Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,988)

Search Parameters:
Keywords = accumulation on leaves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2645 KB  
Article
Comprehensive Analysis of Agronomic Traits, Saponin Accumulation, and SNP-Based Genetic Diversity in Different Cultivars of Panax notoginseng
by Yawen Wu, Guanjiao Wang, Ran Pu, Tian Bai, Hao Fan, Jingli Zhang and Shengchao Yang
Genes 2025, 16(10), 1185; https://doi.org/10.3390/genes16101185 (registering DOI) - 12 Oct 2025
Abstract
Background: Given the need to optimize Panax notoginseng cultivation, screen high-quality germplasm, and clarify its insufficiently elucidated genetic–phenotype–quality associations (e.g., saponin accumulation), this study was conducted. Methods: Agronomic traits were measured, saponin accumulation was determined via high-performance liquid chromatography (HPLC), and [...] Read more.
Background: Given the need to optimize Panax notoginseng cultivation, screen high-quality germplasm, and clarify its insufficiently elucidated genetic–phenotype–quality associations (e.g., saponin accumulation), this study was conducted. Methods: Agronomic traits were measured, saponin accumulation was determined via high-performance liquid chromatography (HPLC), and comprehensive performance was evaluated through integrated cluster analysis and fuzzy membership function assessment; additionally, single-nucleotide polymorphism (SNP)-based genetic diversity analysis was conducted to explore the genetic basis of trait variations. Results: Agronomic traits exhibited coefficients of variation (CVs) of 2.95–18.12%, with primary root length showing the highest variability. Phenotypic cluster analysis divided the materials into three groups. Group I ("Miaoxiang No.1", "Dianqi No.1", "Miaoxiang Kangqi No.1") was characterized by tall plants, sturdy stems, heavy roots, and long/large leaves. Saponin determination results revealed significant differences in notoginsenoside R1, ginsenoside Rb1, ginsenoside Re, ginsenoside Rd, and total saponins among cultivars (order: "Zijing" > "Dianqi No.1" > original cultivar > "Miaoxiang Kangqi No.1" > "Miaoxiang No.1" > "Miaoxiang No.2"), with "Zijing" having the highest total saponin accumulation (18.13%); no significant difference was observed in ginsenoside Rg1 accumulation. The GATK initially identified 16,329,600 SNPs, and 115,930 high-quality SNPs were retained after Samtools filtration. SNP-based Neighbor-joining (NJ) clustering grouped the cultivars into three categories, with the original cultivar clustered alone as one category. Through comprehensive evaluation, three superior germplasm lines ("Miaoxiang Kangqi No.1", "Miaoxiang No.1", "Dianqi No.1") were identified. A significant negative correlation (p < 0.05) was found between compound leaf petiole length and saponin accumulation. Conclusions: This integrated analytical strategy clarifies the links between genetics, phenotype, and quality, providing a scientific foundation for P. notoginseng germplasm screening and facilitating future molecular breeding efforts. Full article
(This article belongs to the Section Plant Genetics and Genomics)
23 pages, 18619 KB  
Article
Comprehensive Identification and Expression Analysis of the SWEET Gene Family in Actinidia eriantha Reveals That Two AeSWEET11 Genes Function in Sucrose and Hexose Transport
by Xin Feng, Qingqing Huang, Minxia Gao, Ruilian Lai and Yiting Chen
Plants 2025, 14(20), 3140; https://doi.org/10.3390/plants14203140 (registering DOI) - 11 Oct 2025
Abstract
Sugars are key metabolites influencing the flavor and quality of kiwifruit, with their accumulation in fruit relying on sugar transporters. Recently identified sugar transporters known as SWEETs play significant roles in modulating plant growth, development, and fruit ripening. However, the characteristics of SWEET [...] Read more.
Sugars are key metabolites influencing the flavor and quality of kiwifruit, with their accumulation in fruit relying on sugar transporters. Recently identified sugar transporters known as SWEETs play significant roles in modulating plant growth, development, and fruit ripening. However, the characteristics of SWEET genes in Actinidia eriantha remain poorly understood. In this study, a total of 26 AeSWEET genes were identified across 17 chromosomes. These genes encoded proteins ranging from 198 to 305 amino acids in length and contained 5 to 7 transmembrane helices. Both interspecific and intraspecific phylogenetic trees categorized AeSWEET proteins into four distinct clades. The motif and domain structures were conserved within each clade, although variations were observed in exon-intron organizations. One tandem and fourteen segmental duplication events were identified as primary drivers of the AeSWEET family expansion. Comparative syntenic mapping showed a closer homology of the AeSWEET family with that of dicotyledons compared to monocotyledons. Promoter cis-element analysis indicated the potential responses of AeSWEET genes to five phytohormones and seven environmental stressors. Quantitative real-time PCR analysis revealed tissue-specific expression profiles of AeSWEET genes, with two AeSWEET11 genes (AeSWEET11a and AeSWEET11b) showing significantly higher expression levels in fruit tissues. Their expressions were positively correlated with sucrose, fructose, and glucose contents throughout fruit development and ripening. Transient transformation tests in tobacco leaves verified the predominant localization of AeSWEET11a and AeSWEET11b to the plasma membrane. Functional assays in yeast mutants revealed that AeSWEET11a and AeSWEET11b both possessed sucrose and hexose transport activities. These findings highlight the potential of targeting AeSWEET11a and AeSWEET11b to enhance sugar accumulation in the fruit of A. eriantha, thereby providing a foundation for improving the flavor profile of commercial cultivars. Full article
Show Figures

