ζ incoming from −∞ (i.e., propagating from the left to the
right according to the system of coordinates shown in Figure 9) is calculated via Cauchy’s
residue theorem as follows:

u(in)(x) = −i resK(α, x2)Q(α)
∣∣
α=−ζ

·eiζx1 . (13)

Here, K(α, x2) and Q(α) are the Fourier transform of the Green’s matrix and the
arbitrary surface load function (more details can be found in [31]).

The hybrid mathematical approach allows the investigation of the elastic wave energy
transfer from the source into the waveguide and the amount of the elastic wave energy
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carried by each Lamb wave. This analysis is based on the time-averaged power density
vector e(x), or Umov–Poynting vector:

ej =
ω

2
Im
(
σ1ju∗1 + σ2ju∗2

)
. (14)

The defective contact between the obstacle and the waveguide results in a partial
reflection of the guided waves, and therefore, it is convenient to calculate the transmission
and reflection coefficients, which is possible within the SAHA. The wave energy distribu-
tion coefficients β±m (m corresponds to a Lamb wave) are introduced via the integration of
the horizontal component e1 of the time-averaged power density vector along a certain
cross-section of the waveguide in a far-field zone. The energy distribution coefficients

β±m = P±m /P0 (15)

are the ratios between the wave energy flux P±m carried by m-th Lamb wave in directions
x1 → ±∞ and the wave energy transmitted by a certain incoming Lamb wave mode

P0 =

H∫
0

e(in)1 (x1, x2)dx2. (16)

To extract wave-fields related to scattered Lamb waves with a specific wavenumber ζ
corresponding to a specific Lamb wave, relations similar to Equation (13) are employed
(for more details, see [17,31]). It should be mentioned that the equality

∑
m

(
β+

m + β−m
)
= 1. (17)

is valid for energy distribution coefficients.

4.2. Debonding between the Obstacle and the Plate

To construct an automatic SHM algorithm for damage detection, it is essential to gain
knowledge on how a surface-mounted obstacle scatters guided waves, including partial
debonding and degradation of the contact. In this subsection, the effect of the debonding
(infinitesimally thin crack between the obstacle and the waveguide) is investigated (see
Figure 9a, where a graphical representation of the mathematical problem is shown). Two
cases of one-sided debondings were considered: Sd = {0 ≤ x1 ≤ a, x2 = H} and Sd =
{a ≤ x1 ≤ w, x2 = H}. It was revealed that the differences in the resulting wave-fields
are small. Therefore, the results for debonding from only the left side are presented here
(Sd = {0 ≤ x1 ≤ a, x2 = H}), and the debonding rate is calculated as a/w · 100%.

To investigate the interaction of antisymmetric and symmetric Lamb waves with
the obstacle at various central frequencies, the propagation of incident A0 and S0 Lamb
waves is modeled. Coefficients β±m are used in accordance with (15) to investigate how
much energy of the incident wave is transmitted, reflected, or converted depending on the
frequency f .

Figures 10 and 11 illustrate the energy distribution coefficients β±m( f , a) given by
relation (15) depending on the frequency and debonding parameter when the m =A0 or
m =S0 Lamb wave is excited. Coefficients β±m indicate the share of the m-th mode in the
wave energy flow P±, which is part of the induced energy flux P0 propagating in directions
x1 → ±∞. The effect of the debonding presence is minimal at the lower frequencies
( f < 150 kHz). Little influence is detected in the frequency range 150 < f < 350 kHz, and
only with the higher frequencies ( f > 350 kHz) does the debonding have perceptible
influence. Three frequency ranges are visible when the A0 mode is incident: where A0
is mostly reflected by the obstacle ( f < 150 kHz), where approximately 50% of the wave
energy is transmitted and reflected (150 < f < 300 kHz), and when transmission zones
frequently change by the reflection zones, depending highly on the frequency and less
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highly on the debonding size ( f > 300 kHz). The uncommonly high reflection of the A0
mode at lower frequencies is studied further. The conversion rate of the S0 mode is also
low, but unlike the antisymmetric mode, S0 is reflected only partly and only inside narrow
frequency ranges. When the block is severely debonded (a/w > 50%), the S0 mode’s
reflection from the obstacle is minimal and strongly dependent on the frequency f . Thus, it
can be concluded that the A0 mode is scattered from the obstacle mostly with the lower
frequencies ( f < 300 kHz), while the S0 mode interacts with the surface-mounted obstacle
only in specific frequency ranges and passes through for the frequencies outside these
ranges, which are in the large majority.

