Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (109)

Search Parameters:
Keywords = a small agricultural watershed

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1338 KiB  
Article
Human Health Risk Assessment of Phenolic Contaminants in Lake Xingkai, China
by Liang Liu, Jinhua Gao, Yijun Sun, Yibo Sun, Handan Liu, Hongqing Sun and Guangyi Mu
Water 2025, 17(13), 2037; https://doi.org/10.3390/w17132037 - 7 Jul 2025
Viewed by 375
Abstract
Cresols are aromatic organic compounds widely used in industrial and agricultural production. They have been detected in large quantities in aquatic environments, posing health risks such as skin irritation, gastrointestinal stimulation, and chronic neurological effects. In this study, we investigated the exposure concentration [...] Read more.
Cresols are aromatic organic compounds widely used in industrial and agricultural production. They have been detected in large quantities in aquatic environments, posing health risks such as skin irritation, gastrointestinal stimulation, and chronic neurological effects. In this study, we investigated the exposure concentration of cresols in the water bodies of Lake Xingkai (i.e., Daxingkai and Xiaoxingkai Lakes) during four typical hydrological periods (30 April, 22 June, 5 September, and 1 November 2021), assessed the human health risk from phenolic contaminants using the mean value method, and determined the health risk of adult cresol exposure in the Lake Xingkai watershed based on local population exposure parameters. This study developed a water environmental pollution health risk assessment model based on the methodology proposed by the United States Environmental Protection Agency (US EPA). It further evaluated the health risks to humans posed by phenolic pollutants via the drinking water pathway. The results revealed that the concentration range of cresols in water bodies was between 5.91 × 10−1 ng·mL−1 and 6.68 ng·mL−1. The adult drinking water health risk values of cresols in the Lake Xingkai watershed were between 3.15 × 10−4 and 3.57 × 10−3, and all water samples from the 10 sites had hazard quotient (HQ) values less than 1, indicating that the non-carcinogen risk was small or negligible. The cresol HQ value in the water of Xiaoxingkai Lake was 4.6 times that found in Daxingkai Lake. Full article
Show Figures

Figure 1

22 pages, 13795 KiB  
Article
The Nucleation and Degradation of Pothole Wetlands by Human-Driven Activities and Climate During the Quaternary in a Semi-Arid Region (Southern Iberian Peninsula)
by A. Jiménez-Bonilla, I. Expósito, F. Gázquez, J. L. Yanes and M. Rodríguez-Rodríguez
Geographies 2025, 5(3), 27; https://doi.org/10.3390/geographies5030027 - 24 Jun 2025
Viewed by 315
Abstract
In this study, we selected a series of pothole wetlands to investigate their nucleation, evolution, and recent anthropogenic degradation in the Alcores Depression (AD), southern Iberian Peninsula, where over 100 closed watersheds containing shallow, ephemeral water bodies up to 2 hm2 have [...] Read more.
In this study, we selected a series of pothole wetlands to investigate their nucleation, evolution, and recent anthropogenic degradation in the Alcores Depression (AD), southern Iberian Peninsula, where over 100 closed watersheds containing shallow, ephemeral water bodies up to 2 hm2 have been identified. We surveyed the regional geological framework, utilized digital elevation models (DEMs), orthophotos, and aerial images since 1956. Moreover, we analyzed precipitation and temperature data in Seville from 1900 to 2024, collected hydrometeorological data since 1990 and modelled the water level evolution from 2002 to 2025 in a representative pothole in the area. Our observations indicate a flooded surface reduction by more than 90% from the 1950s to 2025. Climatic data reveal an increase in annual mean temperatures since 1960 and a sharp decline in annual precipitation since 2000. The AD’s inception due to tectonic isolation during the Quaternary favoured the formation of pothole wetlands in the floodplain. The reduction in the hydroperiod and wetland degradation was primarily due to agricultural expansion since 1950, which followed an increase in groundwater extraction and altered the original topography. Recently, decreased precipitation has exponentially accelerated the degradation and even the complete disappearance of many potholes. This study underscores the fragility of small wetlands in the Mediterranean basin and the critical role of human management in their preservation. Restoring these ecosystems could be a highly effective nature-based solution, especially in semi-arid climates like southern Spain. These prairie potholes are crucial for enhancing groundwater recharge, which is vital for maintaining water availability in regions with limited precipitation. By facilitating rainwater infiltration into the aquifer, recharge potholes increase groundwater levels. Additionally, they capture and store run-off during heavy rainfall, reducing the risk of flooding and soil erosion. Beyond their hydrological functions, these wetlands provide habitats that support biodiversity and promote ecological resilience, reinforcing the need for their protection and recovery. Full article
Show Figures