Figure 1

22 pages, 3271 KB  
Article
Short-Term Effects of N Deposition on Soil Respiration in Pine and Oak Monocultures
by Azam Nouraei, Seyed Mohammad Hojjati, Hamid Jalilvand, Patrick Schleppi and Seyed Jalil Alavi
Forests 2025, 16(10), 1570; https://doi.org/10.3390/f16101570 (registering DOI) - 11 Oct 2025
Abstract
Atmospheric nitrogen input has been a severe challenge worldwide. The influences of N deposition on carbon cycling, loss, and storage have been recognized as a critical issue. This study aimed to assess the immediate responses of soil respiration to different N deposition treatments [...] Read more.
Atmospheric nitrogen input has been a severe challenge worldwide. The influences of N deposition on carbon cycling, loss, and storage have been recognized as a critical issue. This study aimed to assess the immediate responses of soil respiration to different N deposition treatments in radiata pine (Pinus radiata D. Don) and chestnut-leaved oak (Quercus castaneifolia C. A. Mey) plantations within 12 months. N treatments were performed monthly at levels of 0, 50, 100, and 150 kg N ha−1 year−1 from October 2017 to September 2018. Litterfall was collected and analyzed seasonally for its mass and C content. Within the 0–10 cm depth of mineral soil in both plantations, parameters such as total nitrogen, pH, microbial biomass carbon (MBC), organic carbon (OC), and fine root biomass were measured seasonally. Soil respiration (Rs) was determined through monthly measurements of CO2 concentration in the field using a portable, closed chamber technique. The control plots exhibited the highest Rs during spring (2.96, 2.85 μmol CO2 m−2 s−1) and summer (2.92, 3.1 μmol CO2 m−2 s−1) seasons in oak and pine plantations, respectively. However, the introduction of nitrogen significantly diminished Rs in both plantations. Moreover, N treatments caused a notable reduction of soil MBC and fine root biomass. Soil microbial entropy and the C/N ratio were also significantly decreased by nitrogen treatments in both plantations, with the most prominent effects observed in summer. The observed decline in Rs in N-treated plots can be attributed to the decrease in MBC and fine root biomass, potentially with distinct contributions of these components in the pine and oak plantations. Our findings suggested that N-induced alteration in soil carbon dynamics was more pronounced in the oak plantation, which resulted in more SOC accumulation with increasing N inputs, while the pine plantation showed no significant changes in SOC. Full article
(This article belongs to the Section Forest Soil)
17 pages, 1757 KB  
Article
Analysis on Carbon Sink Benefits of Comprehensive Soil and Water Conservation in the Red Soil Erosion Areas of Southern China
by Yong Wu, Jiechen Wu, Shennan Kuang and Xiaojian Zhong
Forests 2025, 16(10), 1551; https://doi.org/10.3390/f16101551 - 8 Oct 2025
Viewed by 170
Abstract
Soil erosion is an increasingly severe problem and a global focus. As one of the countries facing relatively serious soil erosion, China encounters significant ecological challenges. This study focuses on the carbon sink benefits of comprehensive soil and water conservation management in the [...] Read more.
Soil erosion is an increasingly severe problem and a global focus. As one of the countries facing relatively serious soil erosion, China encounters significant ecological challenges. This study focuses on the carbon sink benefits of comprehensive soil and water conservation management in the red soil erosion area of southern China, conducting an in-depth analysis using the Ziyang small watershed in Shangyou County, Jiangxi Province, as a typical case. Research methods involved constructing an integrated monitoring approach combining basic data, measured data, and remote sensing data. Changes in soil and vegetation carbon storage in the Ziyang small watershed across different years were determined by establishing a baseline scenario and applying inverse distance spatial interpolation, quadrat calculation, feature extraction, and screening. The results indicate that from 2002 to 2023, after 21 years of continuous implementation of various soil and water conservation measures under comprehensive watershed management, the carbon storage of the Ziyang small watershed increased significantly, yielding a net carbon sink of 54,537.28 tC. Tending and Management of Coniferous and Broad-leaved Mixed Forest, Low-efficiency Forest Improvement, and Thinning and Tending contributed substantially to the carbon sink, accounting for 72.72% collectively. Furthermore, the carbon sink capacity of the small watershed exhibited spatial variation influenced by management measures: areas with high carbon density were primarily concentrated within zones of Tending and Management of Coniferous and Broad-leaved Mixed Forest, while areas with low carbon density were mainly found within zones of Bamboo Forest Tending and Reclamation. The increase in watershed carbon storage was attributed to contributions from both vegetation and soil carbon pools. Comprehensive management of soil erosion demonstrates a significant carbon accumulation effect. The annual growth rate of vegetation carbon storage was higher than that of soil carbon storage, yet the proportion of soil carbon storage increased yearly. This study provides a theoretical basis and data foundation for the comprehensive management of soil and water conservation in small watersheds in the southern red soil erosion region of China and can offer technical and methodological support for other soil and water conservation carbon sink projects in this area. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

