Application of Instantaneous Parameter Characteristic in Active Lamb Wave Based Monitoring of Plate Structural Health
Abstract
:1. Introduction
2. HHT-Based Signal Processing and Active Lamb Wave Based Monitoring Method
2.1. HHT-Based Signal Processing
2.2. Active Lamb Wave Based Monitoring Method
3. Study on Instantaneous Phase of an Active Lamb Wave Monitoring Signal
3.1. Establishment of the Monitoring Signal Model
3.2. Experiment of the Instantaneous Phase of Monitoring Signal Model
3.3. Analysis of the Instantaneous Phase of the Monitoring Signal
4. Analysis of Marginal Spectrum Change of an Active Lamb Wave
4.1. Preliminary Analysis of the Marginal Spectrum
4.2. Application Analysis of Marginal Spectrum Change in Plate Structural Health Monitoring
5. Analysis of the Relationship between the Instantaneous Phase and Marginal Spectrum
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Senyurek, V.Y. Detection of cuts and impact damage at the aircraft wing slat by using Lamb wave method. Measurement 2015, 67, 10–23. [Google Scholar] [CrossRef]
- Li, F.; Peng, H.; Meng, G. Quantitative damage image construction in plate structures using a circular PZT array and lamb waves. Sens. Actuators A Phys. 2014, 214, 66–73. [Google Scholar] [CrossRef]
- Haider, M.F.; Giurgiutiu, V. A Helmholtz Potential Approach to the Analysis of Guided Wave Generation during Acoustic Emission Events. J. Nondestruct. Eval. Diagn. Progn. Eng. Syst. 2017, 1, 021002. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Wu, J.; Wang, M. Mulan Study of modal acoustic emission to monitor the impact damage in a composite plate. J. Vibroeng. 2017, 19, 3335–3348. [Google Scholar] [CrossRef] [Green Version]
- Baochun, X.; Shenfang, Y.; Mulan, W.; Lei, Q. Determining impact induced damage by lamb wave mode extracted by EMD method. Measurement 2015, 65, 120–128. [Google Scholar] [CrossRef]
- Zelenyak, A.-M.; Hamstad, M.A.; Sause, M.G.R. Modeling of Acoustic Emission Signal Propagation in Waveguides. Sensors 2015, 15, 11805–11822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haider, M.F.; Giurgiutiu, V. Analysis of axis symmetric circular crested elastic wave generated during crack propagation in a plate: A Helmholtz potential technique. Int. J. Solids Struct. 2018, 134, 130–150. [Google Scholar] [CrossRef]
- Lin, X.; Yuan, F.G. Diagnostic Lamb waves in an integrated piezoelectric sensor/actuator plate: analytical and experimental studies. Smart Mater. Struct. 2001, 10, 907–913. [Google Scholar] [CrossRef]
- Han, J.; Kim, Y. Time–frequency beam forming for nondestructive evaluations of plate using ultrasonic Lamb wave. Mech. Syst. Signal Process. 2015, 54–55, 336–356. [Google Scholar] [CrossRef]
- Rathod, V.; Mahapatra, D.R. Ultrasonic Lamb wave based monitoring of corrosion type of damage in plate using a circular array of piezoelectric transducers. NDT E Int. 2011, 44, 628–636. [Google Scholar] [CrossRef]
- An, Y.-K.; Kim, J.H.; Yim, H.J. Lamb Wave Line Sensing for Crack Detection in a Welded Stiffener. Sensors 2014, 14, 12871–12884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, L.; Lin, J.; Huang, L. A Modified Lamb Wave Time-Reversal Method for Health Monitoring of Composite Structures. Sensors 2017, 17, 955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Yuan, S.; Qiu, L.; Cai, J.; Yang, W. Research on a Lamb Wave and Particle Filter-Based On-Line Crack Propagation Prognosis Method. Sensors 2016, 16, 320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ihn, J.-B.; Chang, F.-K. Pitch-catch Active Sensing Methods in Structural Health Monitoring for Aircraft Structures. Struct. Health Monit. 2008, 7, 5–19. [Google Scholar] [CrossRef]
- Huang, L.; Zeng, L.; Lin, J.; Luo, Z. An improved time reversal method for diagnostics of composite plates using Lamb waves. Compos. Struct. 2018, 190, 10–19. [Google Scholar] [CrossRef]
- Moll, J.; Schulte, R.T.; Hartmann, B.; Fritzen, C.-P.; Nelles, O. Multi-site damage localization in anisotropic plate-like structures using an active guided wave structural health monitoring system. Smart Mater. Struct. 2010, 19, 126. [Google Scholar] [CrossRef]
