Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (720)

Search Parameters:
Keywords = absorber coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2633 KiB  
Article
Influence of Mullite and Halloysite Reinforcement on the Ablation Properties of an Epoxy Composite
by Robert Szczepaniak, Michał Piątkiewicz, Dominik Gryc, Paweł Przybyłek, Grzegorz Woroniak and Joanna Piotrowska-Woroniak
Materials 2025, 18(15), 3530; https://doi.org/10.3390/ma18153530 - 28 Jul 2025
Viewed by 273
Abstract
This paper explores the impact of applying a powder additive in the form of halloysite and mullite on the thermal protection properties of a composite. The authors used CES R70 epoxy resin with CES H72 hardener, modified by varying the amount of powder [...] Read more.
This paper explores the impact of applying a powder additive in the form of halloysite and mullite on the thermal protection properties of a composite. The authors used CES R70 epoxy resin with CES H72 hardener, modified by varying the amount of powder additive. The composite samples were exposed to a mixture of combustible gases at a temperature of approximately 1000 °C. The primary parameters analyzed during this study were the temperature on the rear surface of the sample and the ablative mass loss of the tested material. The temperature increase on the rear surface of the sample, which was exposed to the hot stream of flammable gases, was measured for 120 s. Another key parameter considered in the data analysis was the ablative mass loss. The charred layer of the sample played a crucial role in this process, as it helped block oxygen diffusion from the boundary layer of the original material. This charred layer absorbed thermal energy until it reached a temperature at which it either oxidized or was mechanically removed due to the erosive effects of the heating factor. The incorporation of mullite reduced the rear surface temperature from 58.9 °C to 49.2 °C, and for halloysite, it was reduced the rear surface temperature to 49.8 °C. The ablative weight loss dropped from 57% to 18.9% for mullite and to 39.9% for halloysite. The speed of mass ablation was reduced from 77.9 mg/s to 25.2 mg/s (mullite) and 52.4 mg/s (halloysite), while the layer thickness loss decreased from 7.4 mm to 2.8 mm (mullite) and 4.4 mm (halloysite). This research is innovative in its use of halloysite and mullite as functional additives to enhance the ablative resistance of polymer composites under extreme thermal conditions. This novel approach not only contributes to a deeper understanding of composite behavior at high temperatures but also opens up new avenues for the development of advanced thermal protection systems. Potential applications of these materials include aerospace structures, fire-resistant components, and protective coatings in environments exposed to intense heat and flame. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

12 pages, 6808 KiB  
Communication
Research on Preventing High-Density Materials from Settling in Liquid Resin
by Lixin Xuan, Zhiqiang Wang, Xuan Yang, Xiao Wu, Junjiao Yang and Shijun Zheng
Materials 2025, 18(15), 3469; https://doi.org/10.3390/ma18153469 - 24 Jul 2025
Viewed by 191
Abstract
The applications of magnetic particles in anti-counterfeiting and anti-absorbing coatings and other functional materials are becoming increasingly widespread. However, due to their high density, the magnetic particles rapidly settle in organic resin media, significantly affecting the quality of the related products. Thereby, reducing [...] Read more.
The applications of magnetic particles in anti-counterfeiting and anti-absorbing coatings and other functional materials are becoming increasingly widespread. However, due to their high density, the magnetic particles rapidly settle in organic resin media, significantly affecting the quality of the related products. Thereby, reducing the density of the particles is essential. To achieve this goal, high-density magnetic particles were coated onto the surface of hollow silica using anion–cation composite technology. Further, the silane coupling agent N-[3-(trimethoxysilyl)propyl]ethylenediamine was bonded to the surface of magnetic particles to form an amino-covered interfacial layer with a pH value of 9.28, while acrylic acid was polymerized and coated onto the surface of hollow silica to form a carboxyl-covered interfacial layer with a pH value of 4.65. Subsequently, the two materials were compounded to obtain a low-density composite magnetic material. The morphologies and structural compositions of the magnetic composite materials were studied by FTIR, SEM, SEM-EDS, XRD, and other methods. The packing densities of the magnetic composite materials were compared using the particle packing method, thereby solving the problem of magnetic particles settling in the resin solution. Full article
Show Figures