19 pages, 2428 KB  
Article
OsPIP2;1 Positively Regulates Rice Tolerance to Water Stress Under Coupling of Partial Root-Zone Drying and Nitrogen Forms
by Chunyi Kuang, Ziying Han, Xiang Zhang, Xiaoyuan Chen, Zhihong Gao and Yongyong Zhu
Int. J. Mol. Sci. 2025, 26(19), 9782; https://doi.org/10.3390/ijms26199782 - 8 Oct 2025
Viewed by 222
Abstract
The coupling of partial root-zone drying (PRD) with nitrogen forms exerts an interactive “water-promoted fertilization” effect, which enhances rice (Oryza sativa L.) growth and development, improves water use efficiency (WUE), mediates the expression of aquaporins (AQPs), and alters root water conductivity. In [...] Read more.
The coupling of partial root-zone drying (PRD) with nitrogen forms exerts an interactive “water-promoted fertilization” effect, which enhances rice (Oryza sativa L.) growth and development, improves water use efficiency (WUE), mediates the expression of aquaporins (AQPs), and alters root water conductivity. In this study, gene cloning and CRISPR-Cas9 technologies were employed to construct overexpression and knockout vectors of the OsPIP2;1 gene, which were then transformed into rice (cv. Meixiangzhan 2). Three water treatments were set: normal irrigation (CK); partial root-zone drying (PRD); and 10% PEG-simulated water stress (PEG), combined with a nitrogen form ratio of ammonium nitrogen (NH4+) to nitrate nitrogen (NO3) at 50:50 (A50/N50) for the coupled treatment of rice seedlings. The results showed that under the coupled treatment of PRD and the aforementioned nitrogen form, the expression level of the OsPIP2;1 gene in roots was upregulated by 0.62-fold on the seventh day, while its expression level in leaves was downregulated by 1.84-fold. Overexpression of OsPIP2;1 enabled Meixiangzhan 2 to maintain a higher abscisic acid (ABA) level under different water conditions, which helped rice reduce water potential and enhance water absorption. Compared with the CK treatment, overexpression of OsPIP2;1 increased the superoxide dismutase (SOD) activity of rice under PRD by 26.98%, effectively alleviating tissue damage caused by excessive accumulation of O2. The physiological and biochemical characteristics of OsPIP2;1-overexpressing rice showed correlations under PRD and A50/N50 nitrogen form conditions, with WUE exhibiting a significant positive correlation with transpiration rate, chlorophyll content, nitrogen content, and Rubisco enzyme activity. Overexpression of OsPIP2;1 could promote root growth and increase the total biomass of rice plants. The application of the OsPIP2;1 gene in rice genetic engineering modification holds great potential for improving important agricultural traits of crops. This study provides new insights into the mechanism by which the AQP family regulates water use in rice and has certain significance for exploring the role of AQP genes in rice growth and development as well as in response to water stress. Full article
(This article belongs to the Special Issue Plant Tolerance to Stress)
Show Figures

