Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = a stable vacuum state

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 457 KB  
Article
Examples for BPS Solitons Destabilized by Quantum Effects
by Willem J. Meyer and Herbert Weigel
Symmetry 2025, 17(8), 1229; https://doi.org/10.3390/sym17081229 - 4 Aug 2025
Viewed by 360
Abstract
We investigate serval models for two scalar fields in one space dimension with topologically stable solitons that are constructed from BPS equations. The asymptotic behavior of these solitons fully determines their classical energies. A particular feature of the considered models is that there [...] Read more.
We investigate serval models for two scalar fields in one space dimension with topologically stable solitons that are constructed from BPS equations. The asymptotic behavior of these solitons fully determines their classical energies. A particular feature of the considered models is that there are several translationally invariant ground states that we call primary and secondary vacua. The former are those that are asymptotically assumed by the solitons. Solitons that occupy a secondary vacuum in finite but eventually large portions of space are classically degenerate. Thus the quantum contributions to the energies are decisive for the energetically favored soliton. While some of these solitons were constructed previously, we, for the first time, compute the leading (one-loop) quantum contribution their energies. In all cases considered we find that this contribution is not bounded from below and that it is the more negative the larger the region is in which the soliton approaches a secondary vacuum. This corroborates the conjecture, earlier inferred from the Shifman-Voloshin soliton, that the availability of secondary vacua destabilizes these solitons on the quantum level. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

28 pages, 3292 KB  
Article
Optimization of the Quality of Reclaimed Water from Urban Wastewater Treatment in Arid Region: A Zero Liquid Discharge Pilot Study Using Membrane and Thermal Technologies
by Maria Avramidi, Constantinos Loizou, Maria Kyriazi, Dimitris Malamis, Katerina Kalli, Angelos Hadjicharalambous and Constantina Kollia
Membranes 2025, 15(7), 199; https://doi.org/10.3390/membranes15070199 - 1 Jul 2025
Cited by 1 | Viewed by 1356
Abstract
With water availability being one of the world’s major challenges, this study aims to propose a Zero Liquid Discharge (ZLD) system for treating saline effluents from an urban wastewater treatment plant (UWWTP), thereby supplementing into the existing water cycle. The system, which employs [...] Read more.
With water availability being one of the world’s major challenges, this study aims to propose a Zero Liquid Discharge (ZLD) system for treating saline effluents from an urban wastewater treatment plant (UWWTP), thereby supplementing into the existing water cycle. The system, which employs membrane (nanofiltration and reverse osmosis) and thermal technologies (multi-effect distillation evaporator and vacuum crystallizer), has been installed and operated in Cyprus at Larnaca’s WWTP, for the desalination of the tertiary treated water, producing high-quality reclaimed water. The nanofiltration (NF) unit at the plant operated with an inflow concentration ranging from 2500 to 3000 ppm. The performance of the installed NF90-4040 membranes was evaluated based on permeability and flux. Among two NF operation series, the second—operating at 75–85% recovery and 2500 mg/L TDS—showed improved membrane performance, with stable permeability (7.32 × 10−10 to 7.77 × 10−10 m·s−1·Pa−1) and flux (6.34 × 10−4 to 6.67 × 10−4 m/s). The optimal NF operating rate was 75% recovery, which achieved high divalent ion rejection (more than 99.5%). The reverse osmosis (RO) unit operated in a two-pass configuration, achieving water recoveries of 90–94% in the first pass and 76–84% in the second. This setup resulted in high rejection rates of approximately 99.99% for all major ions (Cl, Na+, Ca2+, and Mg2+), reducing the permeate total dissolved solids (TDS) to below 35 mg/L. The installed multi-effect distillation (MED) unit operated under vacuum and under various inflow and steady-state conditions, achieving over 60% water recovery and producing high-quality distillate water (TDS < 12 mg/L). The vacuum crystallizer (VC) further concentrated the MED concentrate stream (MEDC) and the NF concentrate stream (NFC) flows, resulting in distilled water and recovered salts. The MEDC process produced salts with a purity of up to 81% NaCl., while the NFC stream produced mixed salts containing approximately 46% calcium salts (mainly as sulfates and chlorides), 13% magnesium salts (mainly as sulfates and chlorides), and 38% sodium salts. Overall, the ZLD system consumed 12 kWh/m3, with thermal units accounting for around 86% of this usage. The RO unit proved to be the most energy-efficient component, contributing 71% of the total water recovery. Full article
(This article belongs to the Special Issue Applications of Membrane Distillation in Water Treatment and Reuse)
Show Figures

