Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (301)

Search Parameters:
Keywords = acid-base vapors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1650 KB  
Article
Comparison of the CO2 Balance in Electroslag Reduction of Cadmium with Pyrometallurgical and Hydrometallurgical Recovery Methods
by Ervīns Blumbergs, Michail Maiorov, Artūrs Brēķis, Ernests Platacis, Sergei Ivanov, Jekaterina Nikitina, Artur Bogachov and Vladimir Pankratov
Metals 2025, 15(11), 1197; https://doi.org/10.3390/met15111197 (registering DOI) - 27 Oct 2025
Abstract
This study presents a carbon footprint assessment of a novel electroslag method for cadmium (Cd) recovery from spent nickel–cadmium (Ni-Cd) batteries in comparison with the carbon footprints of pyrometallurgical and hydrometallurgical cadmium recovery methods. A comparison of CO2 emissions in three types [...] Read more.
This study presents a carbon footprint assessment of a novel electroslag method for cadmium (Cd) recovery from spent nickel–cadmium (Ni-Cd) batteries in comparison with the carbon footprints of pyrometallurgical and hydrometallurgical cadmium recovery methods. A comparison of CO2 emissions in three types of technological processes during the recovery of 1 kg of cadmium is carried out. Energy inputs and CO2 emissions are calculated for the electroslag process and compared to conventional methods, such as pyrometallurgical and hydrometallurgical reduction methods. The electroslag process eliminates cadmium vaporization by using molten KCl–NaCl flux and carbon under electromagnetic stirring. Cadmium reduction occurs under a layer of flux, which prevents the contact of the reduced cadmium with the atmosphere. The electroslag process temperature is limited to 700 °C, which is lower than the boiling point of cadmium (767 °C). The electroslag remelting process uses molten KCl–NaCl flux and carbon as a reductant under electrovortex flow stirring. The pyrometallurgical method for extracting cadmium from nickel–cadmium batteries is based on the reduction of cadmium with carbon at high temperatures. In the pyrometallurgical process, coal (anthracite) is used as the carbonaceous material, which can extract 99.92% of cadmium at 900 °C. Cadmium is separated using a vacuum at temperatures ranging from 800 °C to 950 °C for several hours. Hydrometallurgy is a metal extraction process involving chemical reactions that occur in organic or aqueous solutions at low temperatures. The hydrometallurgical process involves a series of acid or alkaline leaches, followed by separation and purification methods such as absorption, cementation, ion exchange, and solvent extraction to separate and concentrate metals from leach solutions. Full article
(This article belongs to the Section Extractive Metallurgy)
Show Figures

Figure 1

19 pages, 4496 KB  
Article
Multilayer pH-Responsive Hydrogels Fabricated via Two-Step Ionic Crosslinking: Towards Advanced Wound Dressing Materials
by Gianluca Ciarleglio, Virginia Clarizia, Elisa Toto and Maria Gabriella Santonicola
Gels 2025, 11(10), 840; https://doi.org/10.3390/gels11100840 - 21 Oct 2025
Viewed by 294
Abstract
The design of hydrogel-based materials for wound care management requires the integration of multiple functionalities, including the capacity to maintain hydration, to prevent infection, and to adapt to the dynamic wound microenvironment. In this study, we fabricated innovative pH-reactive multilayer hydrogel patches based [...] Read more.
The design of hydrogel-based materials for wound care management requires the integration of multiple functionalities, including the capacity to maintain hydration, to prevent infection, and to adapt to the dynamic wound microenvironment. In this study, we fabricated innovative pH-reactive multilayer hydrogel patches based on ionically crosslinked alginate and incorporated with bioactive compounds, including Manuka honey, hyaluronic acid, and Ribes nigrum extract. The multilayer structure is coated with chitosan to improve water affinity and pH response. The patches are designed to respond to variable pH conditions typical of wound environments, with potential applicability to burn wounds. The hydrogel materials are characterized in terms of water content, swelling behavior, and water vapor transmission rate (WVTR). The chitosan-coated multilayer hydrogel exhibited high water uptake (swelling ratio up to 22.11 ± 0.25; water content 95.48 ± 0.05%) and controlled WVTR (~3450–3850 g/m2·day−1), while degradation remained below 42% at pH 8 compared to >80% in single layers. Microstructural analysis is performed via optical microscopy to assess the morphology and uniformity of the multilayer system, while chemical characterization is conducted using Fourier-transform infrared (FTIR) spectroscopy. The results highlight the ability of the designed material to respond to pH variations and to accommodate bioactive agents within a structurally stable and hydrated network, suggesting its suitability for future investigations into controlled release applications. Full article
(This article belongs to the Special Issue Novel Functional Gels for Biomedical Applications (2nd Edition))
Show Figures