Figure 1

23 pages, 2163 KiB  
Article
The Characteristics and Source Contribution Analysis of Nutrients in Water Bodies of Small Watersheds in the Pearl River Delta
by Yi Wang, Qian Xiao, Bin He and Bam Haja Nirina Razafindrabe
Water 2025, 17(12), 1739; https://doi.org/10.3390/w17121739 - 9 Jun 2025
Cited by 1 | Viewed by 419
Abstract
With the rapid development of urbanization in rural areas of China, various environmental issues have become increasingly prominent, particularly the water pollution problems in small rural watersheds, which have garnered considerable attention. Comprehensive management of small watersheds requires an initial analysis of the [...] Read more.
With the rapid development of urbanization in rural areas of China, various environmental issues have become increasingly prominent, particularly the water pollution problems in small rural watersheds, which have garnered considerable attention. Comprehensive management of small watersheds requires an initial analysis of the sources and characteristics of water pollution. This study focuses on small rural watersheds in the Pearl River Delta. Based on the characteristics of the watersheds, 35 water quality monitoring stations were set up to collect water quality data. Cluster analysis was used to study the spatial distribution characteristics of water quality indicators at each monitoring point. Further, factor analysis methods (PCA/FA) and Absolute Principal Component Scores-Multiple Linear Regression (APCS-MLR) models were employed to identify water quality influencing factors and quantify pollution source contributions. Finally, the comprehensive index method for eutrophication assessment was used to evaluate and analyze the potential eutrophication pollution risk in the watersheds. The results indicate significant pollution in the water quality of rural small watersheds in the study area, with varying degrees of pollution over time and space. During the wet season, water quality is mainly influenced by agricultural nutrients, followed by biochemical factors. In the normal and dry seasons, water quality is primarily affected by oxygen-consuming organic pollutants, followed by eutrophication factors. The comprehensive eutrophication evaluation shows that the overall water quality in the watershed is better during the wet season, with a lower risk of eutrophication; during the normal season, the overall water quality is poorer, with the highest eutrophication risk in the midstream; during the dry season, the upstream and midstream water quality is better, while the downstream water quality is poorer. In contrast, the pond water exhibits a higher risk of eutrophication during the wet season compared to the normal and dry seasons. This is mainly due to the peak of fish farming during the wet season, which results in a heavier load on the water body. This study provides effective data support for the water environment management of rapidly developing rural small watersheds. Full article
(This article belongs to the Special Issue Climate Modeling and Impacts of Climate Change on Hydrological Cycle)
Show Figures

Figure 1

13 pages, 971 KiB  
Article
Vegetation Cover as a Driver of Sedimentary Organic Matter in Small Water Reservoirs
by Aleksandar Anđelković, Vesna Nikolić Jokanović, Dušan Jokanović and Velibor Spalevic
Water 2025, 17(8), 1148; https://doi.org/10.3390/w17081148 - 11 Apr 2025
Viewed by 613
Abstract
Understanding the impact of vegetation on organic matter content in sediments is essential for sustainable reservoir management and water quality protection. This study examined the relationship between land cover, erosion processes, and organic matter accumulation in the sediments of four small water reservoirs [...] Read more.
Understanding the impact of vegetation on organic matter content in sediments is essential for sustainable reservoir management and water quality protection. This study examined the relationship between land cover, erosion processes, and organic matter accumulation in the sediments of four small water reservoirs in the Republic of Serbia. Organic matter content was quantified and analyzed in relation to basin characteristics, including land-use composition, absolute and mean flow gradients, and sediment grain size distribution. Field sampling was conducted across the catchments of four small water reservoirs—Duboki potok, Resnik, Ljukovo, and Sot—with sediment samples collected from main tributaries and accumulation basins. A multi-method approach was employed, combining remote sensing for vegetation-cover assessment, granulometric analysis, organic matter evaluation via loss-on-ignition at 350 °C, and statistical correlation analysis to assess the influence of land use and hydrological gradients on sediment composition. The results revealed a strong correlation (R = 0.892) between forest cover and sedimentary organic matter content, confirming the significant role of vegetation in stabilizing sediments and promoting organic matter deposition. Reservoirs with higher forest and shrub cover (e.g., Sot and Duboki potok) exhibited greater organic matter accumulation (5.79–5.98%), while the agriculture-dominated Ljukovo catchment (76.85% agricultural land) recorded the lowest organic matter content (3.89%) due to increased sediment displacement and reduced erosion resistance. These findings underscore the critical role of vegetation in regulating sediment dynamics and enhancing organic matter retention in small water reservoirs. To mitigate excessive organic matter deposition and improve water quality, sustainable watershed management strategies—such as vegetation buffer strips, afforestation, and erosion control measures—are recommended. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