- Jia, H.; Zhang, Z.; Liu, H.; Dai, F.; Liu, Y.; Leng, J. An approach based on expectation-maximization algorithm for parameter estimation of Lamb wave signals. Mech. Syst. Signal Process. 2019, 120, 341–355. [Google Scholar] [CrossRef]
- Law, L.-S.; Kim, J.H.; Liew, W.Y.; Lee, S.-K. An approach based on wavelet packet decomposition and Hilbert–Huang transform (WPD–HHT) for spindle bearings condition monitoring. Mech. Syst. Signal Process. 2012, 33, 197–211. [Google Scholar] [CrossRef]
- Nalband, S.; Valliappan, C.; Prince, A.A.; Agrawal, A. Time-frequency based feature extraction for the analysis of vibroarthographic signals. Comput. Electr. Eng. 2018, 69, 720–731. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Liu, M.; Yang, J.; Cao, Y.; Fu, W.; Cao, Y. A new method for arrival time determination of impact signal based on HHT and AIC. Mech. Syst. Signal Process. 2017, 86, 177–187. [Google Scholar] [CrossRef]
- Chen, H.; Yan, Y.J.; Jiang, J. Vibration-based damage detection in composite wingbox structures by HHT. Mech. Syst. Signal Process. 2007, 21, 307–321. [Google Scholar] [CrossRef]
- Biswas, A. Scale–location specific soil spatial variability: A comparison of continuous wavelet transform and Hilbert–Huang transform. Catena 2018, 160, 24–31. [Google Scholar] [CrossRef]
- Susanto, A.; Liu, C.-H.; Yamada, K.; Hwang, Y.-R.; Sekiya, K. Application of Hilbert–Huang transform for vibration signal analysis in end-milling. Precis. Eng. 2018, 53, 263–277. [Google Scholar] [CrossRef]
- Chun, X.B.; Lan, W.M.; Qian, J. Application of Marginal Spectrum in Active Lamb Wave Damage Monitoring of Plate Struture. Appl. Mech. Mater. 2013, 490–491, 1698–1701. [Google Scholar]
- Park, G.; Farrar, C.; Di Scalea, F.L.; Coccia, S. Performance assessment and validation of piezoelectric active-sensors in structural health monitoring. Smart Mater. Struct. 2006, 15, 1673–1683. [Google Scholar] [CrossRef]
- Haider, M.F.; Poddar, B.; Giurgiutiu, V. Experimental validation of an analytical method to predict lamb wave scattering from a discontinuity. Smart Mater. Struct. 2018, 28, 015012. [Google Scholar] [CrossRef] [Green Version]
- Haider, M.F.; Bhuiyan, M.Y.; Poddar, B.; Lin, B.; Giurgiutiu, V. Analytical and experimental investigation of the interaction of Lamb waves in a stiffened aluminum plate with a horizontal crack at the root of the stiffener. J. Sound Vib. 2018, 431, 212–225. [Google Scholar] [CrossRef]
- Hamstad, M.A. Frequencies and amplitudes of AE signals in a plate as a function of source rise time. In Proceedings of the 29th European Conference on Acoustic Emission Testing, Vienna, Austria, 8–10 September 2010. [Google Scholar]
- Gaudenzi, P.; Bernabei, M.; Dati, E.; De Angelis, G.; Marrone, M.; Lampani, L. On the evaluation of impact damage on composite materials by comparing different NDI techniques. Compos. Struct. 2014, 118, 257–266. [Google Scholar] [CrossRef]
- Kumar, S.S.; Rao, K.S. Voice/non-voice detection using phase of zero frequency filtered speech signal. Speech Commun. 2016, 81, 90–103. [Google Scholar] [CrossRef]
- Hu, C.; Wang, Z.; Zhu, Y.; Zhang, M. Accurate three-dimensional contouring error estimation and compensation scheme with zero-phase filter. Int. J. Mach. Tools Manuf. 2018, 128, 33–40. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, B.; Wang, M.; Li, P.; Cheng, Q.; Sheng, Y. Application of Instantaneous Parameter Characteristic in Active Lamb Wave Based Monitoring of Plate Structural Health. Appl. Sci. 2020, 10, 5664. https://doi.org/10.3390/app10165664
Xu B, Wang M, Li P, Cheng Q, Sheng Y. Application of Instantaneous Parameter Characteristic in Active Lamb Wave Based Monitoring of Plate Structural Health. Applied Sciences. 2020; 10(16):5664. https://doi.org/10.3390/app10165664
Chicago/Turabian StyleXu, Baochun, Mulan Wang, Peijuan Li, Qihua Cheng, and Yunlong Sheng. 2020. "Application of Instantaneous Parameter Characteristic in Active Lamb Wave Based Monitoring of Plate Structural Health" Applied Sciences 10, no. 16: 5664. https://doi.org/10.3390/app10165664
APA StyleXu, B., Wang, M., Li, P., Cheng, Q., & Sheng, Y. (2020). Application of Instantaneous Parameter Characteristic in Active Lamb Wave Based Monitoring of Plate Structural Health. Applied Sciences, 10(16), 5664. https://doi.org/10.3390/app10165664