Graphical abstract

34 pages, 20406 KB  
Article
Designing Sustainable Packaging Materials: Citric Acid-Modified TPS/PLA Blends with Enhanced Functional and Eco-Performance
by Vesna Ocelić Bulatović, Mario Kovač, Dajana Kučić Grgić, Vilko Mandić and Antun Jozinović
Polymers 2025, 17(19), 2571; https://doi.org/10.3390/polym17192571 - 23 Sep 2025
Viewed by 563
Abstract
Starch extracted from the domestically cultivated Scala potato variety was explored as a renewable resource for the formulation of biodegradable thermoplastic starch (TPS)/polylactic acid (PLA) blends intended for environmentally friendly food packaging applications. The isolated starch underwent comprehensive physicochemical and structural characterization to [...] Read more.
Starch extracted from the domestically cultivated Scala potato variety was explored as a renewable resource for the formulation of biodegradable thermoplastic starch (TPS)/polylactic acid (PLA) blends intended for environmentally friendly food packaging applications. The isolated starch underwent comprehensive physicochemical and structural characterization to assess its suitability for polymer processing. TPS derived from Scala starch was compounded with PLA, both with and without citric acid (CA) as a green compatibilizer to enhance phase compatibility. The resulting polymer blends were systematically analyzed using Fourier-transform infrared spectroscopy with attenuated total reflectance (FTIR–ATR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) to evaluate thermal and structural properties. Mechanical performance, water vapor permeability (WVP), water absorption (WA), and biodegradability in soil over 56 days were also assessed. The incorporation of citric acid improved phase miscibility, leading to enhanced structural uniformity, thermal stability, mechanical strength, and barrier efficiency. Bio-degradation tests confirmed the environmental compatibility of the developed blends. Overall, the results demonstrate the potential of Scala-based TPS/PLA systems, particularly those modified with citric acid, as viable candidates for sustainable food packaging, while highlighting the importance of further formulation optimization to balance functional and biodegradative performance. Full article
(This article belongs to the Special Issue Biodegradable and Biobased Polymers for Sustainable Food Applications)
Show Figures

Graphical abstract

15 pages, 3156 KB  
Article
Bio-Based Aqueous Dispersions Based on Unsaturated PLA Polymers for Barrier Packaging Applications
by Roosa Hämäläinen, Pauliina Kivinen, Rajesh Koppolu, Eetu Nissinen and Adina Anghelescu-Hakala
Polymers 2025, 17(18), 2467; https://doi.org/10.3390/polym17182467 - 12 Sep 2025
Viewed by 577
Abstract
The growing demand for sustainable packaging materials highlights the need for bio-based alternatives to fossil-derived polymers, particularly in barrier applications where reduced environmental impact and recyclability are critical. Poly(lactic acid) is a promising candidate due to its renewable origin and biodegradability, yet its [...] Read more.
The growing demand for sustainable packaging materials highlights the need for bio-based alternatives to fossil-derived polymers, particularly in barrier applications where reduced environmental impact and recyclability are critical. Poly(lactic acid) is a promising candidate due to its renewable origin and biodegradability, yet its application in aqueous dispersion coatings remains underdeveloped. In this study, copolymers were synthesized from L-(+)-lactic acid, itaconic acid, and 1,4-/2,3-butanediol via polycondensation, and a solvent-free thermomechanical method was used to prepare aqueous dispersions from the produced copolymers. The main objective of this study was to identify an optimal composition for the copolymer and dispersion to achieve small and uniformly sized dispersion particles while also assessing the scalability of the process from laboratory to pilot production. The smallest dispersion particles and most uniform size distribution were achieved with a copolymer that had an Mn close to the average (10,180 g mol−1) and a low Tg (−1.4 °C). The grade and dosage of the dispersion stabilizer significantly influenced the particle size and particle size distribution. The process scale-up, including polymer production at pilot scale and dispersion preparation at bench scale, was successfully demonstrated. The water vapor barrier properties of the coated dispersions were promising (<10 g/m2 at 23 °C/50% RH), supporting the potential of aqueous PLA-based dispersions as sustainable barrier coatings. Full article
(This article belongs to the Special Issue Sustainable Polymers for Value Added and Functional Packaging)
Show Figures

