Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = acid treated kaolin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5724 KB  
Article
Mercury Removal and Antibacterial Performance of A TiO2–APTES Kaolin Composite
by Awal Adava Abdulsalam, Sabina Khabdullina, Zhamilya Sairan, Yersain Sarbassov, Madina Pirman, Dilnaz Amrasheva, George Z. Kyzas, Tri Thanh Pham, Elizabeth Arkhangelsky and Stavros G. Poulopoulos
Sustain. Chem. 2025, 6(4), 48; https://doi.org/10.3390/suschem6040048 - 1 Dec 2025
Viewed by 1108
Abstract
Mercury (Hg2+) contamination in water systems poses a severe environmental and health hazard due to its high toxicity and bioaccumulation potential. In this study, a novel adsorbent was developed by sequentially modifying kaolin via acid–base treatment, titanium dioxide (TiO2) [...] Read more.
Mercury (Hg2+) contamination in water systems poses a severe environmental and health hazard due to its high toxicity and bioaccumulation potential. In this study, a novel adsorbent was developed by sequentially modifying kaolin via acid–base treatment, titanium dioxide (TiO2) incorporation, and 3-aminopropyltriethoxysilane (APTES) grafting. Batch adsorption experiments revealed that the fully modified kaolin (TiO2-loaded and APTES grafted) exhibited the highest adsorption capacity (25.6 mg/g) compared to the acid–base-treated (5.8 mg/g) and TiO2-loaded (17.7 mg/g) kaolin. Under optimal conditions (75 mg adsorbent dosage; 70 mg/L Hg2+; pH 5), the fully modified kaolin maintained its performance even in the presence of varying ionic strengths, natural organic matter, and competing metal ions. Adsorption kinetics followed a pseudo-second-order model, and the equilibrium data were well fitted by the Langmuir isotherm. Antibacterial activity assay revealed that the TiO2-loaded kaolin effectively inhibited S. aureus (minimum inhibitory concentration = 2.5 mg/mL) and showed moderate activity against E. coli (BL21) (minimum inhibitory concentration = 5 mg/mL). However, antibacterial activity decreased after amine functionalization, indicating a compromise between enhancing adsorption capacity and preserving antibacterial functionality. This study presents a promising cost-efficient approach for the simultaneous removal of Hg2+ ions from water matrices and inhibiting bacterial growth, aligning with SDG 6 (Clean Water and Sanitation). Full article
Show Figures

Graphical abstract

23 pages, 2648 KB  
Article
Efficacy Evaluation of Different Mineral Clay Particles on Olive Production Traits and Olive Oil Quality of ‘Koroneiki’ Olive Cultivar Under Rainfed and Irrigated Conditions in Southern Greece
by Petros Anargyrou Roussos, Asimina-Georgia Karyda, Panagiotis Kapasouris, Panagiota G. Kosmadaki, Chrysa Kotsi and Maria Zoti
Horticulturae 2025, 11(6), 579; https://doi.org/10.3390/horticulturae11060579 - 24 May 2025
Cited by 2 | Viewed by 1648
Abstract
Climate crisis in the Mediterranean region has severely affected olive tree cultivation, especially due to the long, dry summers, when temperature often rises above 40 °C. In order to overcome such climate challenges in the olive sector, the particle film technology (PFT) was [...] Read more.
Climate crisis in the Mediterranean region has severely affected olive tree cultivation, especially due to the long, dry summers, when temperature often rises above 40 °C. In order to overcome such climate challenges in the olive sector, the particle film technology (PFT) was used, as an environmentally friendly alleviation technique, due mainly to the reflecting properties of clay materials. Three clay materials—attapulgite, talc, and kaolin—were applied foliarly to olive trees (both rainfed and irrigated) in July and August. At harvest, yield and oil production per tree were assessed, alongside olive oil quality and functional properties. Under irrigated conditions, trees treated with kaolin or talc in July exhibited the highest yields, whereas under rainfed conditions, trees treated with attapulgite in August, followed by those treated with talc in August, showed the greatest yields. Oil production exceeded that of controls in rainfed trees across nearly all clay treatments. Oils from irrigated trees treated with talc in August and rainfed trees treated with talc in July exhibited high phenolic content, though antioxidant capacity peaked in oils from trees treated with talc in August. These oils, along with those from trees treated with attapulgite in August, contained the highest concentrations of hydroxytyrosol and oleacein. In rainfed trees, most clay treatments resulted in oils with elevated oleic acid (C18:1) and reduced linoleic acid levels, yielding a high monounsaturated-to-polyunsaturated fatty acid ratio. In irrigated groves, August applications produced oils with distinct differences from controls, whereas in rainfed conditions, these differences were evident regardless of application timing. Clay materials offer a promising approach for mitigating abiotic stress under Mediterranean summer conditions; however, further research is needed to elucidate their mechanisms of action. This study represents the first report of foliar attapulgite application in plants and talc application in olive trees. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