Figure 1

15 pages, 1480 KB  
Article
Influence of Vermicompost Tea on Metabolic Profile of Diplotaxis muralis: An NMR Spectroscopic Analysis
by Sami ur Rehman, Federica De Castro, Alessio Aprile, Michele Benedetti and Francesco Paolo Fanizzi
Environments 2025, 12(10), 366; https://doi.org/10.3390/environments12100366 - 8 Oct 2025
Viewed by 250
Abstract
Recently, we reported the efficacy of organic nutrient solutions in supporting the hydroponic cultivation of Diplotaxis muralis. The aim of this study was to elucidate the influence of standard and enhanced vermitea formulations, compared to the conventional Hoagland solution, on phytochemical and [...] Read more.
Recently, we reported the efficacy of organic nutrient solutions in supporting the hydroponic cultivation of Diplotaxis muralis. The aim of this study was to elucidate the influence of standard and enhanced vermitea formulations, compared to the conventional Hoagland solution, on phytochemical and metabolomic changes in D. muralis. Using NMR-based metabolomics and multivariate analysis, we observed significant metabolite variation among treatments. Both vermitea formulations increased the levels of acetate, alanine, and 2-oxoglutarate, and boosted the biosynthesis of key secondary metabolites, including methoxy flavonoids and glucosinolates. The standard vermitea treatment further resulted in a higher accumulation of leucine and citrate, while the Hoagland solution induced higher glucose concentrations. Enhanced vermitea improved copper and zinc uptake, positively correlating with methoxy flavonoid production. In contrast, the higher phosphorus and potassium content of the Hoagland solution correlated with increased glucose levels in D. muralis. Metabolite profiling coupled with multivariate analysis identified the enhanced vermitea as the best alternative to chemical nutrient solution for improving the nutritional and phytochemical quality of D. muralis leaves. Full article
Show Figures

Figure 1

23 pages, 3088 KB  
Article
PvPR10-3 Expression Confers Salt Stress Tolerance in Arabidopsis and Interferes with Jasmonic Acid and ABA Signaling
by Kaouthar Feki, Hanen Kamoun, Amal Ben Romdhane, Sana Tounsi, Wissal Harrabi, Sirine Salhi, Haythem Mhadhbi, Maurizio Trovato and Faiçal Brini
Plants 2025, 14(19), 3092; https://doi.org/10.3390/plants14193092 - 7 Oct 2025
Viewed by 328
Abstract
Salt stress is a major abiotic factor limiting crop productivity worldwide, as it disrupts plant growth, metabolism, and survival. In this study, we report that the genes PvPR10-2 and PvPR10-3 were significantly up-regulated in bean leaves and stems in response to combined salt [...] Read more.
Salt stress is a major abiotic factor limiting crop productivity worldwide, as it disrupts plant growth, metabolism, and survival. In this study, we report that the genes PvPR10-2 and PvPR10-3 were significantly up-regulated in bean leaves and stems in response to combined salt and jasmonic acid (NaCl–JA) treatment. Foliar application of JA with salt induced physiological alterations, including stem growth inhibition, H2O2 accumulation, and activation of antioxidant enzymes. To investigate the role of PvPR10-3 in response to salt and phytohormones, we introduced this gene into Arabidopsis and found that its heterologous expression conferred salt tolerance to the transgenic lines. Interestingly, exogenous JA contributed to salt tolerance by reducing H2O2 levels, inducing ROS-scavenging enzymes, and promoting the accumulation of phenolic compounds and ABA. Furthermore, gene expression analysis of the transgenic lines revealed that PvPR10-3 expression under NaCl–JA stress is associated with the induction of JA-related genes like MYC2, JAZ2, JAZ11, and JAZ12, as well as SA-responsive genes, like ALD1 and TGA2, and two ABA-independent components DREB2A and ERD1, suggesting potential coordination between JA, ABA, and SA signaling in salt stress response. Additionally, key flowering regulators (FT, GI) were upregulated in transgenic lines under NaCl–JA treatment, suggesting a previously unexplored link between salt tolerance pathways and the regulation of flowering time. Taken together, our findings suggest a role of PvPR10-3 in enhancing salt stress tolerance and the involvement of exogenous JA in tolerance potentially by modulating ROS balance, hormone-associated gene expression, and protective secondary metabolites. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