Figure 1

25 pages, 3459 KiB  
Article
Phase Composition, Structure, and Microwave Absorption of Magnetron-Sputtered Co–C–Cr Multilayer Films
by Nadezhda Prokhorenkova, Almira Zhilkashinova, Madi Abilev, Leszek Łatka, Igor Ocheredko and Assel Zhilkashinova
Compounds 2025, 5(3), 27; https://doi.org/10.3390/compounds5030027 - 20 Jul 2025
Viewed by 230
Abstract
Multilayer thin films composed of cobalt (Co), carbon (C), and chromium (Cr) possess promising electromagnetic properties, yet the combined Co–C–Cr system remains underexplored, particularly regarding its performance as a microwave absorber. Existing research has primarily focused on binary Co–C or Co–Cr compositions, leaving [...] Read more.
Multilayer thin films composed of cobalt (Co), carbon (C), and chromium (Cr) possess promising electromagnetic properties, yet the combined Co–C–Cr system remains underexplored, particularly regarding its performance as a microwave absorber. Existing research has primarily focused on binary Co–C or Co–Cr compositions, leaving a critical knowledge gap in understanding how ternary multilayer architectures influence electromagnetic behavior. This study addresses this gap by investigating the structure, phase composition, and microwave absorption performance of Co–C–Cr multilayer coatings fabricated via magnetron sputtering onto porous silicon substrates. This study compares four-layer and eight-layer configurations to assess how multilayer architecture affects impedance matching, reflection coefficients, and absorption characteristics within the 8.2–12.4 GHz frequency range. Structural analyses using X-ray diffraction and transmission electron microscopy confirm the coexistence of amorphous and nanocrystalline phases, which enhance absorption through dielectric and magnetic loss mechanisms. Both experimental and simulated results show that increasing the number of layers improves impedance gradients and broadens the operational bandwidth. The eight-layer coatings demonstrate a more uniform absorption response, while four-layer structures exhibit sharper resonant minima. These findings advance the understanding of ternary multilayer systems and contribute to the development of frequency-selective surfaces and broadband microwave shielding materials. Full article
Show Figures

Figure 1

16 pages, 4297 KiB  
Article
The Influence of Absorber Properties on Operating Parameters and Electricity Generation in the Solar Chimney with a Vertical Collector
by Sylwia Berdowska
Energies 2025, 18(14), 3740; https://doi.org/10.3390/en18143740 - 15 Jul 2025
Viewed by 237
Abstract
The paper presents an analysis of the operating parameters of a solar chimney with a non-selective and selective absorbers. The analyzed system consisted of a rectangular vertical collector integrated with a chimney. The collector surface was 30 m2, while the installation [...] Read more.
The paper presents an analysis of the operating parameters of a solar chimney with a non-selective and selective absorbers. The analyzed system consisted of a rectangular vertical collector integrated with a chimney. The collector surface was 30 m2, while the installation was 80 m high. The calculations were performed for the climatic conditions in Katowice, Poland. The work included an analysis of parameters such as air temperature increase and its velocity and mass flow in the solar chimney system. The cumulative amounts of electricity that can be obtained in each month of the year were shown. A comparison of electricity generation in the installation with an absorber covered with a non-selective coating and selective coatings was made. The installation with an absorber with an absorption coefficient of 0.95 and an emission coefficient of 0.05 allowed for the generation of the largest amount of electricity during the year. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

19 pages, 3564 KiB  
Article
Surface Ice Detection Using Hyperspectral Imaging and Machine Learning
by Steve Vanlanduit, Arnaud De Vooght and Thomas De Kerf
Sensors 2025, 25(14), 4322; https://doi.org/10.3390/s25144322 - 10 Jul 2025
Viewed by 324
Abstract
Ice formation on critical infrastructure such as wind turbine blades can lead to severe performance degradation and safety hazards. This study investigates the use of hyperspectral imaging (HSI) combined with machine learning to detect and classify ice on various coated and uncoated surfaces. [...] Read more.
Ice formation on critical infrastructure such as wind turbine blades can lead to severe performance degradation and safety hazards. This study investigates the use of hyperspectral imaging (HSI) combined with machine learning to detect and classify ice on various coated and uncoated surfaces. Hyperspectral reflectance data were acquired using a push-broom HSI system under controlled laboratory conditions, with ice and rime ice generated using a thermoelectric cooling setup. Support Vector Machine (SVM) and Random Forest (RF) classifiers were trained on uncoated aluminum samples and evaluated on surfaces with different coatings to assess model generalization. Both models achieved high classification accuracy, though performance declined on black-coated surfaces due to increased absorbance by the coating. The study further examined the impact of spectral band reduction to simulate different sensor types (e.g., NIR vs. SWIR), revealing that model performance is sensitive to wavelength range, with SVM performing optimally in a reduced band set and RF benefiting from the full spectral range. A multiclass classification approach using RF successfully distinguished between glaze and rime ice, offering insights into more targeted mitigation strategies. The results confirm the potential of HSI and machine learning as robust tools for surface ice monitoring in safety-critical environments. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