9 pages, 248 KB  
Article
Effects of the 5-Hydroxytryptamine 3 Receptor Antagonist Palonosetron on Hemostasis: An In Vitro Study Using Thromboelastography
by Hyun-Jung Shin, Bon-Wook Koo, Ji-Na Kim, Ji-In Park and Hyo-Seok Na
Medicina 2025, 61(4), 682; https://doi.org/10.3390/medicina61040682 - 8 Apr 2025
Viewed by 662
Abstract
Background and Objectives: Serotonin modulates platelet aggregation and secretion, but its role in hemostasis remains controversial. This study hypothesized that the 5-HT3 receptor antagonist palonosetron may inhibit platelet function and aimed to evaluate its effects on blood coagulation using thromboelastography (TEG). [...] Read more.
Background and Objectives: Serotonin modulates platelet aggregation and secretion, but its role in hemostasis remains controversial. This study hypothesized that the 5-HT3 receptor antagonist palonosetron may inhibit platelet function and aimed to evaluate its effects on blood coagulation using thromboelastography (TEG). Materials and Methods: Blood samples from 11 healthy volunteers were treated with palonosetron at concentrations of 25, 250, and 2500 ng/mL. Untreated samples served as controls. Coagulation parameters were assessed using global hemostasis (citrated kaolin, citrated rapid TEG, citrated kaolin with heparinase, and citrated functional fibrinogen) and PlateletMapping (adenosine diphosphate [ADP], arachidonic acid, and others) assays. Results: In the global hemostasis assay, maximum amplitude values, reflecting clot strength, decreased with increasing palonosetron concentrations in all tests, including citrated kaolin (p = 0.031), citrated rapid TEG (p = 0.001), citrated kaolin with heparinase (p = 0.033), and citrated functional fibrinogen (p = 0.011). The PlateletMapping assay showed significant reductions in ADP-induced platelet aggregation (p = 0.001), with the largest inhibition observed at 2500 ng/mL (p = 0.007). Despite these changes, all values remained within normal reference ranges. Conclusions: Palonosetron induces hypocoagulable trends in vitro by inhibiting platelet function and fibrinogen-mediated clot strength. However, these changes are unlikely to result in clinically significant hemostatic impairment when used within therapeutic doses. Further research is warranted to confirm these findings and explore their clinical relevance. Full article
(This article belongs to the Section Intensive Care/ Anesthesiology)
23 pages, 3927 KB  
Article
Anti-Hail Shading Net and Kaolin Application: Protecting Grape Production to Ensure Grape Quality in Mediterranean Vineyards
by Luca Pallotti, Edoardo Dottori, Tania Lattanzi, Vania Lanari, Luca Brillante and Oriana Silvestroni
Horticulturae 2025, 11(2), 110; https://doi.org/10.3390/horticulturae11020110 - 21 Jan 2025
Cited by 6 | Viewed by 3152
Abstract
Rising temperatures due to climate change pose a significant threat to viticulture, intensifying summer heat stress and accelerating berry ripening. Additionally, the increasing frequency of extreme weather events, such as hailstorms, further jeopardizes the sustainability of the viticultural sector. In recent years, mitigating [...] Read more.
Rising temperatures due to climate change pose a significant threat to viticulture, intensifying summer heat stress and accelerating berry ripening. Additionally, the increasing frequency of extreme weather events, such as hailstorms, further jeopardizes the sustainability of the viticultural sector. In recent years, mitigating these impacts has become crucial for grape production, particularly in Mediterranean regions. This study compares two mitigation strategies—using an anti-hail shading net (S) and kaolin spraying (K)—with untreated control vines (C) over three growing seasons. Vine physiology, berry ripening, grape production and pruning weight were evaluated. The S treatment significantly reduced light interception in the fruiting zone and, while limiting gas exchange, improved vine performance during extreme heat. The K treatment alleviated heat stress and enhanced the photosynthetic activity. Both S and K treatments improved grape quality by maintaining higher acidity levels and lower sugar concentrations and pH. Additionally, both treatments reduced the incidence of fungal diseases, with the net providing added protection against hailstorms. No significant changes in pruning weight were observed, and the treated vines showed a better balance between vegetative growth and production. In conclusion, both kaolin and shading nets are effective techniques for addressing the challenges of climate change, enhancing vine resilience and ensuring high-quality grape production. Full article
(This article belongs to the Special Issue Orchard Management: Strategies for Yield and Quality)
Show Figures