Figure 1

19 pages, 17085 KB  
Article
Constructing Multifunctional Composite Paper Coated with Polypyrrole@Lignocellulosic Slurry with Humidity Sensing, Conductivity, Antibacterial, and Photothermal Properties
by Qingrun Ni, Yating Wang, Shoujuan Wang, Magdi E. Gibril and Fangong Kong
Polymers 2025, 17(7), 898; https://doi.org/10.3390/polym17070898 - 27 Mar 2025
Viewed by 998
Abstract
A multifunctional paper-based composite of paper coated with a polypyrrole@lignocellulosic slurry (PPy@LS) and carboxymethyl cellulose (CMC) was developed. PPy@LS was prepared via the polymerization of pyrrole onto a lignocellulosic slurry derived from hemp stalks prepared using deep eutectic solvents. The PPy@LS slurry was [...] Read more.
A multifunctional paper-based composite of paper coated with a polypyrrole@lignocellulosic slurry (PPy@LS) and carboxymethyl cellulose (CMC) was developed. PPy@LS was prepared via the polymerization of pyrrole onto a lignocellulosic slurry derived from hemp stalks prepared using deep eutectic solvents. The PPy@LS slurry was mixed with the required amount of CMC and vacuum-filtered onto filter paper to fabricate the composite (PPy@LS/CMC). The resulting composite paper exhibited excellent multifunctional properties, including electrical conductivity, photothermal conversion, and antibacterial properties. These properties are stable against external environments, such as water and abrasion, due to the addition of CMC. The electrical conductivity of PPy@LS/CMC varied in the dry (1.6 × 10−4 S/cm) and wet (4.8 × 10−6 S/cm) states, suggesting its potential application in humidity sensing. Notably, the PPy@LS/CMC paper achieved significant photothermal activity under light irradiation, as demonstrated by the measured surface temperature exceeding 80 °C in 10 min. Moreover, the composite paper exhibited > 99.9% antibacterial activity against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). The combination of the inherent characteristics of filter paper along with the photothermal property of PPy enable the PPy@LS/CMC composite appropriate for solar interfacial evaporation application. These multifunctional composite papers with innovative combinations of properties have great potential for applications in smart packaging, humidity sensing, biomedicine, and solar-driven water purifications. Full article
Show Figures

Graphical abstract

16 pages, 6182 KB  
Article
Electrostatic MEMS Two-Dimensional Scanning Micromirrors Integrated with Piezoresistive Sensors
by Yameng Shan, Lei Qian, Kaixuan He, Bo Chen, Kewei Wang, Wenchao Li and Wenjiang Shen
Micromachines 2024, 15(12), 1421; https://doi.org/10.3390/mi15121421 - 26 Nov 2024
Cited by 7 | Viewed by 4121
Abstract
The MEMS scanning micromirror requires angle sensors to provide real-time angle feedback during operation, ensuring a stable and accurate deflection of the micromirror. This paper proposes a method for integrating piezoresistive sensors on the torsion axis of electrostatic MEMS micromirrors to detect the [...] Read more.
The MEMS scanning micromirror requires angle sensors to provide real-time angle feedback during operation, ensuring a stable and accurate deflection of the micromirror. This paper proposes a method for integrating piezoresistive sensors on the torsion axis of electrostatic MEMS micromirrors to detect the deflection angle. The design uses a multi-layer bonding process to realize a vertical comb-driven structure. The device structure is designed as a double-layer structure, in which the top layer is the ground layer and integrates with piezoresistive sensor. This approach avoids crosstalk between the applied drive voltage and the piezoresistive sensor. This design also optimizes the sensor’s size, improving sensitivity. A MEMS two-dimensional (2D) scanning micromirror with a 1 mm mirror diameter was designed and fabricated. The test results indicated that, in a vacuum environment, the torsional resonance frequencies of the micromirror’s fast axis and slow axis were 17.68 kHz and 2.225 kHz, respectively. When driving voltages of 33 V and 40 V were applied to the fast axis and slow axis of the micromirror, the corresponding optical scanning angles were 55° and 45°, respectively. The piezoresistive sensor effectively detects the micromirror’s deflection state, and optimizing the sensor’s size achieved a sensitivity of 13.87 mV/V/°. The output voltage of the piezoresistive sensor shows a good linear relationship with the micromirror’s deflection angle, enabling closed-loop feedback control of the electrostatic MEMS micromirror. Full article
(This article belongs to the Special Issue Micro/Nanostructures in Sensors and Actuators, 2nd Edition)
Show Figures