The eigenfrequencies fn of the unbounded aluminum layer with the debonded block of
dimensions w× h, as shown in Figure 9, are marked in Figures 10 and 11 by circles, squares,
and triangles for debonding rates of 0%, 25%, and 50%, respectively. The eigenfrequencies
independently calculated using the SAHA and the FEM are given in Table 2. The two
numerical methods applied in this study are in a good agreement. One can also see that
the eigenfrequencies are situated relatively close to the real axis, and some peaks in the
β±m( f ) plots correspond to the real values of the eigenfrequencies. Nevertheless, a strong
influence of eigenfrequencies on Lamb wave conversion and reflection cannot be reported.

The effect of the variation of the width of a rectangular block on Lamb wave transmis-
sion was analyzed in [17]. To investigate an uncommon A0 reflection at lower frequencies
and the influence of the block’s height, the transmission and reflection of fundamental
Lamb waves were analyzed with respect to the block’s height h. Figure 12 shows the
transmission and reflection coefficients β±m(h) for incident S0 and A0 modes for a bonded
and 25% debonded block of width w = 5 mm at frequency f = 25 kHz. For both funda-
mental Lamb waves, one can see periodically situated peaks. It is also clearly seen that the
A0 mode is almost fully transmitted if the height h < 5 mm, while a strong reflection is
observed if the height increases. The effect can be explained by the properties of the A0
mode, which has a dominating vertical component (such a strong reflection is not observed
for the S0 mode).

Figure 10. The transmission and reflection coefficients β±m( f , a) for the incident A0 mode scattered by a debonded obstacle
and the eigenfrequencies calculated for three different debonding states.
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Figure 11. The transmission and reflection coefficients β±m( f , a) for the incident S0 mode scattered by a debonded obstacle
and the eigenfrequencies calculated for three different debonding states.
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d) Debonding 25%
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Figure 12. The transmission and reflection coefficients β±m(h) for the incident S0 (a,c) and A0 (b,d) modes scattered by
the obstacle of height h and width w = 5 mm at frequency f = 25 kHz with a debonding rate of 0% at a = 0 (a,b) and a
debonding rate of 25% at a = 1.25 mm (c,d).

Figure 13 depicts the total transmission coefficient

β+ = ∑
m

β+
m

for the obstacles of width w = 5 mm and four different heights: h = 2, 5, 10, 25 mm. Height
increase leads to a more complicated distribution of the transmission coefficient because the
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number of eigenfrequencies in a certain frequency range increases and the corresponding
eigenforms become more complex. The difference between the transmission coefficients for
bonded and debonded obstacles is more pronounced for smaller heights (cf. Figure 13a–d).
The latter can be explained by the eigenforms of the waveguide with an obstacle: wave
localization in the upper part of the obstacle is more similar for bonded and debonded
states if the rectangular block is taller because the height of the obstacle has a somewhat
higher influence on wave propagation than the debonding size. The resonance peaks
visible in the transmission coefficient plots coincide for both incident A0 and S0 modes.
This effect is noticeable for the four calculated heights of the obstacle.

Frequency f , kHz

700100 200 300 400 500 6000

1

0

1

0

a) h = 2 mm

b) h = 5 mm

c) h = 10 mm

d) h = 25 mm

β 
+

β 
+

1

0

β 
+

1

0

β 
+

Incident S0

Debonding rate 0 %

Debonding rate 25 %

Incident A0

Figure 13. The total transmission coefficient β+( f ) for the incident S0 and A0 modes scattered by the obstacle of height
h = 2 mm (a), 5 mm (b), 10 mm (c), or 25 mm (d) and width w = 5 mm, as well as a debonding rate of 0% with a = 0 or a
debonding rate of 25% with a = 1.25 mm.

Table 2. Eigenfrequencies (kHz) of an H = 2 mm thickness aluminum plate with a rectangular aluminum block debonded
on one side (w = 5 mm width, h = 15 mm height).