Graphical abstract

17 pages, 3709 KB  
Article
Cytogenetic and Molecular Effects of Kaolin’s Foliar Application in Grapevine (Vitis vinifera L.) under Summer’s Stressful Growing Conditions
by Ana Carvalho, Lia-Tânia Dinis, Ana Luzio, Sara Bernardo, José Moutinho-Pereira and José Lima-Brito
Genes 2024, 15(6), 747; https://doi.org/10.3390/genes15060747 - 6 Jun 2024
Cited by 3 | Viewed by 1663
Abstract
Grapevine varieties from “Douro Superior” (NE Portugal) experience high temperatures, solar radiation, and water deficit during the summer. This summer’s stressful growing conditions induce nucleic acids, lipids, and protein oxidation, which cause cellular, physiological, molecular, and biochemical changes. Cell cycle anomalies, mitosis delay, [...] Read more.
Grapevine varieties from “Douro Superior” (NE Portugal) experience high temperatures, solar radiation, and water deficit during the summer. This summer’s stressful growing conditions induce nucleic acids, lipids, and protein oxidation, which cause cellular, physiological, molecular, and biochemical changes. Cell cycle anomalies, mitosis delay, or cell death may occur at the cellular level, leading to reduced plant productivity. However, the foliar application of kaolin (KL) can mitigate the impact of abiotic stress by decreasing leaf temperature and enhancing antioxidant defence. Hence, this study hypothesised that KL-treated grapevine plants growing in NE Portugal would reveal, under summer stressful growing conditions, higher progression and stability of the leaf mitotic cell cycle than the untreated (control) plants. KL was applied after veraison for two years. Leaves, sampled 3 and 5 weeks later, were cytogenetically, molecularly, and biochemically analysed. Globally, integrating these multidisciplinary data confirmed the decreased leaf temperature and enhanced antioxidant defence of the KL-treated plants, accompanied by an improved regularity and completion of the leaf cell cycle relative to the control plants. Nevertheless, the KL efficacy was significantly influenced by the sampling date and/or variety. In sum, the achieved results confirmed the hypothesis initially proposed. Full article
(This article belongs to the Special Issue DNA Damage Repair and Plant Stress Response)
Show Figures

Figure 1

22 pages, 5413 KB  
Article
Adsorbent Biomaterials Based on Natural Clays and Orange Peel Waste for the Removal of Anionic Dyes from Water
by Sonia Mihai, Andreea Bondarev, Cătalina Călin and Elena-Emilia Sȋrbu
Processes 2024, 12(5), 1032; https://doi.org/10.3390/pr12051032 - 19 May 2024
Cited by 11 | Viewed by 2733
Abstract
This study demonstrates the efficient removal of Alizarin Yellow R anionic dye (AY) from aqueous solutions using green adsorbents. Natural kaolin clay (A1), acid-modified natural clay (A2), chemically treated orange peel (C1) and biochar produced by the thermal treatment of orange peel (C2) [...] Read more.
This study demonstrates the efficient removal of Alizarin Yellow R anionic dye (AY) from aqueous solutions using green adsorbents. Natural kaolin clay (A1), acid-modified natural clay (A2), chemically treated orange peel (C1) and biochar produced by the thermal treatment of orange peel (C2) were tested for the adsorption of AY. The characteristics of the sorbents were determined by instrumental methods: SEM, EDS, FTIR, BET and TGA. The adsorption experiments were performed under different conditions, including the initial AY dye concentration, adsorbent weight, pH, temperature and contact time. The maximum adsorption capacities had values between 15.72 and 74.62 mg/g at 298 K and the optimal pH of 6.5 at initial concentrations ranging from 30 to 70 mg/L for all adsorbents. The equilibrium data were used for the adsorption isotherm models: Freundlich, Langmuir and Temkin. The Freundlich model fit best for the adsorbents A2, C1 and C2, and the Langmuir isotherm had the highest regression value for the adsorbent A1 (R2 = 0.9935). Thermodynamic parameters indicated the spontaneous and favorable adsorption process of AY. A study of the adsorption kinetics proved that they best fit the pseudo-second-order model, with the highest coefficients of determination (R2), outperforming the pseudo-first-order model. The results of this study indicate the potential for the valorization of locally available clays and orange peel waste in the purification processes of water. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