Figure 1

16 pages, 7702 KB  
Article
Fabrication and Characterization of Fe-Doped SnSe Flakes Using Chemical Vapor Deposition
by Florinel Sava, Claudia Mihai, Angel-Theodor Buruiana, Amelia Elena Bocirnea and Alin Velea
Crystals 2024, 14(9), 790; https://doi.org/10.3390/cryst14090790 - 6 Sep 2024
Cited by 3 | Viewed by 1828
Abstract
The development of two-dimensional (2D) materials has gained significant attention due to their unique properties and potential applications in advanced electronics. This study investigates the fabrication and characterization of Fe-doped SnSe semiconductors using an optimized chemical vapor deposition (CVD) method. Fe doping was [...] Read more.
The development of two-dimensional (2D) materials has gained significant attention due to their unique properties and potential applications in advanced electronics. This study investigates the fabrication and characterization of Fe-doped SnSe semiconductors using an optimized chemical vapor deposition (CVD) method. Fe doping was achieved by dissolving FeCl3 in deionized water, applying it to SnSe powder, and conducting vacuum drying followed by high-temperature CVD at 820 °C. Structural and morphological properties were characterized using optical microscopy, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). Results revealed differently shaped flakes, including rectangles, discs and wires, influenced by Fe content. Micro-Raman spectroscopy showed significant vibrational mode shifts, indicating structural changes. X-ray photoelectron spectroscopy (XPS) confirmed the presence of Sn-Se and Fe-Se bonds. Electrical characterization of the memristive devices showed stable switching between high- and low-resistance states, with a threshold voltage of 1.6 V. These findings suggest that Fe-doped SnSe is a promising material for non-volatile memory and neuromorphic computing applications. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

29 pages, 429 KB  
Review
A Review of Stable, Traversable Wormholes in f(R) Gravity Theories
by Ramesh Radhakrishnan, Patrick Brown, Jacob Matulevich, Eric Davis, Delaram Mirfendereski and Gerald Cleaver
Symmetry 2024, 16(8), 1007; https://doi.org/10.3390/sym16081007 - 7 Aug 2024
Cited by 12 | Viewed by 11743
Abstract
It has been proven that in standard Einstein gravity, exotic matter (i.e., matter violating the pointwise and averaged Weak and Null Energy Conditions) is required to stabilize traversable wormholes. Quantum field theory permits these violations due to the quantum coherent effects found in [...] Read more.
It has been proven that in standard Einstein gravity, exotic matter (i.e., matter violating the pointwise and averaged Weak and Null Energy Conditions) is required to stabilize traversable wormholes. Quantum field theory permits these violations due to the quantum coherent effects found in any quantum field. Even reasonable classical scalar fields violate the energy conditions. In the case of the Casimir effect and squeezed vacuum states, these violations have been experimentally proven. It is advantageous to investigate methods to minimize the use of exotic matter. One such area of interest is extended theories of Einstein gravity. It has been claimed that in some extended theories, stable traversable wormholes solutions can be found without the use of exotic matter. There are many extended theories of gravity, and in this review paper, we first explore f(R) theories and then explore some wormhole solutions in f(R) theories, including Lovelock gravity and Einstein Dilaton Gauss–Bonnet (EdGB) gravity. For completeness, we have also reviewed ‘Other wormholes’ such as Casimir wormholes, dark matter halo wormholes, thin-shell wormholes, and Nonlocal Gravity (NLG) wormholes, where alternative techniques are used to either avoid or reduce the amount of exotic matter that is required. Full article
(This article belongs to the Special Issue Symmetry in Gravity Theories and Cosmology)
18 pages, 3639 KB  
Article
Control Optimization for Heat Source Temperature of Vacuum Belt Drying System Based on Fuzzy Control and Integral Control
by Youdong Wang, Peng Xu, Zhentao Zhang, Junling Yang, Jitian Song, Xiaoqiong Li and Qing He
Energies 2024, 17(15), 3824; https://doi.org/10.3390/en17153824 - 2 Aug 2024
Cited by 4 | Viewed by 1927
Abstract
The heating source temperature of the vacuum belt system (VBD) is an important factor affecting the drying rate and the material quality. However, it has problems with large fluctuation, instability, and hysteresis due to interference from various factors, which increases the drying time [...] Read more.
The heating source temperature of the vacuum belt system (VBD) is an important factor affecting the drying rate and the material quality. However, it has problems with large fluctuation, instability, and hysteresis due to interference from various factors, which increases the drying time and energy consumption. To address these issues, this study proposes fuzzy control and integral control synergistic (FCICS) control to realize temperature regulation of the VBD system, enhancing the performance and stability of the heating source. Simulations were conducted in Simulink, and an experimental verification was carried out based on the constructed experimental system. The results show that the FCICS control outperforms the conventional PID control in terms of material warming rate, temperature stability, and energy consumption, and the transient and stable state performance is improved. Specifically, the material warming rate increased by 15%, temperature stability improved by 20%, and energy consumption decreased by more than 1.74% with the FCICS control strategy. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