Debonding 0% Debonding 25% Debonding 50%

SAHA FEM SAHA FEM SAHA FEM

302.4 – 5.5i 302.3 – 5.5i 37.8 – 400.5i 63.6 – 12.1i
371.9 – 18.9i 368.7 – 17.4i 262.6 – 26.5i 265.6 – 22.1i 268.3 – 15.6i
416.9 – 2.1i 416.9 – 2.1i 284.2 – 202.2i 316.5 – 8.9i 331.8 – 1.9i
467.5 – 0.1i 467.5 – 0.1i 404.8 – 6.9i 406.6 – 6.5i 387.1 – 8.8i 387.9 – 8.3i
489.7 – 3.3i 489.4 – 3.3i 541.7 – 4.3i 542.3 – 3.9i 425.3 – 6.9i 425.3 – 6.4i
546.8 – 4.7i 546.8 – 4.7i 587.2 – 1.7i 589.3 – 1.5i 468.6 – 0.9i 467.3 – 0.9i
607.6 – 3.0i 607.6 – 3.0i 602.3 – 4.9i 603.2 – 4.3i 545.1 – 8.7i 545.1 – 8.0i
659.5 – 4.4i 659.5 – 4.4i 674.1 – 1.8i 665.4 – 1.8i 616.6 – 7.0i 623.4 – 1.0i

638.5 – 3.8i 638.2 – 3.8i
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4.3. Adhesive Degradation between the Obstacle and the Plate (Imperfect Contact)

Another widespread type of defect that is investigated in this study is the degra-
dation of the adhesive or contact between a surface-mounted obstacle and a waveguide
(see Figure 9b). This kind of damage is modeled here with the spring boundary condi-
tion (12), where the variation of the component κ of the stiffness matrix S allows one to
change the imperfectness of the contact between the plate and the obstacle. Figures 14 and 15
illustrate the energy distribution coefficients β±m with respect to frequency f and stiffness
κ. Since larger values of κ−1 >> 1 correspond to an almost fully debonded obstacle and
κ−1 = 0 describes perfect contact at the interface, κ−1 is used in the further analysis as a
degradation parameter to obtain a parameter describing the severity of damage in a similar
manner to that of the debonding case considered in the previous subsection.

Figure 14. The transmission and reflection coefficients β±m( f , κ−1) for the incident A0 mode scattered by an obstacle with
a degradation.

Once again, it is observed that the A0 mode is fully reflected from the obstacle at lower
frequencies ( f < 100 kHz). One can see narrow peaks corresponding to local resonances;
these peaks depend on the stiffness κ and they almost disappear if κ < 1013 TPa·m−1 at
frequencies f > 150 kHz. Inside the frequency range 100 < f < 300 kHz, the reflection por-
tion depends on the frequency and stiffness κ, while for higher frequencies ( f > 300 kHz),
the reflection depends only on the frequency, and the A0 mode passes through the obstacle
without any reflection or conversion for stiffness κ < 1013 TPa·m−1.

Surfaces β±m( f , κ−1) for S0 scattering are similar to the case of A0. Though most of the
resonance peaks are revealed in the same frequency and stiffness ranges, some of them are
distinct for the two considered Lamb waves. With the frequency growth, the degradation
has a stronger influence on the energy distribution coefficients. For lower frequencies, the
S0 mode is reflected by the obstacle, even for highly deteriorated contact κ = 1012 TPa·m−1,
e.g., f = 30 kHz. For both fundamental Lamb waves, the noticeable effect of conversion is
visible only for higher frequencies and specific values of κ.



Sensors 2021, 21, 860 16 of 25

Figure 15. The transmission and reflection coefficients β±m( f , κ−1) for the incident S0 mode scattered by an obstacle with
a degradation.

5. Analysis: Damage Detection
5.1. Mathematical Formulation of the Problem

To investigate the influence of debonding of the surface-mounted obstacle on
the sensor voltage signal, a finite-length elastic plate with a block and two PWATs
operating like an actuator and a sensor is modeled. Thus, an elastic rectangular block
Ω(b) = {|x1| ≤ w/2, 0 ≤ x2 − H ≤ h} with dimensions w× h mm and two piezoelectric
transducers Ω(a), Ω(s) with dimensions w(t) = 5 mm and h(t)=0.25 mm are attached at
the surface of the elastic plate Ω(p) = {|x1| < l/2}, {0 ≤ x2 ≤ H} mm (see Figure 16).
Two PWATs Ω(a) = {0 ≤ x1 + χ1 ≤ w(t), 0 ≤ x2 − H ≤ h(t)} and Ω(s) = {0 ≤ x1 − χ2 ≤
w(t), 0 ≤ x2 − H ≤ h(t)}, situated at the same distance from the obstacle, operate as an
actuator and as a sensor, respectively.