19 pages, 6614 KB  
Article
A Study on the Adsorption of Methylene Blue by Acid-Modified Coal Measures Kaolin
by Xiaoling Ren, Xinqian Shu, Weiguo Geng, Peng Li and Yane Xu
Processes 2024, 12(4), 773; https://doi.org/10.3390/pr12040773 - 12 Apr 2024
Cited by 10 | Viewed by 2088
Abstract
In this paper, coal measure kaolin after flotation decarburization was made into an adsorbent by ball milling and acid modification to absorb methylene blue in water, achieving the treatment of waste with waste. The objective of this paper is to expand the application [...] Read more.
In this paper, coal measure kaolin after flotation decarburization was made into an adsorbent by ball milling and acid modification to absorb methylene blue in water, achieving the treatment of waste with waste. The objective of this paper is to expand the application of coal measure kaolin, reduce its stock, and lower the raw material cost of adsorbents while treating wastewater containing methylene blue. The optimum milling time, acid boiling conditions, and adsorption conditions were investigated. Furthermore, the adsorption mechanism was investigated by kinetic calculation. The results show that the optimum milling time is 7 h. Relatively good acid modification conditions include a boiling temperature of 100 °C, a stirring time of 135 min, a stirring speed of 1000 r·min−1, and a concentration of hydrochloric acid of 8 mol·L−1. When 0.05 g of flotation kaolin adsorbent was used to adsorb the solution with pH 12 and a methylene blue concentration of 100 mg·L−1, the optimal adsorption conditions were a 38.05 °C adsorption temperature, a 160 r·min−1 stirring speed, and a 31.02 min stirring time. Under these optimal conditions, the adsorption quantity reached 39.92 mg·g−1. The adsorption process involves physical adsorption and spontaneous adsorption. The adsorption type is known as the quasi-second-order adsorption kinetic model. The adsorption form is heterogeneous adsorption in which a monolayer and a multi-molecular layer coexist. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

18 pages, 5058 KB  
Article
Synthesis of Polyaluminum Chloride Coagulant from Waste Aluminum Foil and Utilization in Petroleum Wastewater Treatment
by Hanan H. Youssef, Sherif A. Younis, Esraa M. El-Fawal, Hager R. Ali, Yasser M. Moustafa and Gehad G. Mohamed
Separations 2023, 10(11), 570; https://doi.org/10.3390/separations10110570 - 15 Nov 2023
Cited by 9 | Viewed by 8357
Abstract
This work investigates the potential synthesis of cost-effective polyaluminum chloride (PACl) coagulant from waste household aluminum foil and utilization for treating petroleum wastewater (PWW), especially dissolved organic compounds (DOC, like octanol–water mixture) and nonsettleable suspended (NSS-kaolin) mineral particles. Based on the Standard Practice [...] Read more.
This work investigates the potential synthesis of cost-effective polyaluminum chloride (PACl) coagulant from waste household aluminum foil and utilization for treating petroleum wastewater (PWW), especially dissolved organic compounds (DOC, like octanol–water mixture) and nonsettleable suspended (NSS-kaolin) mineral particles. Based on the Standard Practice for Coagulation–Flocculation Jar Test, the efficiency of PACl for DOC and NSS removal was evaluated in relation to the effects of the operational parameters. The results demonstrated that the as-prepared PACl has an amorphous morphology with a Keggin-type e-Al13 molecular structure {Na[AlO4(OH)24(H2O)]·xH2O and good thermal stability up to 278 °C. PACl coagulant also exhibited a higher efficiency for NSS removal than DOC by around 1.5- to 1.9-fold under broad pH (5–7), while a higher acidic/alkaline pH disrupts the sweep floc formation. An increased PACl dosage (over 25 mg/L) also caused a decrease in the coagulation efficiency by 11.7% due to Al species’ transformation and pH depression (from 6.8 to 4.9) via increased PACl hydrolysis. With a fast rotating speed of 280 rpm for 2 min, the minimum dose of PACl (10–25 mg/L) can maximize the removal efficiency of NSS (~98%) and DOC (~69%) at pH 6.5 ± 0.5 and 35 °C after 30 min of settling time. Treating actual saline PWW samples (salinity up to 187.7 g/L) also verified the high efficacy of PACl coagulation performance in reducing the turbidity and dissolved hydrocarbons by more than 75.5% and 67.7%, respectively. These findings verify the techno-economic feasibility of the as-prepared PACl coagulant in treating PWW treatment at different salinity levels. Full article
(This article belongs to the Special Issue Advances in Materials for Separations: Energy and Environment)
Show Figures