15 pages, 5128 KB  
Article
Effect of Drought and High-Light Stress on Volatile Compounds and Quality of Welsh Onion (Allium fistulosum L.)
by Xuena Liu, Zijing Chen, Kun Xu and Kang Xu
Agronomy 2025, 15(10), 2349; https://doi.org/10.3390/agronomy15102349 - 6 Oct 2025
Viewed by 242
Abstract
Welsh onion (Allium fistulosum L.) is a globally significant culinary vegetable with extensive cultivation and high application value. In China, Welsh onion is vulnerable to drought and strong-light stress in summer production, resulting in growth inhibition and quality decline. This study utilized [...] Read more.
Welsh onion (Allium fistulosum L.) is a globally significant culinary vegetable with extensive cultivation and high application value. In China, Welsh onion is vulnerable to drought and strong-light stress in summer production, resulting in growth inhibition and quality decline. This study utilized LED-intelligent spectral-customized lamps to simulate high-light stress and a 10% PEG-6000 Hoagland solution to simulate drought stress. The effects of different stress treatments on the nutritional quality, volatile compounds, and mineral element composition of the edible portions were systematically analyzed. The results demonstrated that drought stress significantly promoted the accumulation of alcoholic compounds in leaf tissues while reducing the content of sulfur-containing compounds. High-light stress markedly increased the levels of hydrocarbon compounds in leaves. Sulfur-containing compounds in leaf tissues were predominantly disulfides, but under combined drought and high-light stress, their content decreased, while the proportion of trisulfides significantly increased. Volatile compounds in pseudostems were primarily composed of sulfur-containing and aldehyde compounds, yet their levels markedly declined under combined stress. Additionally, combined stress led to reductions in pyruvic acid, soluble sugars, and soluble protein content in the edible portions, while the crude fiber content increased, thereby significantly impairing nutritional quality. This study provides a scientific basis for understanding the abiotic stress response mechanisms of Welsh onion and offers valuable insights for cultivation management and quality regulation. Full article
Show Figures

Figure 1

17 pages, 1261 KB  
Article
Optimizing Target Metabolites Production in Coleus blumei Indoor Cultivation: Combined Effects of LED Light and Salinity Stress
by Bianca Sambuco, Alberto Barbaresi, Alessandro Quadri, Mattia Trenta, Patrizia Tassinari, Laura Mercolini, Michele Protti and Daniele Torreggiani
Horticulturae 2025, 11(10), 1205; https://doi.org/10.3390/horticulturae11101205 - 6 Oct 2025
Viewed by 238
Abstract
Light quality is a recognized driver of plant growth and secondary metabolism in Coleus blumei, a valuable source of rosmarinic acid (RA) and quercetin (QU), whereas its combination with salinity stress represents a potential strategy that still requires further investigation. We evaluated [...] Read more.
Light quality is a recognized driver of plant growth and secondary metabolism in Coleus blumei, a valuable source of rosmarinic acid (RA) and quercetin (QU), whereas its combination with salinity stress represents a potential strategy that still requires further investigation. We evaluated four LED spectra, red–blue (RB) (6:1, control), blue (B), red (R), and RB + Far-Red, under both control (0 mM NaCl) and moderate salt stress (120 mM NaCl), measuring biomass (dry weight) and RA/QU in leaves and roots after three (T1) and five weeks (T2). Blue light produced the greatest root biomass, while the leaf dry weight under B did not differ significantly from RB or RBfr. RA peaked at T2 under B in leaves and under R in roots; QU was maximal under B in leaves and under RB in roots. Extending exposure from T1 to T2 markedly increased both metabolites’ yield. Salinity had little effect on biomass, increased the total QU yield, and did not enhance the total RA yield. These results indicate that targeted LED regimes and longer exposure can raise the yields of bioactive compounds, and that combining specific spectra with moderate salinity is an effective strategy for selectively increasing quercetin accumulation in indoor-grown C. blumei. Full article
Show Figures