Figure 1

17 pages, 1892 KB  
Article
The Use of Collagen Hydrolysate from Chromium Waste in the Optimization of Leather Retanning
by Jan Zarlok, Małgorzata Kowalska and Jerzy Szakiel
Sustainability 2025, 17(17), 7912; https://doi.org/10.3390/su17177912 - 3 Sep 2025
Viewed by 840
Abstract
Leather tanning generates substantial amounts of solid waste and effluents, posing significant environmental challenges due to the presence of hazardous chromium compounds. The aim of this study was to develop and optimize a method for recycling chromium-tanned leather waste by utilizing it as [...] Read more.
Leather tanning generates substantial amounts of solid waste and effluents, posing significant environmental challenges due to the presence of hazardous chromium compounds. The aim of this study was to develop and optimize a method for recycling chromium-tanned leather waste by utilizing it as a raw material in the retanning process. Collagen hydrolysate was extracted from chrome-tanned leather shavings through acid hydrolysis and subsequently incorporated, together with melamine, into novel retanning compositions. The experimental design, based on the Kleeman method, involved varying the hydrolysate content (25%, 30%, 35%) and melamine concentration (2.5%, 3.0%, 3.5%, 4.0%) to assess their impact on the physicochemical properties of retanned wet-blue leathers. An innovative aspect of the study was the integration of the Kateskór computer program, employing the Kleeman experimental planning method, to optimize the formulation of retanning compositions. This computational approach enabled the precise determination of hydrolysate and melamine quantities required to achieve leather properties that meet both producer and consumer expectations. The optimized formulation identified the hydrolysate content in the range of 28.78–29.63% and melamine in the range of 3.61–3.68% as optimal for obtaining leathers with the desired mechanical strength, shrinkage temperature, and water vapor permeability. The study presents a practical model of a circular economy within the leather industry, aligning with the European Green Deal Strategy by promoting resource efficiency and minimizing hazardous waste. The proposed methodology provides a viable pathway for sustainable leather production through waste valorization and process optimization. Full article
(This article belongs to the Special Issue Organic Matter Degradation, Biomass Conversion and CO2 Reduction)
Show Figures

Figure 1

11 pages, 875 KB  
Article
Evidence for a New Oxidation Mechanism for Sulfur Dioxide from Laboratory Measurements
by William R. Stockwell and Rosa M. Fitzgerald
Atmosphere 2025, 16(9), 1000; https://doi.org/10.3390/atmos16091000 - 24 Aug 2025
Viewed by 1004
Abstract
The oxidization of sulfur dioxide (SO2) occurs in the gas and liquid phase and this oxidation contributes to particulate matter and acid precipitation. The production of sulfate particles is significant because of their impact on climate, precipitation acidification, and human health. [...] Read more.
The oxidization of sulfur dioxide (SO2) occurs in the gas and liquid phase and this oxidation contributes to particulate matter and acid precipitation. The production of sulfate particles is significant because of their impact on climate, precipitation acidification, and human health. In this paper, the focus is on the oxidation of SO2 and on the possibility of unknown heterogeneous reactions that may occur on sulfate aerosol surfaces. These results are based on the reanalysis of a foundational set of SO2 laboratory oxidation measurements. The experiments involved two sets of photochemical studies of nitrous acid (HONO), nitrogen oxides (NOx = NO + NO2), SO2, carbon monoxide (CO), and water vapor (H2O) mixtures made in molecular nitrogen (N2) with traces of molecular oxygen or in synthetic air. The reanalysis strongly suggests that there are uncharacterized processes for the oxidation of SO2 that are nearly three times faster than the known gas-phase reactions. The uncharacterized processes may involve sulfate aerosol surface reactions in the presence of nitrogen oxides. If these processes can be included in current atmospheric chemistry models, greater conversion rates of SO2 to sulfate aerosol will be calculated and this may reduce modeling bias. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