37 pages, 5136 KiB  
Review
Advancements in Optical Fiber Sensors for pH Measurement: Technologies and Applications
by Alaa N. D. Alhussein, Mohammed R. T. M. Qaid, Timur Agliullin, Bulat Valeev, Oleg Morozov, Airat Sakhabutdinov and Yuri A. Konstantinov
Sensors 2025, 25(14), 4275; https://doi.org/10.3390/s25144275 - 9 Jul 2025
Viewed by 522
Abstract
Measuring pH is a critical parameter in environmental monitoring, biomedical diagnostics, food safety, and industrial processes. Optical fiber sensors have proven highly effective for pH detection due to their exceptional sensitivity, rapid response, and resistance to electromagnetic interference, making them well suited for [...] Read more.
Measuring pH is a critical parameter in environmental monitoring, biomedical diagnostics, food safety, and industrial processes. Optical fiber sensors have proven highly effective for pH detection due to their exceptional sensitivity, rapid response, and resistance to electromagnetic interference, making them well suited for real-time monitoring. This review offers a comprehensive analysis of recent advances in optical fiber-based pH sensors, covering key techniques such as fluorescence-based, absorbance-based, evanescent wave, and interferometric methods. Innovations in Fiber Bragg Grating and Surface Plasmon Resonance technologies are also examined. The discussion extends to the impact of pH-sensitive coatings—ranging from nanomaterials and polymeric films to graphene-based compounds—on enhancing sensor performance. Recent advancements have also enabled automation in data analysis and improvements in remote sensing capabilities. The review further compares the economic viability of optical fiber sensors with traditional electrochemical methods, while acknowledging persistent issues such as temperature cross-sensitivity, long-term stability, and fabrication costs. Overall, recent developments have broadened the functionality and application scope of these sensors by improving efficiency, accuracy, and scalability. Future research directions are outlined, including advanced optical interrogation techniques, such as Addressed Fiber Bragg Structures (AFBSs), microwave photonic integration, and optimized material selection. These approaches aim to enhance performance, reduce costs, and enable the broader adoption of optical fiber pH sensors. Full article
(This article belongs to the Special Issue Feature Review Papers in Optical Sensors)
Show Figures

Figure 1

18 pages, 6277 KiB  
Article
Fabrication and Characterization of a PZT-Based Touch Sensor Using Combined Spin-Coating and Sputtering Methods
by Melih Ozden, Omer Coban and Tevhit Karacali
Sensors 2025, 25(13), 3938; https://doi.org/10.3390/s25133938 - 24 Jun 2025
Viewed by 378
Abstract
This study presents the successful fabrication of lead zirconate titanate (PZT) thin films on silicon (Si) substrates using a hybrid deposition method combining spin-coating and RF sputtering techniques. Initially, a PZT layer was deposited through four successive spin-coating cycles, followed by an additional [...] Read more.
This study presents the successful fabrication of lead zirconate titanate (PZT) thin films on silicon (Si) substrates using a hybrid deposition method combining spin-coating and RF sputtering techniques. Initially, a PZT layer was deposited through four successive spin-coating cycles, followed by an additional layer formed via RF sputtering. The resulting multilayer structure was annealed at 700 °C for 2 h to improve crystallinity. Comprehensive material characterization was conducted using XRD, SEM, cross-sectional SEM, EDX, and UV–VIS absorbance spectroscopy. The analyses confirmed the formation of a well-crystallized perovskite phase, a uniform surface morphology, and an optical band gap of approximately 3.55 eV, supporting its suitability for sensing applications. Building upon these findings, a multilayer PZT-based touch sensor was fabricated and electrically characterized. Low-frequency I–V measurements demonstrated consistent and repeatable polarization behavior under cyclic loading conditions. In addition, |Z|–f measurements were performed to assess the sensor’s dynamic electrical behavior. Although expected dielectric responses were observed, the absence of distinct anti-resonance peaks suggested non-idealities linked to Ag+ ion diffusion from the electrode layers. To account for these effects, the classical Butterworth–Van Dyke (BVD) equivalent circuit model was extended with additional inductive and resistive components representing parasitic pathways. This modified model provided excellent agreement with the measured impedance and phase data, offering deeper insight into the interplay between material degradation and electrical performance. Overall, the developed sensor structure exhibits strong potential for use in piezoelectric sensing applications, particularly for tactile and pressure-based interfaces. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Graphical abstract