22 pages, 34176 KB  
Article
Improving Sowing Uniformity of a Maize High-Speed Precision Seeder by Incorporating Energy Dissipator
by Rui Liu, Guangwei Wu, Jianjun Dong, Bingxin Yan and Zhijun Meng
Agriculture 2024, 14(8), 1237; https://doi.org/10.3390/agriculture14081237 - 26 Jul 2024
Cited by 2 | Viewed by 1640
Abstract
To enhance the sowing uniformity of the vacuum seeder in the high-speed working state, a flexible energy-dissipation receiving device was designed. We analyzed the angle and velocity of seed ejection from the seed-metering device. Additionally, we explored the rheological properties of four different [...] Read more.
To enhance the sowing uniformity of the vacuum seeder in the high-speed working state, a flexible energy-dissipation receiving device was designed. We analyzed the angle and velocity of seed ejection from the seed-metering device. Additionally, we explored the rheological properties of four different sodium alginate (SA) solutions. Combined with high-speed camera technology, the movement characteristics of four kinds of energy dissipators were revealed, and it was determined that the fabrication material of the energy dissipator is colloid with an SA percentage of 10%. The influence of the thickness of the energy dissipator body, impact velocity, and impact angle on the pre- and post-impact velocity difference and end-of-motion transverse displacement value was investigated. The quadratic regression equation between experimental factors and experimental indexes was established, and it was determined that the thickness of the energy dissipator was 7 mm. Field experiment results showed that the working speed was 12~16 km·h−1, the leakage rate was less than 6.83%, the multiple rates were less than 0.97%, the qualified rate was stable at more than 92.4%, and the qualified grain distance variation rate was stable at less than 16.57%. The designed energy-dissipation device is beneficial to improve the overall working performance of high-speed precision seeders. In the future, if the reliability and long-term performance of the energy-dissipation device are further improved, it will be able to meet the requirements for precision seeding under high-speed conditions. Full article
Show Figures

Figure 1

11 pages, 1749 KB  
Article
Flexible Substrate-Compatible and Efficiency-Improved Quantum-Dot Light-Emitting Diodes with Reduced Annealing Temperature of NiOx Hole-Injecting Layer
by Shuai-Hao Xu, Jin-Zhe Xu, Ying-Bo Tang, Shu-Guang Meng, Wei-Zhi Liu, Dong-Ying Zhou and Liang-Sheng Liao
Molecules 2024, 29(12), 2828; https://doi.org/10.3390/molecules29122828 - 13 Jun 2024
Cited by 3 | Viewed by 2413
Abstract
The growing demand for wearable and attachable displays has sparked significant interest in flexible quantum-dot light-emitting diodes (QLEDs). However, the challenges of fabricating and operating QLEDs on flexible substrates persist due to the lack of stable and low-temperature processable charge-injection/-transporting layers with aligned [...] Read more.
The growing demand for wearable and attachable displays has sparked significant interest in flexible quantum-dot light-emitting diodes (QLEDs). However, the challenges of fabricating and operating QLEDs on flexible substrates persist due to the lack of stable and low-temperature processable charge-injection/-transporting layers with aligned energy levels. In this study, we utilized NiOx nanoparticles that are compatible with flexible substrates as a hole-injection layer (HIL). To enhance the work function of the NiOx HIL, we introduced a self-assembled dipole modifier called 4-(trifluoromethyl)benzoic acid (4–CF3–BA) onto the surface of the NiOx nanoparticles. The incorporation of the dipole molecules through adsorption treatment has significantly changed the wettability and electronic characteristics of NiOx nanoparticles, resulting in the formation of NiO(OH) at the interface and a shift in vacuum level. The alteration of surface electronic states of the NiOx nanoparticles not only improves the carrier balance by reducing the hole injection barrier but also prevents exciton quenching by passivating defects in the film. Consequently, the NiOx-based red QLEDs with interfacial modification demonstrate a maximum current efficiency of 16.1 cd/A and a peak external quantum efficiency of 10.3%. This represents a nearly twofold efficiency enhancement compared to control devices. The mild fabrication requirements and low annealing temperatures suggest potential applications of dipole molecule-modified NiOx nanoparticles in flexible optoelectronic devices. Full article
Show Figures