17 pages, 3116 KB  
Article
Enhancement of Stability Towards Aging and Soil Degradation Rate of Plasticized Poly(lactic Acid) Composites Containing Ball-Milled Cellulose
by Roberta Capuano, Roberto Avolio, Rachele Castaldo, Mariacristina Cocca, Federico Olivieri, Gennaro Gentile and Maria Emanuela Errico
Polymers 2025, 17(15), 2127; https://doi.org/10.3390/polym17152127 - 1 Aug 2025
Viewed by 600
Abstract
In this study, multicomponent PLA-based biocomposites were developed. In particular, both native fibrous cellulose and cellulose with modified morphology obtained through ball milling treatments were incorporated into the polyester matrix in combination with an oligomeric plasticizer, specifically a lactic acid oligomer (OLA). The [...] Read more.
In this study, multicomponent PLA-based biocomposites were developed. In particular, both native fibrous cellulose and cellulose with modified morphology obtained through ball milling treatments were incorporated into the polyester matrix in combination with an oligomeric plasticizer, specifically a lactic acid oligomer (OLA). The resulting materials were analyzed in terms of their morphology, thermal and mechanical properties over time, water vapor permeability, and degradation under soil burial conditions in comparison to neat PLA and unplasticized PLA/cellulose composites. The cellulose phase significantly affected the mechanical properties and enhanced their long-term stability, addressing a common limitation of PLA/plasticizer blends. Additionally, water vapor permeability increased in all composites. Finally, the ternary systems exhibited a significantly higher degradation rate in soil burial conditions compared to PLA, evidenced by larger weight loss and reduction in the molecular weight of the PLA phase. The degradation rate was notably influenced by the morphology of the cellulose phase. Full article
(This article belongs to the Special Issue Functional Polymer Composites: Synthesis and Application)
Show Figures

Graphical abstract

16 pages, 4215 KB  
Article
Ag/TA@CNC Reinforced Hydrogel Dressing with Enhanced Adhesion and Antibacterial Activity
by Jiahao Yu, Junhao Liu, Yicheng Liu, Siqi Liu, Zichuan Su and Daxin Liang
Gels 2025, 11(8), 591; https://doi.org/10.3390/gels11080591 - 31 Jul 2025
Cited by 2 | Viewed by 751
Abstract
Developing multifunctional wound dressings with excellent mechanical properties, strong tissue adhesion, and efficient antibacterial activity is crucial for promoting wound healing. This study prepared a novel nanocomposite hydrogel dressing based on sodium alginate-polyacrylic acid dual crosslinking networks, incorporating tannic acid-coated cellulose nanocrystals (TA@CNC) [...] Read more.
Developing multifunctional wound dressings with excellent mechanical properties, strong tissue adhesion, and efficient antibacterial activity is crucial for promoting wound healing. This study prepared a novel nanocomposite hydrogel dressing based on sodium alginate-polyacrylic acid dual crosslinking networks, incorporating tannic acid-coated cellulose nanocrystals (TA@CNC) and in-situ reduced silver nanoparticles for multifunctional enhancement. The rigid CNC framework significantly improved mechanical properties (elastic modulus of 146 kPa at 1 wt%), while TA catechol groups provided excellent adhesion (36.4 kPa to pigskin, 122% improvement over pure system) through dynamic hydrogen bonding and coordination interactions. TA served as a green reducing agent for uniform AgNPs loading, with CNC negative charges preventing particle aggregation. Antibacterial studies revealed synergistic effects between TA-induced membrane disruption and Ag+-triggered reactive oxygen species generation, achieving >99.5% inhibition against Staphylococcus aureus and Escherichia coli. The TA@CNC-regulated porous structure balanced swelling performance and water vapor transmission, facilitating wound exudate management and moist healing. This composite hydrogel successfully integrates mechanical toughness, tissue adhesion, antibacterial activity, and biocompatibility, providing a novel strategy for advanced wound dressing development. Full article
(This article belongs to the Special Issue Recent Research on Medical Hydrogels)
Show Figures