14 pages, 2187 KiB  
Article
UV-Shielding Biopolymer Coatings Loaded with Bioactive Compounds for Food Packaging Applications
by Matteo Gennaro, Duygu Büyüktaş, Daniele Carullo, Andrea Pinto, Sabrina Dallavalle and Stefano Farris
Coatings 2025, 15(7), 741; https://doi.org/10.3390/coatings15070741 - 21 Jun 2025
Viewed by 561
Abstract
Four natural bioactive compounds with UV-absorbing properties—curcumin, quercetin, caffeic acid, and hymecromone—were incorporated into pectin-based coatings deposited on oriented polypropylene (OPP) to develop packaging films with UV-shielding capabilities. The effects of both bioactive compounds (used individually or in combination) and coating thickness (δ [...] Read more.
Four natural bioactive compounds with UV-absorbing properties—curcumin, quercetin, caffeic acid, and hymecromone—were incorporated into pectin-based coatings deposited on oriented polypropylene (OPP) to develop packaging films with UV-shielding capabilities. The effects of both bioactive compounds (used individually or in combination) and coating thickness (δ = 0.12–1.2 μm) on the optical properties (UV-Vis transmittance and haze) of the coated OPP samples were investigated. Coating deposition enhanced the UV-barrier properties in relation to the type of bioactive compound, following the order of caffeic acid > hymecromone > curcumin > quercetin. Regardless of the type of bioactive compound used, no significant changes were observed in clarity, haze, and tensile parameters of OPP, whereas the pectin coatings dramatically improved the oxygen barrier performance of the plastic substrate. Additionally, a greater coating thickness resulted in a lower UV-light transmittance of coated PP films. Although the combination of hymecromone and caffeic acid did not exhibit a synergistic effect, it demonstrated an additive benefit, effectively broadening the wavelength range of UV protection in the final packaging materials. While this study highlights that a performance gap remains compared to commercially available UV-shielding materials, it underscores the potential of replacing synthetic UV-absorbing additives with natural compounds through coating technologies rather than masterbatch incorporation. Full article
Show Figures

Graphical abstract

20 pages, 4822 KiB  
Article
Enhanced Visualization of Erythrocytes Through Photoluminescence Using NaYbF4:Yb3+,Er3+ Nanoparticles
by Vivian Torres-Vera, Lorena M. Coronado, Ana Patricia Valencia, Alejandro Von Chong, Esteban Rua, Michelle Ng, Jorge Rubio-Retama, Carmenza Spadafora and Ricardo Correa
Biosensors 2025, 15(7), 396; https://doi.org/10.3390/bios15070396 - 20 Jun 2025
Viewed by 644
Abstract
Rare-earth nanoparticles (RE-NPs), particularly NaYF4:Yb3+,Er3+, have emerged as a promising class of photoluminescent probes for bioimaging and sensing applications. These nanomaterials are characterized by their ability to absorb low-energy photons and emit higher-energy photons through an upconversion [...] Read more.
Rare-earth nanoparticles (RE-NPs), particularly NaYF4:Yb3+,Er3+, have emerged as a promising class of photoluminescent probes for bioimaging and sensing applications. These nanomaterials are characterized by their ability to absorb low-energy photons and emit higher-energy photons through an upconversion luminescence process. This process can be triggered by continuous-wave (CW) light excitation, providing a unique optical feature that is not exhibited by native biomolecules. However, the application of upconversion nanoparticles (UCNPs) in bioimaging requires systematic optimization to maximize the signal and ensure biological compatibility. In this work, we synthesized hexagonal-phase UCNPs (average diameter: 29 ± 3 nm) coated with polyacrylic acid (PAA) and established the optimal conditions for imaging human erythrocytes. The best results were obtained after a 4-h incubation in 100 mM HEPES buffer, using a nanoparticle concentration of 0.01 mg/mL and a laser current intensity of 250–300 mA. Under these conditions, the UCNPs exhibited minimal cytotoxicity and were found to predominantly localize at the erythrocyte membrane periphery, indicating surface adsorption rather than internalization. Additionally, a machine learning model (Random Forest) was implemented that classified the photoluminescent signal with 80% accuracy and 83% precision, with the signal intensity identified as the most relevant feature. This study establishes a quantitative and validated protocol that balances signal strength with cell integrity, enabling robust and automated image analysis. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