Figure 1

17 pages, 6291 KB  
Article
Influence of Shaped Hole and Seed Disturbance on the Precision of Bunch Planting with the Double-Hole Rice Vacuum Seed Meter
by Cheng Qian, Siyu He, Wei Qin, Youcong Jiang, Zishun Huang, Meilin Zhang, Minghua Zhang, Wenwu Yang and Ying Zang
Agronomy 2024, 14(4), 768; https://doi.org/10.3390/agronomy14040768 - 8 Apr 2024
Cited by 6 | Viewed by 1689
Abstract
The double-hole rice vacuum seed meter is critical equipment for the planting precision of rice direct seeding. The effects of shaped holes and seed disturbance on the precision of rice bunch planting were investigated to improve the precision of bunch planting with the [...] Read more.
The double-hole rice vacuum seed meter is critical equipment for the planting precision of rice direct seeding. The effects of shaped holes and seed disturbance on the precision of rice bunch planting were investigated to improve the precision of bunch planting with the double-hole rice vacuum seed meter. A test bench with the rice vacuum seed meter was set up to analyze the trends in the quality of feed index, miss index, and multiple index of seed meters with different shaped holes at different speeds and vacuum pressures. Based on the optimal hole structure, different seed disturbance structures were designed to investigate the influence of the seed disturbance structure on the precision of bunch planting. A multiple linear regression model was established for the relationship between the disturbance structure, vacuum pressure, rotational speed, and the precision of bunch planting. Discrete element numerical simulation experiments were carried out to analyze the effect of disturbance structures on seeds. The planting precision of the seed meter with the shaped hole was significantly higher than that of the seed meter without the shaped hole while the shaped hole B was the optimum structure. Disturbance structure affects the quality of feed index, multiple index rate, and miss index. The planting precision of the seed disturbance structure II was better than the other structures. At a speed of 60 rpm and vacuum pressures of 2.0 kPa, 2.4 kPa, and 2.8 kPa, the qualities of feed index of seed disturbance structure II were 90%, 91.11%, and 89.17%, respectively, and the miss indexes were 2.96%, 1.94%, and 1.57%, respectively. At high rotational speeds, the precision of rice bunch planting with the seed disturbance structure is better than that without the seed disturbance structure. In the simulation test, the seed velocity and total force magnitude of the meter without disturbance structures were less than those with the disturbed structure. Simulation experiments showed that the seed disturbance structure breaks up the stacked state of seeds. Research has shown that the shaped hole holds the seed in a stable suction posture, which helps to increase the seed-filling rate. Seed disturbance improves seed mobility, thereby enhancing the precision of bunch planting. Full article
(This article belongs to the Special Issue Unmanned Farms in Smart Agriculture)
Show Figures

Figure 1

18 pages, 677 KB  
Article
Mass Generation via the Phase Transition of the Higgs Field
by Dimitris M. Christodoulou and Demosthenes Kazanas
Axioms 2023, 12(12), 1093; https://doi.org/10.3390/axioms12121093 - 29 Nov 2023
Viewed by 1935
Abstract
The commonly quoted bistable Higgs potential is not a proper description of the Higgs field because, among other technical reasons, one of its stable states acquires a negative expectation value in vacuum. We rely on formal catastrophe theory to derive the form of [...] Read more.
The commonly quoted bistable Higgs potential is not a proper description of the Higgs field because, among other technical reasons, one of its stable states acquires a negative expectation value in vacuum. We rely on formal catastrophe theory to derive the form of the Higgs potential that admits only one positive mean value in vacuum. No symmetry is broken during the ensuing phase transition that assigns mass to the Higgs field; only gauge redundancy is “broken” by the appearance of phase in the massive state, but this redundancy is not a true symmetry of the massless field. Furthermore, a secondary, certainly amusing conclusion, is that, in its high-energy state, the field oscillates about its potential minimum between positive and negative masses, but it is doubtful that such evanescent states can survive below the critical temperature of 159.5 GeV, where the known particles were actually created. Full article
(This article belongs to the Special Issue Mathematical Cosmology)
Show Figures