Figure 1

20 pages, 2032 KB  
Article
Active Packaging Based on Hydroxypropyl Methyl Cellulose/Fungal Chitin Nanofibers Films for Controlled Release of Ferulic Acid
by Gustavo Cabrera-Barjas, Maricruz González, Sergio Benavides-Valenzuela, Ximena Preza, Yeni A. Paredes-Padilla, Patricia Castaño-Rivera, Rodrigo Segura, Esteban F. Durán-Lara and Aleksandra Nesic
Polymers 2025, 17(15), 2113; https://doi.org/10.3390/polym17152113 - 31 Jul 2025
Cited by 1 | Viewed by 1148
Abstract
In recent years, active packaging has become a focal point of research and development in the food industry, driven by increasing consumer demand for safe, high-quality, and sustainable food products. In this work, solvent casting processed an active antibacterial multicomponent film based on [...] Read more.
In recent years, active packaging has become a focal point of research and development in the food industry, driven by increasing consumer demand for safe, high-quality, and sustainable food products. In this work, solvent casting processed an active antibacterial multicomponent film based on hydroxypropyl methylcellulose incorporated with ferulic acid and chitin nanofibers. The influences of ferulic acid and different content of chitin nanofibers on the structure, thermal, mechanical, and water vapor stability and antioxidant and antibacterial efficiency of films were studied. It was shown that the inclusion of only ferulic acid did not significantly influence the mechanical, water vapor, and thermal stability of films. In addition, films containing only ferulic acid did not display antibacterial activity. The optimal concentration of chitin nanofibers in hydroxypropyl methylcellulose–ferulic acid films was 5 wt%, providing a tensile strength of 15 MPa, plasticity of 52%, and water vapor permeability of 0.94 × 10−9 g/m s Pa. With further increase of chitin nanofibers content, films with layered and discontinuous phases are obtained, which negatively influence tensile strength and water vapor permeability. Moreover, only films containing both ferulic acid and chitin nanofibers demonstrated antibacterial activity toward E. coli and S. aureus, suggesting that the presence of fibers allows easier release of ferulic acid from the matrix. These results imply that the investigated three-component systems have potential applicability as sustainable active food packaging materials. Full article
Show Figures

Figure 1

12 pages, 11599 KB  
Article
Dual pH- and Temperature-Responsive Fluorescent Hybrid Materials Based on Carbon Dot-Grafted Triamino-Tetraphenylethylene/N-Isopropylacrylamide Copolymers
by Huan Liu, Yuxin Ding, Longping Zhou, Shirui Xu and Bo Liao
C 2025, 11(3), 53; https://doi.org/10.3390/c11030053 - 22 Jul 2025
Viewed by 736
Abstract
Carbon dots (CDs), a class of carbon-based fluorescent nanomaterials, have garnered significant attention due to their tunable optical properties and functional versatility. In this study, we developed a hybrid material by grafting pH- and temperature-responsive copolymers onto CDs via reversible addition-fragmentation chain-transfer (RAFT) [...] Read more.
Carbon dots (CDs), a class of carbon-based fluorescent nanomaterials, have garnered significant attention due to their tunable optical properties and functional versatility. In this study, we developed a hybrid material by grafting pH- and temperature-responsive copolymers onto CDs via reversible addition-fragmentation chain-transfer (RAFT) polymerization. Triamino-tetraphenylethylene (ATPE) and N-isopropylacrylamide (NIPAM) were copolymerized at varying ratios and covalently linked to CDs, forming a dual-responsive system. Structural characterization using FTIR, 1H NMR, and TEM confirmed the successful grafting of the copolymers onto CDs. The hybrid material exhibited pH-dependent fluorescence changes in acidic aqueous solutions, with emission shifting from 450 nm (attributed to CDs) to 500 nm (aggregation-induced emission, AIE, from ATPE) above a critical pH threshold. Solid films of the hybrid material demonstrated reversible fluorescence quenching under HCl vapor and recovery/enhancement under NH3 vapor, showing excellent fatigue resistance over multiple cycles. Temperature responsiveness was attributed to the thermosensitive poly(NIPAM) segments, with fluorescence intensity increasing above 35 °C due to polymer chain collapse and ATPE aggregation. This work provides a strategy for designing multifunctional hybrid materials with potential applications in recyclable optical pH/temperature sensors. Full article
Show Figures