Figure 1

17 pages, 8447 KB  
Article
Evaluation of Fungal Sensitivity to Biosynthesized Copper-Oxide Nanoparticles (CuONPs) in Grapevine Tissues and Fruits
by Domingo Martínez-Soto, Erisneida Campos-Jiménez, Alejandro Cabello-Pasini, Luis Enrique Garcia-Marin, Anaid Meza-Villezcas and Ernestina Castro-Longoria
J. Fungi 2025, 11(10), 719; https://doi.org/10.3390/jof11100719 - 6 Oct 2025
Viewed by 350
Abstract
Grape production is one of the most agronomically important activities worldwide. However, it is threatened by diseases caused by phytopathogenic microorganisms, which cause severe economic losses. The primary strategy to control phytopathogenic fungi is the application of fungicides; however, they affect the environment [...] Read more.
Grape production is one of the most agronomically important activities worldwide. However, it is threatened by diseases caused by phytopathogenic microorganisms, which cause severe economic losses. The primary strategy to control phytopathogenic fungi is the application of fungicides; however, they affect the environment and induce resistance in fungi. Nanomaterials, especially those green-synthesized, emerge as an eco-friendly and sustainable alternative to control fungal pathogens. The objective of this work is to evaluate the sensitivity of fungal phytopathogens to biosynthesized copper-oxide nanoparticles (CuONPs). Nanoparticles were evaluated as preventive and corrective treatments in grapevine green tissues and fruits under field conditions, using in vitro and in vivo experimental approaches. Interestingly, corrective treatment was highly effective and showed little accumulation of Cu on the fruits, even less than a commercial copper-based fungicide. Moreover, we report that Aspergillus niger causes lesions in photosynthetic tissues and severe disease symptoms in grapes. We also describe for the first time the presence of Alternaria alternata causing lesions, mainly on the stems and young leaves of grapevine plants in Mexico. These pathogens were inhibited by the biosynthesized CuONPs. All these findings show the effectiveness of using CuONPs to control phytopathogenic fungi, even under field conditions, shedding light on their potential use in agriculture with a less environmental impact than the commercial fungicides and agrochemicals currently used. Full article
(This article belongs to the Special Issue Fungal Development and Interactions Under Hostile Environments)
Show Figures

Graphical abstract

19 pages, 2448 KB  
Article
Transcriptomic and Metabolomic Insights into Benzylisoquinoline Alkaloid Biosynthesis in Goldthread (Coptis trifolia)
by Yoo-Shin Koh, Fanchao Zhu, Yoojeong Hwang and Mi-Jeong Yoo
Int. J. Mol. Sci. 2025, 26(19), 9704; https://doi.org/10.3390/ijms26199704 - 5 Oct 2025
Viewed by 249
Abstract
Coptis trifolia (threeleaf goldthread) offers a valuable comparative system for investigating the evolution and regulation of benzylisoquinoline alkaloid (BIA) synthesis. In this study, we analyzed the leaf and root transcriptomes of C. trifolia using both long-read and short-read RNA-Sequencing. We assembled 41,926 unigenes [...] Read more.
Coptis trifolia (threeleaf goldthread) offers a valuable comparative system for investigating the evolution and regulation of benzylisoquinoline alkaloid (BIA) synthesis. In this study, we analyzed the leaf and root transcriptomes of C. trifolia using both long-read and short-read RNA-Sequencing. We assembled 41,926 unigenes (≥500 bp) and identified 37 genes related to BIA biosynthesis, including two transcription factors, bHLH1 and WRKY1. The number of BIA genes identified in C. trifolia was comparable to that in other Coptis species. Transcriptome analysis revealed that most of these genes were more highly expressed in roots than leaves. Consistent with previous studies, C. trifolia contained a single (S)-stylopine synthase (SPS) gene homolog, potentially multifunctional for (S)-canadine synthase (CAS), (S)-cheilanthifoline synthase (CFS), and SPS. Transcriptome and untargeted metabolomic data indicated greater variation in root samples than leaf samples, although slightly more differentially expressed transcripts and metabolites were observed in leaves. Targeted metabolite profiling showed higher BIA accumulation in roots, with epiberberine being the most abundant, followed by coptisine, berberine, and columbamine. These results provide essential genomic resources for comparative analysis of the BIA pathway across Ranunculaceae, targeted gene function studies for metabolic bioengineering, and conservation strategies for C. trifolia, a member of an early-diverging clade within the genus with limited genetic resources. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