Figure 1

16 pages, 3916 KB  
Article
Highly Substituted 10-RO-(hetero)acenes—Electric Properties of Vacuum-Deposited Molecular Films
by Bernard Marciniak, Sylwester Kania, Piotr Bałczewski, Ewa Różycka-Sokołowska, Joanna Wilk, Marek Koprowski, Jacek Stańdo and Janusz Kuliński
Molecules 2023, 28(17), 6422; https://doi.org/10.3390/molecules28176422 - 3 Sep 2023
Viewed by 1907
Abstract
The functionalization of the aromatic backbone allows the improvement of the electrical properties of acene molecules in the amorphous layered structures of organic thin films. In the present work, we discuss the electric properties of the stable, amorphous, vacuum-deposited films prepared from five [...] Read more.
The functionalization of the aromatic backbone allows the improvement of the electrical properties of acene molecules in the amorphous layered structures of organic thin films. In the present work, we discuss the electric properties of the stable, amorphous, vacuum-deposited films prepared from five highly substituted 10-RO-acenes of various electronic properties, i.e., two extreme electron-donor (1,3-dioxa-cyclopenta[b]) anthracenes with all RO substituents, two anthracene carbaldehydes and one benzo[b]carbazole carbaldehyde possessing both electron-donor and acceptor substituents. The hole mobility data were obtained using subsequent steady state space charge limited currents (SCLC) and Time of Flight (TOF) measurements, performed on the same sample and these were then compared with the results of theoretical hole mobility calculations obtained using the Density Functional Theory (DFT) quantum—chemical calculations using the Marcus–Hush theory. The study shows a good agreement between the theoretical and experimental values which allows for the quick and quantitative estimation of Einstein’s mobility values for highly substituted 10-RO anthracene and benzo[b]carbazole based on chemical calculations. This agreement also proves that the transport of holes follows the hopping mechanism. The theoretical calculations indicate that the reorganization energy plays a decisive role in the transport of holes in the amorphous layers of highly substituted hetero(acenes). Full article
(This article belongs to the Special Issue Computational Studies of Novel Function Materials)
Show Figures

Figure 1

41 pages, 1172 KB  
Review
On Instabilities Caused by Magnetic Background Fields
by Michael Bordag
Symmetry 2023, 15(6), 1137; https://doi.org/10.3390/sym15061137 - 23 May 2023
Cited by 1 | Viewed by 1721
Abstract
We review instabilities that appear from the coupling of spin-one fields to a magnetic background in a non-Abelian theory. Such coupling results, due to asymptotic freedom in a negative quantum, contribute to the effective potential. In QCD, the Savvidy vacuum results. However, due [...] Read more.
We review instabilities that appear from the coupling of spin-one fields to a magnetic background in a non-Abelian theory. Such coupling results, due to asymptotic freedom in a negative quantum, contribute to the effective potential. In QCD, the Savvidy vacuum results. However, due to the tachyonic mode, such a state is not stable, and the question about the true ground state of QCD is still open. In the electroweak model, the corresponding instability is postponed to very large background fields and may be of relevance in the early universe, at best. We start with an introduction to the topic and display the necessary formulas and methods. Then, we consider the one-particle spectra of the fields in a magnetic background and the related Euler–Heisenberg Lagrangians. In addition, we discuss the potential instability connected with the anomalous moment of the electron. The main part is on the quantum correction to the energy in non-Abelian fields, including massive ones. Here, the focus is on so-called electroweak magnetism and the search for a classical solution of the field equations and their approximations by a lattice of flux tubes. Finally, we review approaches with non-homogeneous background fields and the background of an A0-field. Full article
(This article belongs to the Special Issue Review on Quantum Field Theory)
Show Figures