Graphical abstract

19 pages, 5729 KB  
Article
Highly Engineered Cr-In/H-SSZ-39 Catalyst for Enhanced Performance in CH4-SCR of NOx
by Jiuhu Zhao, Jingjing Jiang, Guanyu Chen, Meng Wang, Xiaoyuan Zuo, Yanjiao Bi and Rongshu Zhu
Molecules 2025, 30(13), 2691; https://doi.org/10.3390/molecules30132691 - 21 Jun 2025
Viewed by 582
Abstract
The selective catalytic reduction of NOx with CH4 (CH4-SCR) holds the potential to simultaneously abate harmful NOx and CH4 greenhouse gases. In this study, a series of bimetallic M-In/H-SSZ-39 catalysts (where M represents Cr, Co, Ce, and [...] Read more.
The selective catalytic reduction of NOx with CH4 (CH4-SCR) holds the potential to simultaneously abate harmful NOx and CH4 greenhouse gases. In this study, a series of bimetallic M-In/H-SSZ-39 catalysts (where M represents Cr, Co, Ce, and Fe) were prepared via an ion exchange method and subsequently evaluated for their CH4-SCR activity. The influences of the preparation parameters, including the metal ion concentration and calcination temperature, as well as the operating conditions, such as the CH4/NO ratio, O2 concentration, water vapor content, and gas hourly space velocity (GHSV), on the catalytic activity of the optimal Cr-In/H-SSZ-39 catalyst were meticulously examined. The results revealed that the Cr-In/H-SSZ-39 catalyst exhibited peak CH4-SCR catalytic performance when the Cr(NO3)3 concentration was 0.0075 M, the In(NO3)3 concentration was 0.066 M, and the calcination temperature was 500 °C. Under optimal operating conditions, namely GHSV of 10,000 h−1, 400 ppm NO, 800 ppm CH4, 15 vol% O2, and 6 vol% H2O, the NOx conversion rate reached 93.4%. To shed light on the excellent performance of Cr-In/H-SSZ-39 under humid conditions, a comparative analysis of the crystalline phase, chemical composition, pore structure, surface chemical state, surface acidity, and redox properties of Cr-In/H-SSZ-39 and In/H-SSZ-39 was conducted. The characterization results indicated that the incorporation of Cr into In/H-SSZ-39 enhanced its acidity and also facilitated the generation of InO+ active species, which promoted the oxidation of NO and the activation of CH4, respectively. A synergistic effect was observed between Cr and In species, which significantly improved the redox properties of the catalyst. Consequently, the activated CH4 could further interact with InO+ to produce carbon-containing intermediates such as HCOO, which ultimately reacted with nitrate-based intermediates to yield N2, CO2, and H2O. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis for Sustainability and Carbon-Neutrality)
Show Figures