Figure 1

19 pages, 4603 KB  
Article
Role of Titanium Dioxide-Immobilized PES Beads in a Combined Water Treatment System of Tubular Alumina Microfiltration and PES Beads
by Sungtaek Hong, Sungwoo Park and Jin Yong Park
Membranes 2023, 13(9), 757; https://doi.org/10.3390/membranes13090757 - 25 Aug 2023
Cited by 1 | Viewed by 1634
Abstract
The membrane process has a limit to the decay of various pollutants in water. To improve the problem, the roles of backwashing media and titanium dioxide (TiO2) photocatalyst-immobilized-polyethersulfone (PES) beads’ concentration were investigated in a combined system of tubular alumina MF [...] Read more.
The membrane process has a limit to the decay of various pollutants in water. To improve the problem, the roles of backwashing media and titanium dioxide (TiO2) photocatalyst-immobilized-polyethersulfone (PES) beads’ concentration were investigated in a combined system of tubular alumina MF and the PES beads for advanced drinking water treatment. The space between the outside of the MF membrane and the module inside was filled with the PES beads. UV at a wavelength of 352 nm was irradiated from outside of the acryl module. A quantity of humic acid and kaolin was dissolved in distilled water for synthetic water. Water or air intermittent backwashing was performed outside to inside. The membrane fouling resistance after 3 h process (Rf,180) was minimum at 30 g/L of the PES beads for water backwashing, and at 40 g/L for air backwashing when increasing the PES beads from 0 to 50 g/L. The irreversible membrane fouling resistance after physical cleaning (Rif) was at the bottom at 5 g/L of the PES beads for water backwashing, which was 3.43 times higher than minimal at 40 g/L of the PES beads for air backwashing. The treatment effectiveness of turbidity increased when increasing the PES beads’ concentration from 0 to 50 g/L; however, it reached a maximum at 98.1% at 40 g/L and 99.2% at 50 g/L for water and air backwashing, respectively. The treatment effectiveness of UV254 absorbance, which was dissolved organic matter (DOM), increased dramatically when increasing the PES beads; however, it reached a peak of 83.0% at 40 g/L and 86.0% at 50 g/L for water and air backwashing, respectively. Finally, the best PES beads’ concentration was 20~30 g/L to minimize the membrane fouling; however, it was 50 g/L to remove pollutants effectively. The water backwashing was better than the air at treating DOM; however, the air backwashing was more effective than the water at removing turbid matter and reducing membrane fouling. Full article
(This article belongs to the Special Issue Advances in Integrated Membrane Processes and Systems)
Show Figures