20 pages, 23355 KiB  
Article
Unveiling Thickness-Dependent Oxidation Effect on Optical Response of Room Temperature RF-Sputtered Nickel Ultrathin Films on Amorphous Glass: An Experimental and FDTD Investigation
by Dylan A. Huerta-Arteaga, Mitchel A. Ruiz-Robles, Srivathsava Surabhi, S. Shiva Samhitha, Santhosh Girish, María J. Martínez-Carreón, Francisco Solís-Pomar, A. Martínez-Huerta, Jong-Ryul Jeong and Eduardo Pérez-Tijerina
Materials 2025, 18(12), 2891; https://doi.org/10.3390/ma18122891 - 18 Jun 2025
Viewed by 486
Abstract
Nickel (Ni) ultrathin films exhibit phase-dependent electrical, magnetic, and optical characteristics that are significantly influenced by deposition methods. However, these films are inherently prone to rapid oxidation, with the oxidation rate dependent on substrate, temperature, and deposition parameters. The focus of this research [...] Read more.
Nickel (Ni) ultrathin films exhibit phase-dependent electrical, magnetic, and optical characteristics that are significantly influenced by deposition methods. However, these films are inherently prone to rapid oxidation, with the oxidation rate dependent on substrate, temperature, and deposition parameters. The focus of this research is to investigate the temporal oxidation of RF-sputtered Ni ultrathin films on Corning glass under ambient atmospheric conditions and its impact on their structural, surface, and optical characteristics. Controlled film thicknesses were achieved through precise manipulation of deposition parameters, enabling the analysis of oxidation-induced modifications. Atomic force microscopy (AFM) revealed that films with high structural integrity and surface uniformity are exhibiting roughness values (Rq) from 0.679 to 4.379 nm of corresponding thicknesses ranging from 4 to 85 nm. Scanning electron microscopy (SEM) validated the formation of Ni grains interspersed with NiO phases, facilitating SPR-like effects. UV-visible spectroscopy is demonstrating thickness-dependent spectral (plasmonic peak) shifts. Finite Difference Time Domain (FDTD) simulations corroborate the observed thickness-dependent optical absorbance and the resultant shifts in the absorbance-induced plasmonic peak position and bandgap. Increased NiO presence primarily drives the enhancement of electromagnetic (EM) field localization and the direct impact on power absorption efficiency, which are modulated by the tunability of the plasmonic peak position. Our work demonstrates that controlled fabrication conditions and optimal film thickness selection allow for accurate manipulation of the Ni oxidation process, significantly altering their optical properties. This enables the tailoring of these Ni films for applications in transparent conductive electrodes (TCEs), magneto-optic (MO) devices, spintronics, wear-resistant coatings, microelectronics, and photonics. Full article
Show Figures

Graphical abstract

14 pages, 1812 KiB  
Article
Influence of Rigid Polyurethane Foam Production Technology on Cryogenic Water Uptake
by Vladimir Yakushin, Vanesa Dhalivala, Laima Vevere and Ugis Cabulis
Polymers 2025, 17(12), 1669; https://doi.org/10.3390/polym17121669 - 16 Jun 2025
Viewed by 472
Abstract
This study explores how production technology influences spray-applied rigid polyurethane (PUR) foam insulation’s cryogenic performance. In cryogenic applications such as liquid gas storage, insulation must minimise heat transfer and resist moisture ingress under severe thermal gradients. Experimental aluminium vessels were insulated with PUR [...] Read more.
This study explores how production technology influences spray-applied rigid polyurethane (PUR) foam insulation’s cryogenic performance. In cryogenic applications such as liquid gas storage, insulation must minimise heat transfer and resist moisture ingress under severe thermal gradients. Experimental aluminium vessels were insulated with PUR foam of varying thicknesses and surface conditions—rough, machined smooth, and with a urea-based protective coating—and then tested using dynamic boil-off of liquid nitrogen (LN2). Foam properties, including adhesion, mechanical strength, thermal expansion, thermal conductivity, and closed-cell content, were evaluated. The results revealed that thicker insulation reduced both effective thermal conductivity and moisture uptake. Although the urea-coated vessel showed minimal water absorption, the coating increased overall thermal conductivity due to its heat conduction and condensation behaviour. Moisture was primarily absorbed near the foam surface, and no cumulative effects were observed during repeated tests. The effective thermal conductivity was determined by interpolating boil-off data, confirming that insulation performance strongly depends on thickness, surface condition, and environmental humidity. These findings provide valuable guidance for the design and application of PUR foam insulation in cryogenic environments. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