The governing Equations (3) and (4) are employed for simulating wave motion in
elastic and piezoelectric domains. The same two kinds of defects as in the previous section
are considered: debonding and degradation. Stress-free boundary condition (9) is chosen
for the outer surfaces of the waveguide, two PWATs, and the obstacle, as well as for the
delaminated area Sd in the case of debonding. The continuity boundary condition (10) is
assumed in the contact area between the PWATs and the waveguide and at the internal
boundary Sc. Two kinds of defects at the interface S = Ω(b) ∩Ω(p) between the waveguide
Ω(p) and the obstacle Ω(b) are considered in this section: a debonding at the interface and
a degradation of the interface. In the case of debonding, a crack of width a at the interface
S is assumed so that the interface S = Sd ∪ Sc consists of the debonded area Sd, where the
stress-free boundary condition (9) is assumed, and the contact area Sc, where wave-fields
satisfy continuous boundary condition (10). For the degradation case, spring boundary
condition (12) is used again.
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Figure 16. The geometry for the mathematical model.

Boundary conditions (6) and (7) are valid for both PWATs: The side boundaries of the
transducers are free of charge and the lower boundaries of both transducers are grounded.
In the case of the actuator Ω(a), the electric potential applied on the upper surface is
simulated via (8). To simulate the sensor Ω(s), an unknown electric potential ϕ(x, t) is
introduced at the upper surface of the sensor S(φ) = Ω(s) ∩

(
x2 = H + h(t)

)
, i.e.,

ϕ(s)(x, t) = φ(t), x ∈ S(φ). (18)

In addition to (18), electric charge is also assumed to be equal to zero on the upper
surface S(φ) of a sensor: ∫

S(φ)
D2dx1 = 0. (19)

The simulation was performed for the following geometrical parameters of the two
PWATs (h(t) = 0.25 mm, w(t) = 5 mm, χ = 112.5 mm), the obstacle (h = 15 mm, w = 5 mm),
and the plate (l = 175 mm, H = 2 mm) with voltage V0 = 70 V; the material properties are
given in Table 1.

5.2. Transient Signals and Damage Indices

When using Lamb waves for automated damage detection with permanently installed
PWATs, not only the usage of actuator and sensor, but also the usage of a short signal with
a narrow frequency band is preferable for simplifying data analysis. This way, the effect of
the reflections does not overlay with the effect of possible damage easily, and the signal
still does not have high dispersion, which complicates physics-based data analysis. Both
factors are contradictory; therefore, a trade-off between the length of the signal and width
of the frequency band has to be realized. A Hann-windowed N-cycle toneburst was proven
to be suitable for many applications decades ago [11] and is used in industrial applications
of guided waves. At the same time, the signal’s central frequency needs to be chosen in
such a way that the excited wave interacts with the damage, which should be found with
the automated damage detection system based on guided waves. If this frequency is not
perfectly known in advance, the usage of rectangular pulses that include a wide frequency
spectrum has been mentioned recently as an alternative to using the joint analysis of several
frequencies if statistical data analysis is used as a data evaluation strategy.

The chosen signal is not necessarily the best for all methods of automated data evalua-
tion. Within this publication, two very simple feature extraction techniques are used; both
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are based on statistical data analysis without taking into account the specific physics, such
as time of arrival and signal energy. As the focus is on showing the effects on these damage
indices (DIs) and not the best choice of DI, simple algorithms that are widely used in the
community were chosen. First, the two different signal types are described. Afterwards,
the chosen damage indices used for data evaluation are documented.

5.2.1. Input Signals

Two kinds of input signals are used. The first input voltage signal has the form of Nc
Hann-windowed cycles of the cosine with a central frequency f according to relation (1).
The second input voltage signal is a rectangular pulse of duration b µs

p(t) =
{

V0, 0 ≤ t ≤ b
0, otherwise.

.

An example of the voltage signals obtained from the sensor for debonding rates of 0%,
25%, and 50% is shown in Figure 17. The first parts of the sensor signals (t < 90 µs) for all
the debonding rates are quite similar, whereas later moments of time.
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Figure 17. Voltage signals obtained from the sensor for debonding rates of 0%, 25%, and 50%.