Figure 1

14 pages, 1237 KB  
Article
Enhancing Yield and Physiological Performance by Foliar Applications of Chemically Inert Mineral Particles in a Rainfed Vineyard under Mediterranean Conditions
by Despoina G. Petoumenou
Plants 2023, 12(7), 1444; https://doi.org/10.3390/plants12071444 - 24 Mar 2023
Cited by 20 | Viewed by 3108
Abstract
One of the biggest environmental challenges that most of the traditional and modern grape-growing areas are facing is the frequency, severity, and unpredictability of extreme weather events as a result of climate change. Sustainable tools such as chemically inert mineral particles could be [...] Read more.
One of the biggest environmental challenges that most of the traditional and modern grape-growing areas are facing is the frequency, severity, and unpredictability of extreme weather events as a result of climate change. Sustainable tools such as chemically inert mineral particles could be a valid alternative for the promotion of environmentally-friendly viticultural techniques to enhance yield, improve physiological processes, and increase tolerance to biotic/abiotic stressors and grape quality. In regard to this concept, the effects of kaolin (KL) and zeolite (ZL) application was tested in the rosé grapevine cultivar Roditis, field-and rainfed, under the Mediterranean conditions of central Greece. In a two-year trial, the whole vine canopy was sprayed with kaolin and zeolite until runoff at a dose of 3% (w/v) twice throughout the growing season; the first at the beginning of veraison and the second one week later; treatment of the untreated control plants was also performed (C). The assimilation rate in morning and midday, the stomatal conductance, and the WUEi of the leaves of the treated and untreated plants were monitored one day after each application and at harvest. During the same time period of the day (i.e., morning and midday) in July, August, and September, the leaf temperature near the fruit zone was also recorded. At harvest, the yield parameters, cluster characteristics, grape composition, and incidence (%) of sunburned and dehydrated berries as well as berries infected by Plasmopara viticola and Lobesia botrana were recorded. The results showed that KL and ZL application decreased leaf temperature during the growing season until harvest compared to the control treatment, which resulted in an improvement in physiological parameters such as net photosynthesis and intrinsic water use efficiency. At harvest, the KL- and ZL-treated vines showed increased yield due to an increasing cluster and berry fresh weight. On the other hand, the KL and ZL application did not affect the sugar concentration and pH of the must and increased the total acidity and decreased the total phenolic compound content, but only in the first year of the experiments. Furthermore, the incidence of sunburn necrosis, dehydrated berries, and infected berries was significantly lower in the treated vines compared to the control vines. These results confirm the promising potential of kaolin and zeolite applications as a stress mitigation strategy during the summer period, with the ability to protect grapevine plants, enhance yield, and maintain or improve fruit quality in rainfed Mediterranean vineyards. Full article
Show Figures

Figure 1

26 pages, 5695 KB  
Article
Synthesized Zeolite Based on Egyptian Boiler Ash Residue and Kaolin for the Effective Removal of Heavy Metal Ions from Industrial Wastewater
by Ahmed H. Ibrahim, Xianjun Lyu and Amr B. ElDeeb
Nanomaterials 2023, 13(6), 1091; https://doi.org/10.3390/nano13061091 - 17 Mar 2023
Cited by 32 | Viewed by 4434
Abstract
The increase of global environmental restrictions concerning solid and liquid industrial waste, in addition to the problem of climate change, which leads to a shortage of clean water resources, has raised interest in developing alternative and eco-friendly technologies for recycling and reducing the [...] Read more.
The increase of global environmental restrictions concerning solid and liquid industrial waste, in addition to the problem of climate change, which leads to a shortage of clean water resources, has raised interest in developing alternative and eco-friendly technologies for recycling and reducing the amount of these wastes. This study aims to utilize Sulfuric acid solid residue (SASR), which is produced as a useless waste in the multi-processing of Egyptian boiler ash. A modified mixture of SASR and kaolin was used as the basic component for synthesizing cost-effective zeolite using the alkaline fusion-hydrothermal method for the removal of heavy metal ions from industrial wastewater. The factors affecting the synthesis of zeolite, including the fusion temperature and SASR: kaolin mixing ratios, were investigated. The synthesized zeolite was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), particle size analysis (PSD) and N2 adsorption-desorption. The SASR: kaolin weight ratio of 1:1.5 yields faujasite and sodalite zeolite with 85.21% crystallinity, which then shows the best composition and characteristics of the synthesized zeolite. The factors affecting the adsorption of Zn2+, Pb2+, Cu2+, and Cd2+ ions from wastewater on synthesized zeolite surfaces, including the effect of pH, adsorbent dosage, contact time, initial concentration, and temperature, have been investigated. The obtained results indicate that a pseudo-second-order kinetic model and Langmuir isotherm model describe the adsorption process. The maximum adsorption capacities of Zn2+, Pb2+, Cu2+, and Cd2+ ions onto zeolite at 20 °C were 12.025, 15.96, 12.247, and 16.17 mg·g−1, respectively. The main mechanisms controlling the removal of these metal ions from aqueous solution by synthesized zeolite were proposed to be either surface adsorption, precipitation, or ion exchange. The quality of the wastewater sample obtained from the Egyptian General Petroleum Corporation (Eastern Desert, Egypt) was highly improved using the synthesized zeolite and the content of heavy metal ions was significantly reduced, which enhances the utilization of the treated water in agriculture. Full article
Show Figures