27 pages, 7536 KiB  
Article
Laser-Patterned and Photodeposition Ag-Functionalized TiO2 Grids on ITO Glass for Enhanced Photocatalytic Degradation
by Bozhidar I. Stefanov
Coatings 2025, 15(6), 709; https://doi.org/10.3390/coatings15060709 - 12 Jun 2025
Viewed by 643
Abstract
Laser patterning of sol–gel-derived TiO2 coatings offers a promising route for fabricating TiO2-based devices. Conventional approaches require high-power CO2 lasers, whereas herein is demonstrated an alternative method using a low-cost, blue laser (λ = 445 nm, 1250 mW) to [...] Read more.
Laser patterning of sol–gel-derived TiO2 coatings offers a promising route for fabricating TiO2-based devices. Conventional approaches require high-power CO2 lasers, whereas herein is demonstrated an alternative method using a low-cost, blue laser (λ = 445 nm, 1250 mW) to pattern TiO2 layers derived from a visible-light-absorbing titanium salicylate sol. Grid-shaped TiO2 patterns (~250 μm line, 500 μm pitch) were fabricated on indium tin oxide (ITO)-coated glass substrates via dip-coating, laser patterning, selective solvent removal, and annealing at 450 °C. Photocatalytic performance was enhanced through Ag photodeposition from a 5 mM Ag+ aqueous electrolyte under UV doses of 5, 10, and 20 J cm−2. Structural and compositional analysis (XRD, SEM-EDS, AFM, UV–Vis, Raman) confirmed the formation of crystalline anatase TiO2 and Ag incorporation proportional to the dose. Methylene blue (MB) photooxidation experiments revealed that Ag-functionalized samples showed up to 20% higher degradation efficiency and improved photocatalytic stability across eight consecutive MB oxidation cycles. Additional photoelectrochemical measurements confirmed the formation of a TiO2/Ag Schottky junction, while surface-enhanced Raman scattering (SERS) signals observed on Ag/TiO2 grids enabled the detection of MB adsorbates. Full article
(This article belongs to the Special Issue Electrochemical Properties and Applications of Thin Films)
Show Figures

Figure 1

8 pages, 536 KiB  
Communication
Fano Resonance in Ion-Bombarded Au-SiO2 Nanocomposites: Analysis of Mode Coupling and Optical Properties
by Padmaja Guggilla, Sharvare Palwai, Angela Davis, Jonathan Lassiter, Satilmis Budak and Clyde Varner
Coatings 2025, 15(5), 605; https://doi.org/10.3390/coatings15050605 - 19 May 2025
Viewed by 378
Abstract
This study investigates the optical properties of ion-bombarded Au-SiO2 nanocomposites, focusing on the enhanced Fano resonance observed in these samples. The formation of nanocrystals and nanocavities due to ion bombardment leads to significant interactions between plasmonic and vibrational modes, resulting in pronounced [...] Read more.
This study investigates the optical properties of ion-bombarded Au-SiO2 nanocomposites, focusing on the enhanced Fano resonance observed in these samples. The formation of nanocrystals and nanocavities due to ion bombardment leads to significant interactions between plasmonic and vibrational modes, resulting in pronounced Fano resonance in the strong coupling regime. The study aims to explain the closer spacing of modes, the elevated baseline absorbance, and the asymmetric lineshape observed in the ion-bombarded samples. A detailed analysis is provided, comparing these findings with other sample preparations, such as Au-coated SiO2 and 20 nm Au colloidal on SiO2. The implications of these results for understanding plasmonic behavior and their potential applications in nanophotonics are discussed. Full article
Show Figures