5.2.2. Damage Indices

Two damage indices are evaluated here for two modeled changes of the setup, i.e., for
the debonding of the obstacle and the degradation of the contact between the plate and the
obstacle. As a first damage index, the mean root-mean-square value of the differences of
the components of two vectors containing the data on the undamaged and the damaged
states, yH and yD, is used:

DIRMSM =
M

∑
i=1

√√√√∑
(
yD

i − yH
i
)2

∑
(
yH

i
)2 .

Here, vectors ym = {ym
1 , . . . , ym

M} (m = {H, D}) are composed of the sensor’s transient
voltage signals in the moments of time ti, (i = 1, . . . , M). This indicator has already been
suggested and used in a number of applications, e.g., [12].

As a second damage index, a variation

DICCH = 1− CC
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is used. It is calculated as the correlation coefficient

CC =
V12√

V11V22
.

from the covariance matrix
V = cov

(
H[yH],H[yD]

)
,

which is based on the Hilbert transformsH[yH] andH[yD] of the two signals yH and yD, as
suggested, e.g., in [10]. Instead of taking the direct time signal, here, the Hilbert transform
of the time signal was chosen to decrease the effect of small phase shifts. The effect of this
procedure has been shown in [1].

5.3. Effects of Obstacle Debonding (Crack between the Obstacle and the Plate)

Figures 18–21 depict contour plots of the surfaces of two DIs, where the choice of the
colormap allowed us to highlight the 10% threshold with white color. It should be noted
that different color scales are used for DICC and DIRMSM, since their ranges of values are
dissimilar. Starting with the effects of the debonding of the obstacle on the two different
damage indices for the Hann-windowed signal, it is necessary to take into account the
effect of the chosen time window. For 49 central frequencies, equally distributed from 120
to 600 kHz, the chosen time interval was varied from 50 to 400 µs. Both graphs in Figure 18
show that a specific length is necessary before the data analysis will be able to grasp the
difference between the signals, which is frequency dependent due to travel time. The
times of flights of the incident and scattered Lamb waves calculated using group velocities
(see Figure 4) of the A0 and S0 modes in a 2 mm thickness aluminum plate are shown by
the dash-dotted curves.

For the interpretation of the data, it is necessary to consider the fact that long signals,
which include a lot of reflections, also known as coda-waves [40], have been shown to be
sensitive to a variety of influences, and also exhibit larger changes in the “undamaged”
state due to small changes in environmental conditions. This ultimately leads to higher
thresholds; based on these, a decision about the current state is made. This effect cannot be
taken into account in numerical modeling due to the missing influence of environmental
conditions and variations in measurement.

Figure 18. The damage index (DI) DIm( f , t) calculated using the data from a sensor at different central frequencies f in the
case of an obstacle with a 25% debonding crack.
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Figure 19. The DI DIm(a/w, t) calculated using the data from a sensor at different debondings.

Figure 20. The DI DIm( f , t) calculated using the data from a sensor at different central frequencies f in the case of an
obstacle with an imperfect contact stiffness κ = 2× 1013.

Taking into account the results from Figures 10 and 11, which show the same kind
of change as in the setup, the frequency influence is now also visible for the chosen
damage indices. At around 230 kHz, the results for both DIs are much better than for
the 280–300 kHz. The change in the reflected, transmitted, and mode-converted signal
in the frequency range of 230 kHz in Figures 10 and 11 is highly dependent on the level
of debonding. This is not the case for the frequency range around 290 kHz. Therefore, a
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detailed analysis of the transmission and reflection coefficients is helpful in explaining the
efficiency of automated damage analysis.

Figure 21. The DI DIm(κ−1, t) calculated using the data from a sensor at different imperfect contact stiffnesses κ.

Comparing both damage indices, the performance of DIRMSM is more evenly dis-
tributed, and smaller time frames are necessary compared to DICCH. No specific analysis of
the performance is possible due to the already-mentioned fact that the effect of changing en-
vironmental conditions was not included in the numerical model, which ultimately defines
a possible threshold. As seen in Figures 10 and 11, in the fully bonded stage, the incident
A0 and incident S0 waves have already been changed significantly in the higher frequency
regime because the block shows high variation with frequency and debonding state.