Figure 1

16 pages, 2588 KB  
Article
Removal of a Mixture of Pollutants in Air Using a Pilot-Scale Planar Reactor: Competition Effect on Mineralization
by Ahmed Amin Touazi, Mabrouk Abidi, Nacer Belkessa, Mohamed-Aziz Hajjaji, Walid Elfalleh and Amine Aymen Assadi
Catalysts 2025, 15(6), 595; https://doi.org/10.3390/catal15060595 - 16 Jun 2025
Viewed by 512
Abstract
This study investigated the remediation of organic acid pollutants, specifically butyric acid (C4H8O) and valeric acid (C5H10O2), as well as their binary mixtures in the vapor phase at various ratios. The remediation process [...] Read more.
This study investigated the remediation of organic acid pollutants, specifically butyric acid (C4H8O) and valeric acid (C5H10O2), as well as their binary mixtures in the vapor phase at various ratios. The remediation process involved the use of a continuous pilot-scale reactor. A TiO2 catalyst was deposited on glass fiber tissue (GFT) and ultraviolet (UV) irradiation with an intensity of 20 W/m2. The main objective of this study was to assess the effectiveness of the photocatalytic process by oxidizing and mineralizing a mixture of carboxylic acids in a rectangular reactor at pilot scale. This was achieved by calculating the removal efficiency and the selectivity of CO2 (SCO2). Each individual compound was treated separately, followed by the treatment of binary mixtures with molar fractions of 0.25, 0.5, and 0.75. The concentration of pollutants at the inlet varied between 50, 100, 150, and 200 mg/m3, while the flowrate ranged from 2 to 6 m3/h. The obtained results for the removal efficiency of butyric acid, the binary acid mixture (25% butyric acid + 75% valeric acid), and valeric acid were satisfactory, with percentages of 58%, 32%, and 41%, respectively. It is evident that the selectivity toward CO2 is better for butyric acid compared to valeric acid and the binary carboxylic acid mixture, with values of 43.70%, 33.49%, and 21.96%, respectively, across all concentrations. A simulation model based on mass transfer and catalytic oxidation mechanisms was developed and successfully validated against the experimental data for each pollutant. Reusability tests conducted on the TiO2 on GFT, both in its initial (clean) state and after 50 h of the photocatalytic treatment of butyric acid, showed a 15% decrease in photocatalytic efficiency. Full article
Show Figures

Figure 1

25 pages, 6135 KB  
Article
Enhancement of Polyvinyl Alcohol-Based Films by Chemically Modified Lignocellulosic Nanofibers Derived from Bamboo Shoot Shells
by Jingjing Du, Jianlong Guo, Qian Zhu, Jiagang Guo, Jiayu Gu, Yuhan Wu, Ling Ren, Song Yang and Jian Jiang
Polymers 2025, 17(11), 1571; https://doi.org/10.3390/polym17111571 - 5 Jun 2025
Cited by 2 | Viewed by 864
Abstract
In this study, polyvinyl alcohol (PVA) films were reinforced with lignocellulosic nanofibers (LCNFs) extracted from bamboo shoot shells using a choline chloride-based deep eutectic solvent (DES). A filler loading of 10 wt% was identified as the optimal condition for enhancing film performance. To [...] Read more.
In this study, polyvinyl alcohol (PVA) films were reinforced with lignocellulosic nanofibers (LCNFs) extracted from bamboo shoot shells using a choline chloride-based deep eutectic solvent (DES). A filler loading of 10 wt% was identified as the optimal condition for enhancing film performance. To improve interfacial compatibility between the PVA matrix and LCNFs, three surface modification treatments were applied to the nanofibers: hydrochloric acid (HCl) hydrolysis, citric acid (CA) crosslinking, and a dual modification combining both methods (HCl&CA). Among all formulations, films incorporating dual-modified LCNF at 10 wt% loading exhibited the most significant improvements. Compared to neat PVA, these composites showed a 79.2% increase in tensile strength, a 15.1% increase in elongation at break, and a 33.1% enhancement in Young’s modulus. Additionally, thermal stability and barrier properties were improved, while water swelling and solubility were reduced. Specifically, the modified films achieved a thermal residue of 9.21% and the lowest degradation rate of 10.81%/min. Water vapor transmission rate and oxygen permeability decreased by 18.8% and 18.6%, respectively, and swelling and solubility dropped to 14.26% and 3.21%. These results highlight the synergistic effect of HCl hydrolysis and CA crosslinking in promoting uniform filler dispersion and strong interfacial adhesion, offering an effective approach to valorizing bamboo shoot shell waste into high-performance, eco-friendly packaging materials. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