Graphical abstract

15 pages, 3631 KB  
Article
Preparation and Coagulation Performance of Polyaluminum Lanthanum Silicate Coagulant
by Jie He, Qixuan Song and Jian He
Int. J. Environ. Res. Public Health 2023, 20(4), 2793; https://doi.org/10.3390/ijerph20042793 - 4 Feb 2023
Cited by 6 | Viewed by 2573
Abstract
In order to address the growing problem of water pollution caused by the excessive discharge of contaminants and provide a better aquatic ecosystem for the public, increasing attention has been paid to the harmlessness and efficiency of coagulation. In this study, polyaluminum lanthanum [...] Read more.
In order to address the growing problem of water pollution caused by the excessive discharge of contaminants and provide a better aquatic ecosystem for the public, increasing attention has been paid to the harmlessness and efficiency of coagulation. In this study, polyaluminum lanthanum silicate (PALS) was synthesized through co-polymerization as a novel coagulant to treat wastewater. FTIR, XRD, and SEM were used to analyze the morphology and structure of the material, which further confirmed that the PALS was successfully synthesized. The results indicated that PALS had a great performance in the treatment of a kaolin–humic acid suspension under the optimal synthesis conditions with Al/Si = 3, La/Si = 0.1, and basicity = 0.7. Compared with conventional coagulants, PALS exhibited a better performance at a low coagulant dose and could achieve a good removal effect for an ultraviolet wavelength less than 254 nm (UV254) (83.87%), residual turbidity (0.49 NTU), and dissolved organic carbon (DOC) (69.57%) at the optimal conditions. Additionally, the PALS showed a better effect on phosphate removal than other coagulants did, where the removal efficiency could reach 99.60%. Charge neutralization and adsorption bridging were the potential wastewater treatment mechanisms employed by the PALS, which showed varied contributions under different pH levels. The results indicated that PALS can be a promising coagulant in water treatment. Full article
(This article belongs to the Special Issue Wastewater Treatment Technologies and Analysis)
Show Figures

Figure 1

13 pages, 2699 KB  
Article
Effect of Different Foliar Particle Films (Kaolin and Zeolitite) on Chemical and Sensory Properties of Olive Oil
by Annalisa Rotondi, Gianpaolo Bertazza, Barbara Faccini, Giacomo Ferretti and Lucia Morrone
Agronomy 2022, 12(12), 3088; https://doi.org/10.3390/agronomy12123088 - 6 Dec 2022
Cited by 16 | Viewed by 4070
Abstract
The use of kaolin foliar treatments in olive growing is a well-established approach that aims at protecting crops from the negative impacts of environmental stresses and from insect pests. The use of zeolite particle films is a far more recent technique. The experimentation [...] Read more.
The use of kaolin foliar treatments in olive growing is a well-established approach that aims at protecting crops from the negative impacts of environmental stresses and from insect pests. The use of zeolite particle films is a far more recent technique. The experimentation was carried out on Correggiolo cv. cultivated in the Emilia-Romagna region (Italy). Foliar treatments were performed in summer until olive harvest. Ripening index, weight, and the oil content of olives were measured. Acidity, peroxide numbers, K232, K270 and total phenols were evaluated as well as fatty acid profiles, determined via GC-FID and phenolic compounds; vitamins and pigments were determined via HPLC-DAD. Quantitative descriptive analysis (QDA) sensory analysis and taint tests were performed. Olives treated with zeolite showed higher oil contents, and the oil obtained exhibited higher contents of total phenols, tyrosol and deacetoxy oleuropein aglycon with respect to the oils produced with kaolin and the control oil. Oils produced from kaolin-treated olives showed sensory profiles characterized by notes of berries (that are not typical of the Correggiolo cultivar). In the scenario of environment-friendly oil production, treatments employing zeolitite particle films represent both a valid alternative to chemical insecticide against olive fly attack and a practice that has a positive influence on the overall oil quality. Full article
Show Figures