21 pages, 2509 KB  
Article
Metabolic Reprogramming and Amino Acid Adjustments in Pistachio (Pistacia vera L.) Under Salinity Stress
by Hooman Shirvani, Foad Fatehi, Sara Hejri and Ramesh Katam
Horticulturae 2025, 11(10), 1201; https://doi.org/10.3390/horticulturae11101201 - 4 Oct 2025
Viewed by 397
Abstract
Pistachio (Pistacia vera L.) holds significant importance due to its diverse applications and nutritional benefits. The nuts are rich in essential amino acids, antioxidants, fiber, healthy fats, and minerals, making them highly valuable for human nutrition. However, pistachios are significantly challenged by [...] Read more.
Pistachio (Pistacia vera L.) holds significant importance due to its diverse applications and nutritional benefits. The nuts are rich in essential amino acids, antioxidants, fiber, healthy fats, and minerals, making them highly valuable for human nutrition. However, pistachios are significantly challenged by salinity stress, which negatively affects their growth and metabolism. Understanding the impact of salinity stress on pistachios is crucial for developing effective strategies to enhance their tolerance, improve growth, and ensure sustainable production in saline environments. To investigate the effects of salinity on energy metabolism and amino acid composition, we monitored key metabolites and free amino acid levels in UCB-1 pistachio leaves at 7- and 21-day salt stress treatments using Liquid Chromatography–Mass Spectrometry (LC-MS) and Ultra Performance Liquid Chromatography (UPLC). Our findings revealed that salinity affected nearly all analyzed metabolites, with varied patterns observed at different time points. Notably, all free amino acids except threonine accumulated significantly in response to salt stress. Meanwhile, reductions in 3PGA, Fru1,6bP, and Glu6P+Fru6P (glycolysis and Calvin cycle intermediates) suggest a decrease in photosynthetic activity, which may ultimately impact respiration rates. These results demonstrate that salinity stress affects both amino acid metabolism and central carbon metabolism, with the magnitude and pattern of these changes depending on the duration of exposure. The observed metabolic adjustments likely represent an adaptive response, enabling the plant to partially mitigate the detrimental effects of salt stress. Full article
Show Figures

Figure 1

14 pages, 4597 KB  
Article
Exogenous Application of IR-Specific dsRNA Inhibits Infection of Cucumber Green Mottle Mosaic Virus in Watermelon
by Yanhui Wang, Liming Liu, Yongqiang Fan, Yanli Han, Zhiling Liang, Yanfei Geng, Fengnan Liu, Qinsheng Gu, Baoshan Kang and Chaoxi Luo
Agronomy 2025, 15(10), 2332; https://doi.org/10.3390/agronomy15102332 - 2 Oct 2025
Viewed by 336
Abstract
Cucumber green mottle mosaic virus (CGMMV) represents a serious threat in the production of watermelon. Small RNAs facilitate a mechanism known as RNA interference (RNAi), which regulates gene expression. RNAi technology employs foreign double-stranded RNAs (dsRNAs) to target and reduce the expression levels [...] Read more.
Cucumber green mottle mosaic virus (CGMMV) represents a serious threat in the production of watermelon. Small RNAs facilitate a mechanism known as RNA interference (RNAi), which regulates gene expression. RNAi technology employs foreign double-stranded RNAs (dsRNAs) to target and reduce the expression levels of specific genes in plants by interfering with their mRNAs. In this study, watermelon plants were treated with dsRNAs of CGMMV MET, IR, and HEL fragments that had been generated in E. coli HT115. We investigated variations in several factors, including viral accumulation, virus-derived small interfering RNAs (vsiRNAs), and symptom severity. MET-dsRNA, IR-dsRNA and HEL-dsRNA dramatically decreased the symptoms of CGMMV in plants in the growth chamber test. Plants treated with viral-derived dsRNA showed a considerable decrease in both virus titers and vsiRNA levels. We also explored the mobility of spray-on dsRNA-derived long dsRNA and discovered that it could be identified in both inoculated leaves and the systemic leaves. IR-dsRNA outperformed MET-dsRNA and HEL-dsRNA in dsRNA therapy. Illumina sequencing of small RNAs from watermelon plants treated with IR-dsRNA and those that were not treated showed that the decreased accumulation of vsiRNAs was consistent with interference with CGMMV infection in systemic leaves. dsRNA-treated plants showed a higher level of 24-nt viral siRNA and lower level of 22-nt viral siRNA accumulation, while 22-nt viral siRNA predominated in untreated plants, indicating that dsRNA treatment improved DCL3 activity. In conclusion, our research provides deeper insights into the mechanism of antiviral RNA interference and confirms the effectiveness of applying dsRNA locally to enhance plant antiviral activity. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