Figure 1

30 pages, 493 KB  
Article
Dark Energy Is the Cosmological Quantum Vacuum Energy of Light Particles—The Axion and the Lightest Neutrino
by Héctor J. de Vega and Norma G. Sanchez
Universe 2023, 9(4), 167; https://doi.org/10.3390/universe9040167 - 30 Mar 2023
Cited by 3 | Viewed by 3345
Abstract
We uncover the general mechanism and the nature of today’s dark energy (DE). This is only based on well-known quantum physics and cosmology. We show that the observed DE today originates from the cosmological quantum vacuum of light particles, which provides a continuous [...] Read more.
We uncover the general mechanism and the nature of today’s dark energy (DE). This is only based on well-known quantum physics and cosmology. We show that the observed DE today originates from the cosmological quantum vacuum of light particles, which provides a continuous energy distribution able to reproduce the data. Bosons give positive contributions to the DE, while fermions yield negative contributions. As usual in field theory, ultraviolet divergences are subtracted from the physical quantities. The subtractions respect the symmetries of the theory, and we normalize the physical quantities to be zero for the Minkowski vacuum. The resulting finite contributions to the energy density and the pressure from the quantum vacuum grow as loga(t), where a(t) is the scale factor, while the particle contributions dilute as 1/a3(t), as it must be for massive particles. We find the explicit dark energy equation of state of today to be P=w(z)H: it turns to be slightly w(z)<1 with w(z) asymptotically reaching the value 1 from below. A scalar particle can produce the observed dark energy through its quantum cosmological vacuum provided that (i) its mass is of the order of 103 eV = 1 meV, (ii) it is very weakly coupled, and (iii) it is stable on the time scale of the age of the universe. The axion vacuum thus appears as a natural candidate. The neutrino vacuum (especially the lightest mass eigenstate) can give negative contributions to the dark energy. We find that w(z=0) is slightly below 1 by an amount ranging from (1.5×103) to (8×103) and we predict the axion mass to be in the range between 4 and 5 meV. We find that the universe will expand in the future faster than the de Sitter universe as an exponential in the square of the cosmic time. Dark energy today arises from the quantum vacuum of light particles in FRW cosmological space-time in an analogous way to the Casimir vacuum effect of quantum fields in Minkowski space-time with non-trivial boundary conditions. Full article
(This article belongs to the Special Issue Quantum Physics including Gravity: Highlights and Novelties)
Show Figures

Figure 1

11 pages, 3777 KB  
Article
Insight into the FCC→HCP Transformation in Co-Rich Co-Cr-Fe-Mn-Ni High-Entropy Alloys
by Yuchen Wang, Changjun Wu, Ya Liu, Mengyun Tian, Xiaowang Lu and Xuping Su
Metals 2023, 13(3), 504; https://doi.org/10.3390/met13030504 - 2 Mar 2023
Cited by 8 | Viewed by 4687
Abstract
The existence of an HCP phase in FCC-type high-entropy alloys can improve the alloy’s mechanical properties. In many cases, an HCP phase is induced by deformation. In the present work, an FCC to HCP transition was detected during the cooling of Co1.5 [...] Read more.
The existence of an HCP phase in FCC-type high-entropy alloys can improve the alloy’s mechanical properties. In many cases, an HCP phase is induced by deformation. In the present work, an FCC to HCP transition was detected during the cooling of Co1.5CrFeMnNi0.5 and Co1.75CrFeMnNi0.25 alloys. Therefore, arc-melted annealed CoxCrFeMnNi2−x (x = 0.25–1.75) alloys that were then subjected to long-term vacuuming were investigated using XRD, DSC, HT-XRD, thermodynamic calculation, and first-principle calculation. It was confirmed that the FCC to HCP transition occurred at ~450 °C during the cooling of the alloys with x ≥ 1.5. The volume fraction of the HCP phase increased with Co content. It was proven that the HCP phase was not stable above 600 °C. First-principle calculations further indicated that the HCP structure was more stable than the FCC structure for Co1.75CrFeMnNi0.25 alloy, and there was a likelihood of an FCC to HCP transition. Moreover, experimental tests confirmed that the microhardness of the Co1.75CrFeMnNi0.25 alloy reached 213 HV because it contained a substantial HCP phase. This value is much higher than those of other non-HCP-containing alloys, either in their as-cast states or after annealing. These results provide guidance for the design of FCC-type high-entropy alloys with desirable mechanical properties through HCP phase strengthening. Full article
(This article belongs to the Special Issue Design, Processing and Characterisation of Metallic Materials)
Show Figures

Figure 1

Back to TopTop