Figure 1

17 pages, 5131 KB  
Article
Cake Layer Fouling Potential Characterization for Wastewater Reverse Osmosis via Gradient Filtration
by Rulu Ouyang, Bin Huang, Chun-Hai Wei, Hongwei Rong, Huarong Yu, Fangshu Qu, Kang Xiao and Xia Huang
Membranes 2022, 12(8), 810; https://doi.org/10.3390/membranes12080810 - 21 Aug 2022
Cited by 6 | Viewed by 3021
Abstract
It is of great importance to quantitatively characterize feed fouling potential for the effective and efficient prevention and control of reverse osmosis membrane fouling. A gradient filtration method with microfiltration (MF 0.45 μm) → ultrafiltration (UF 100 kDa) → nanofiltration (NF 300 Da) [...] Read more.
It is of great importance to quantitatively characterize feed fouling potential for the effective and efficient prevention and control of reverse osmosis membrane fouling. A gradient filtration method with microfiltration (MF 0.45 μm) → ultrafiltration (UF 100 kDa) → nanofiltration (NF 300 Da) was proposed to extract the cake layer fouling index, I, of different feed foulants in this study. MF, UF, and NF showed high rejection of model suspended solids (kaolin), colloids (sodium alginate and bovine serum albumin), and dissolved organic matters (humic acid) during constant-pressure individual filtration tests, where the cake layer was the dominant fouling mechanism, with I showing a good linear positive correlation with the foulant concentration. MF → UF → NF gradient filtration tests of synthetic wastewater (i.e., model mixture) showed that combined models were more effective than single models to analyze membrane fouling mechanisms. For each membrane of gradient filtration, I showed a positive correlation with the targeted foulant concentration. Therefore, a quantitative assessment method based on MF → UF → NF gradient filtration, the correlation of combined fouling models, and the calculation of I would be useful for characterizing the fouling potentials of different foulants. This method was further successfully applied for characterizing the fouling potential of real wastewater (i.e., sludge supernatant from a membrane bioreactor treating dyeing and finishing wastewater). Full article
Show Figures

Figure 1

16 pages, 4579 KB  
Article
Adsorption of Copper (II) from Aqueous Solutions with Alginate/Clay Hybrid Materials
by Maria Râpă, Anca Andreea Ţurcanu, Ecaterina Matei, Andra Mihaela Predescu, Mircea Cristian Pantilimon, George Coman and Cristian Predescu
Materials 2021, 14(23), 7187; https://doi.org/10.3390/ma14237187 - 25 Nov 2021
Cited by 24 | Viewed by 3310
Abstract
Massive amounts of industrial and agricultural water around the world are polluted by various types of contaminants that harm the environment and affect human health. Alginic acid is a very versatile green polymer used for heavy metal adsorption due to its availability, biocompatibility, [...] Read more.
Massive amounts of industrial and agricultural water around the world are polluted by various types of contaminants that harm the environment and affect human health. Alginic acid is a very versatile green polymer used for heavy metal adsorption due to its availability, biocompatibility, low cost, and non-toxic characteristics. The aim of this paper was to prepare new low-cost hybrid composite beads using sodium alginate with treated montmorillonite and kaolin for the adsorption of copper (Cu) cations. Modified and unmodified clays were investigated by studying their morphology and elemental composition, functional groups, and mean particle size and particle size distribution. The characterization of alginate/clay hybrid composite beads was carried out by evaluating surface morphology (by scanning electron microscopy, SEM), crystallinity (by X-ray diffraction, XRD), and point of zero charge (pHpzc)(Zeta Potential Analyzer). Batch adsorption experiments of alginate/clay hybrid composite beads investigated the effect of metal concentration in the range of 1–4 mg L−1 on Cu(II) removal, adsorption kinetic for maximum 240 min, and Langmuir and Freundlich adsorption isotherms by using atomic absorption spectrometry. The pseudo-second-order kinetic model best fitted the adsorption for alginate/montmorillonite beads (R2 = 0.994), while the diffusion process was predominant for montmorillonite/kaolin beads (R2 = 0.985). The alginate/clay hybrid materials best fitted the Langmuir isotherm model. Full article
(This article belongs to the Special Issue Advanced Eco-Technology and Materials in Water Treatment)
Show Figures

Figure 1

Back to TopTop