19 pages, 2745 KB  
Article
Mechanistic Insights into Silicon-Enhanced Cadmium Detoxification in Rice: A Spatiotemporal Perspective
by Hongmei Lin, Miaohua Jiang, Shaofei Jin and Songbiao Chen
Agronomy 2025, 15(10), 2331; https://doi.org/10.3390/agronomy15102331 - 2 Oct 2025
Viewed by 240
Abstract
The spatiotemporal regulatory mechanism underlying silicon (Si)-mediated cadmium (Cd) detoxification in rice (Oryza sativa L.) was investigated using non-invasive micro-test technology (NMT), combined with physiological and biochemical analyses. The results revealed the following: (1) Si significantly inhibited Cd2+ influx into rice [...] Read more.
The spatiotemporal regulatory mechanism underlying silicon (Si)-mediated cadmium (Cd) detoxification in rice (Oryza sativa L.) was investigated using non-invasive micro-test technology (NMT), combined with physiological and biochemical analyses. The results revealed the following: (1) Si significantly inhibited Cd2+ influx into rice roots, with the most pronounced reductions in ion flux observed under moderate Cd stress (Cd50, 50 μmol·L−1), reaching 35.57% at 7 days and 42.30% at 14 days. Cd accumulation in roots decreased by 34.03%, more substantially than the 28.27% reduction observed in leaves. (2) Si application enhanced photosynthetic performance, as evidenced by a 14.21% increase in net photosynthetic rate (Pn), a 32.14% increase in stomatal conductance (Gs), and a marked restoration of Rubisco activity. (3) Si mitigated oxidative damage, with malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels reduced by 11.29–21.88%, through the upregulation of antioxidant enzyme activities (SOD, APX, CAT increased by 15.34–38.33%) and glutathione metabolism (GST activity and GSH content increased by 60.78% and 51.35%, respectively). (4) The mitigation effects of Si were found to be spatiotemporally specific, with stronger responses under Cd50 than Cd100 (100 μmol·L−1), at 7 days (d) compared to 14 d, and in roots relative to leaves. Our study reveals a coordinated mechanism by which Si modulates Cd uptake, enhances photosynthetic capacity, and strengthens antioxidant defenses to alleviate Cd toxicity in rice. These findings provide a scientific basis for the application of Si in mitigating heavy metal stress in agricultural systems. Full article
(This article belongs to the Special Issue Rice Cultivation and Physiology)
Show Figures

Figure 1

18 pages, 3623 KB  
Article
Identification of the CDPK Pan-Genomic Family in Pear (Pyrus spp.) and Analysis of Its Response to Venturia nashicola
by Xing Hu, Yixuan Lian, Zhaoyun Yang, Tong Li, Yuqin Song and Liulin Li
Horticulturae 2025, 11(10), 1181; https://doi.org/10.3390/horticulturae11101181 - 2 Oct 2025
Viewed by 232
Abstract
This study investigated the phylogenetic relationships in the pear calcium-dependent protein kinase (CDPK) pan-gene family and elucidated its role in the resistance to scab disease caused by Venturia nashicola. By integrating data from eight genomic sets from five cultivated pear species, Pyrus [...] Read more.
This study investigated the phylogenetic relationships in the pear calcium-dependent protein kinase (CDPK) pan-gene family and elucidated its role in the resistance to scab disease caused by Venturia nashicola. By integrating data from eight genomic sets from five cultivated pear species, Pyrus bretschneideri, P. ussuriensis, P. sinkiangensis, P pyrifolia, and P. communis, along with P. betulifolia and interspecific hybrids, 63 PyCDPK family members were identified. Among these, P. communis possessed the highest number of CDPK genes, whereas P. bretschneiderilia had the fewest. These genes encode proteins ranging from 459 to 810 amino acids in length, and are predominantly localized to the cell membrane. Six genes, PyCDPK9, PyCDPK11, PyCDPK12, PyCDPK14, PyCDPK16, and PyCDPK19, were classified as core members of the pan-genome, and PyCDPK19 showed evidence of positive selection pressure. Clustering analysis and transcriptomic expression profiling of disease-resistance-related CDPKs identified PyCDPK19 as a key candidate associated with scab resistance. Promoter analysis revealed that the regulatory region of PyCDPK19 contains multiple cis-acting elements involved in defense responses and methyl jasmonate signaling. Transient overexpression of PyCDPK19 in tobacco leaves induced hypersensitive cell necrosis, accompanied by significant increases in hydrogen peroxide (H2O2) accumulation and malondialdehyde (MDA) content. Similarly, overexpression in pear fruit callus tissue followed by pathogen inoculation resulted in elevated levels of both H2O2 and MDA. Collectively, these findings indicate that PyCDPK19 mediates defense responses through the activation of the reactive oxygen species pathway in both tobacco and pear plants, providing a promising genetic target for enhancing scab resistance in pears. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

Back to TopTop