17 pages, 2829 KB  
Article
Hybrid Adhesive Hydrogel Patch Containing Genipin-Crosslinked Gelatin–Hyaluronic Acid for Future Use in Atopic Dermatitis
by Nurul Ain Zawawi, Manira Maarof, Nur Izzah Md Fadilah, Daniel Looi Qi Hao, Yasuhiko Tabata and Mh Busra Fauzi
J. Funct. Biomater. 2025, 16(6), 195; https://doi.org/10.3390/jfb16060195 - 26 May 2025
Cited by 4 | Viewed by 2298
Abstract
Hydrogel patches have gained significant attention in wound healing applications as they are similar to hydrogel dressings due to their moisture-retentive properties, biocompatibility, and ability to promote tissue regeneration. In this study, gelatin-based hydrogels crosslinked with genipin and incorporated with hyaluronic acid (HA) [...] Read more.
Hydrogel patches have gained significant attention in wound healing applications as they are similar to hydrogel dressings due to their moisture-retentive properties, biocompatibility, and ability to promote tissue regeneration. In this study, gelatin-based hydrogels crosslinked with genipin and incorporated with hyaluronic acid (HA) were developed to enhance mechanical stability, swelling behavior, and structural integrity. Fourier transform infrared (FTIR), thermogravimetric (TGA), and energy-dispersive X-ray (EDX) analyses were conducted and confirmed successful crosslinking and good thermal stability, ensuring hydrogel durability under physiological conditions. The optimized hydrogel (GE_HA_GNP) exhibited a sufficient water vapor transmission rate (WVTR), swelling ratio, and contact angle, allowing for effective wound exudate absorption and hydration maintenance, which is essential for accelerated healing. The findings demonstrate that the crosslinked hydrogels were able to maintain a WVTR of 500 to 1500 gm−2 day−1, a contact angle of >40°, and a swelling ratio of 700–1000%. The combination of genipin as a crosslinker and the addition of HA significantly improved the mechanical properties and biocompatibility of the hydrogels, making them promising candidates for an alternative treatment for atopic dermatitis and a potential wound dress-ing. Furthermore, the hydrogel patches show potential for future drug delivery appli-cations, with further studies required to evaluate their antimicrobial properties and long-term clinical performance. Full article
(This article belongs to the Section Biomaterials and Devices for Healthcare Applications)
Show Figures

Figure 1

24 pages, 4064 KB  
Article
Active Pectin/Carboxymethylcellulose Composite Films for Bread Packaging
by Lavinia Doveri, Yuri Antonio Diaz Fernandez, Giacomo Dacarro, Pietro Grisoli, Chiara Milanese, Maria Urena, Nicolas Sok, Thomas Karbowiak and Piersandro Pallavicini
Molecules 2025, 30(11), 2257; https://doi.org/10.3390/molecules30112257 - 22 May 2025
Viewed by 1277
Abstract
A new active composite film intended for bread packaging is described here. The active film has the aim of prolonging bread’s shelf life while avoiding the use of nanoparticles that, with very few exceptions, are a type of material not allowed by regulatory [...] Read more.
A new active composite film intended for bread packaging is described here. The active film has the aim of prolonging bread’s shelf life while avoiding the use of nanoparticles that, with very few exceptions, are a type of material not allowed by regulatory agencies like EFSA (European Food Safety Agency) and FDA (US Food and Drug Administration) in food contact materials. Moreover, the increasing consumer demand for natural and wholesome products, possibly “clean label”, and packaged in natural, non-petroleum-based materials has been taken into consideration. Accordingly, precursor materials from renewable sources were used to prepare the active film: pectin from citrus peel (PEC) and carboxymethyl cellulose (CMC) were used as the matrix, with oleic acid (OA) as plasticizer. Moreover, the bread preservative calcium propionate (CaP) was used as the crosslinker, and also zeolite microparticles loaded with silver ions (AgZ) were added to the films as an additional antimold agent. This strategy allows us to avoid the addition to bread of the now commonly used preservatives ethanol and calcium propionate, moving the latter to the packaging. Permeance measurements revealed excellent barrier properties against O2 and CO2, while the typical high water vapor permeance of polysaccharide films was mitigated by the non-hydrophilic OA plasticizer. Moreover, the quantities of Ag+ and CaP released in bread are low and below the limits imposed by regulatory agencies. The antimold activity of the films is excellent, with Aspergillus niger, Penicillium janthinellum, and wild-type Penicillim molds reduction on bread in the 99.20–99.95% range for the films containing only CaP and in the 99.97–99.998% range for the films containing both CaP and AgZ. Finally, the rheological properties of the film-forming solutions were investigated, demonstrating their potential application as coatings on natural packaging materials for bread, such as paper. Full article
(This article belongs to the Special Issue Advances in Polymer Materials Based on Lignocellulosic Biomass)
Show Figures

Figure 1

Back to TopTop