Figure 1

15 pages, 11950 KiB  
Article
A Fast and Efficient Hydrogen Chloride Sensor Based on a Polymer Composite Film Using a Novel Schiff-Based Triphenylamine Molecule as the Probe
by Hao Lv, Yaning Guo, Yinfeng Han, Jiaxin Ye, Jian Xiao and Xiaobing Hu
Materials 2025, 18(10), 2291; https://doi.org/10.3390/ma18102291 - 15 May 2025
Viewed by 404
Abstract
Hydrogen chloride (HCl) is one of the most hazardous air pollutants and can cause significant damage to human health and the environment. Therefore, the continuous quantitative monitoring of HCl is of great practical importance. In this work, a novel triphenylamine derivative, named TPTc-DBD, [...] Read more.
Hydrogen chloride (HCl) is one of the most hazardous air pollutants and can cause significant damage to human health and the environment. Therefore, the continuous quantitative monitoring of HCl is of great practical importance. In this work, a novel triphenylamine derivative, named TPTc-DBD, with a Schiff base structure was synthesized. The molecular structure of TPTc-DBD was determined by NMR analysis, FTIR analysis and single crystal diffraction analysis. On this basis, a porous polyvinylidene fluoride (PVDF) film containing TPTc-DBD was then prepared by a spin-coating method, and its sensitivity to HCl was evaluated by naked eye and ultraviolet-visible absorption spectrum, respectively. The detection limit of the composite porous film for HCl molecules was determined to be 5.8 mg/m3. Interestingly, the composite films absorbing HCl can be reactivated by NH3, which provides a cycle detection ability for HCl. After five testing cycles, the detection error remained below 1%. Furthermore, the microstructure of the film remained unchanged, highlighting its exceptional detection performance for HCl. Full article
Show Figures

Graphical abstract

16 pages, 6706 KiB  
Article
Enhanced Efficiency and Stability of Perovskite Solar Cells Through Neodymium-Doped Upconversion Nanoparticles with TiO2 Coating
by Masfer Alkahtani, Bayan Alshehri, Hadeel Alrashood, Latifa Alshehri, Yahya A. Alzahrani, Sultan Alenzi, Ibtisam S. Almalki, Ghazal S. Yafi, Abdulmalik M. Alessa, Faisal S. Alghannam, Abdulaziz Aljuwayr, Nouf K. AL-Saleem, Anwar Alanazi and Masud Almalki
Molecules 2025, 30(10), 2166; https://doi.org/10.3390/molecules30102166 - 14 May 2025
Viewed by 763
Abstract
This study presents an effective strategy to enhance the efficiency and stability of perovskite solar cells (PSCs) by integrating neodymium-doped upconversion nanoparticles (UCNPs) coated with a TiO2 shell into the mesoporous electron transport layer. The incorporation of neodymium (Nd3+) as [...] Read more.
This study presents an effective strategy to enhance the efficiency and stability of perovskite solar cells (PSCs) by integrating neodymium-doped upconversion nanoparticles (UCNPs) coated with a TiO2 shell into the mesoporous electron transport layer. The incorporation of neodymium (Nd3+) as a novel sensitizer shifts the near-infrared (NIR) absorption band away from the water vapor absorption region in the solar spectrum. This modification enables UCNPs to efficiently convert NIR light into ultraviolet (UV) and blue wavelengths, which are readily absorbed by TiO2, generating additional charge carriers and improving photovoltaic performance. The optimized PSCs, fabricated by blending 30% UCNPs@TiO2 with commercial TiO2 paste, achieved a peak power conversion efficiency (PCE) of 21.71%, representing a 20.4% improvement over the control (18.04%). This enhancement included a 0.9% increase in the open-circuit voltage (Voc), a 6.6% rise in the short-circuit current density (Jsc), and an 11.9% boost in the fill factor (FF). Additionally, the optimized PSCs exhibited remarkable stability, retaining over 90% of their initial PCE after 900 h in humid conditions, compared to only 70% for the control. These improvements result from enhanced light absorption, reduced moisture infiltration, and lower defect-related recombination. This approach provides a promising pathway for developing highly efficient and durable PSCs. Full article
(This article belongs to the Special Issue 5th Anniversary of Applied Chemistry Section)
Show Figures

Figure 1

Back to TopTop