For the Hann-windowed toneburst at a specific frequency of 300 kHz, as well as for
the pulse, the effect of the size of debonding is shown in Figure 19. The plots exhibit the
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same tendencies for both damage indices and types of input signal. Even with a long signal,
a very small debonding is hardly recognizable. While the sensitivity to the time window
is comparably low after a specific time for the pulse, it is larger for the Hann-windowed
signal. For shorter signals, all combinations show a specific time span, which is unfavorable,
leading to decreased sensitivity. The effect is less significant for higher debonding if the
Hann-windowed input signal is chosen. For very high rates of debonding, even the very
short time is able to detect differences between the two states.

5.4. Effects of Adhesive Degradation between the Obstacle and the Plate

As is already visible when comparing Figures 14 and 15 to Figures 10 and 11, the
effect of bonding degradation significantly differs from the effect of debonding. This is
also visible in the automated data evaluation with the use of damage indices. Both show
a better sensing ability in the higher frequency regime. A very interesting phenomenon
can be found for DICCH at around 400 kHz, as it shows a second decrease in index level
after the first increase with increasing time. Clearly, a carefully chosen time interval is of
major importance.

For DICCH, it is not possible for short times to grasp the presence of degradation, even
if its severity is high. In general, DICCH is only able to detect the change for a time interval
larger than approximately 200 µs for f < 200 kHz. This is not the case for DIRMSM.

Interestingly, the tendencies that have been seen for the different input signals for the
case of debonding in Figure 19 are valid also for the case of degradation in Figure 21. There
is a visible tendency of the Hann window in combination with DIRMSM to give the most
continuous signal, i.e., the damage index steadily increases with increasing degradation.
Nevertheless, the sensitivity seems to start at slightly greater levels of degradation. Com-
paring 300 and 400 kHz, it is not only visible that increasing time has no steady trend with
respect to DICCH, but increasing degradation also does not necessary lead to increasing DI,
especially a for time of approximately 180 µs. This is not acceptable for many SHM system
applications that need a clear trend, at least in the zone of interesting damage size.

When applying this, it will still be important to take into account the levels of the dam-
age indices for the undamaged case, as thresholds are based on these to avoid false calls.

6. Conclusions

The analysis of the energy distribution coefficients at the lower frequencies revealed
that A0 is strongly reflected by a rectangular 5 × 15 mm2 obstacle, while S0 mostly passes
through the obstacle area. However, the effect of the A0 reflection is strongly dependent on
the obstacle’s height. For instance, if a 5 × 5 mm2 obstacle is considered, the A0 mode is
not reflected by the obstacle at lower frequencies. The debonding of the obstacle influences
energy distribution coefficients at rather high frequencies; therefore, an inspection of this
kind of damage is more efficient at frequencies f > 150 kHz. The effects of debonding and
degradation are similar; however, with sever debonding, there are frequencies where Lamb
waves are still reflected from the obstacle, even at higher frequencies, while with the high-
level degradation of the contact, Lamb waves are fully transmitted without any interaction.
From this point of view, it might be more difficult to detect debonding compared to the
degradation of the contact. The possibility of damage detection based on damage indices
with different input signals and different damage indices was investigated using simulation
results. It has been shown that carefully chosen time intervals are of major importance.
Both chosen input signals exhibit the same tendencies for both DIs, but the usage of a
rectangular pulse enables the user to reduce the time interval due to the wider frequency
spectrum in the signal. Of the two simplest DIs chosen for the analysis, DIRMSM seems to
be more preferable.

The results show that the calculation of the reflection and transmission coefficients
in the frequency domain enables one to gain knowledge on the sensitivity of specific
frequency ranges to the two interface defects analyzed in this publication. The analysis of
time-domain data with frequently used input signals shows that the effects are much more
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smeared and less specific due to the wide frequency spectrum. For the statistics-based
damage indicators used, this is also the reason for why the pulse leads to a more steady
result, while specific frequencies and time selection for a Hann-windowed input signal can
be specifically positive or negative for the sensitivity.

The 2D mathematical model was successfully employed to calculate the energy distri-
bution coefficients, resonance frequencies, transmission, reflection, and conversion rates,
as well as sensors’ output signals, for a waveguide with a surface-mounted obstacle with
various bonding conditions. The model was verified experimentally prior to implementa-
tion of the calculations. However, a 2D model has limits to its application due to the plain
strain assumption. Therefore, in future work, the approach is to be enhanced into a 3D
model to take into account the orientation of the soldering points, wrapped electrodes of
the transducers, oblique incidence, kissing/clapping bonds, and other specific effects.
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