22 pages, 9061 KiB  
Article
Integrating UAV-Based Multispectral Data and Transfer Learning for Soil Moisture Prediction in the Black Soil Region of Northeast China
by Tong Zhou, Shoutian Ma, Tianyu Liu, Shuihong Yao, Shenglin Li and Yang Gao
Agronomy 2025, 15(3), 759; https://doi.org/10.3390/agronomy15030759 - 20 Mar 2025
Cited by 2 | Viewed by 934
Abstract
The rapid and accurate acquisition of soil moisture (SM) information is essential. Although Unmanned Aerial Vehicle (UAV) remote sensing technology has made significant advancements in SM monitoring, existing studies predominantly focus on developing models tailored to specific regions. The transferability of these models [...] Read more.
The rapid and accurate acquisition of soil moisture (SM) information is essential. Although Unmanned Aerial Vehicle (UAV) remote sensing technology has made significant advancements in SM monitoring, existing studies predominantly focus on developing models tailored to specific regions. The transferability of these models across different regions remains a considerable challenge. Therefore, this study proposes a transfer learning-based framework, using two representative small agricultural watersheds (Hongxing region and Woniutu region) in Northeast China as case studies. This framework involves pre-training a model on a source domain and fine-tuning it with a limited set of target domain samples to achieve high-precision SM inversion. This study evaluates the performance of three algorithms: Random Forest (RF), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM) network. Results show that the fine-tuned model significantly mitigates the decline in prediction accuracy caused by regional differences. The fine-tuned LSTM model achieved the highest retrieval accuracy, with the following results: 10% samples (R = 0.615, RRMSE = 15.583%), 30% samples (R = 0.682, RRMSE = 13.97%), and 50% samples (R = 0.767, RRMSE = 16.321%). Among these models, the LSTM model exhibited the most significant performance improvement and the best transferability. This study underscores the potential of transfer learning for enhancing cross-regional SM monitoring and providing valuable insights for future UAV-based SM monitoring. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

15 pages, 1773 KiB  
Article
Relationships Between Land Use and Stream Macroinvertebrate Biotic Integrity in Central Ohio, USA
by Douglas Spieles, Zoe Krashes, Khiem Nguyen, Summer Rodgers, Lillian Ruiz and Marco Vigilante
Water 2025, 17(6), 895; https://doi.org/10.3390/w17060895 - 20 Mar 2025
Viewed by 688
Abstract
Land use is known to be an important factor in the composition and function of adjacent freshwater lotic ecosystems. However, the relative effects of land use type, extent, intensity, and proximity on aquatic ecosystem quality are not fully understood. We evaluate these questions [...] Read more.
Land use is known to be an important factor in the composition and function of adjacent freshwater lotic ecosystems. However, the relative effects of land use type, extent, intensity, and proximity on aquatic ecosystem quality are not fully understood. We evaluate these questions in low-order streams within 30 watersheds in developed, agricultural, and less developed landscapes of central Ohio, USA. We assess the relationships of land use cover percentage and spatial scale with stream macroinvertebrate community diversity and biotic integrity. We also investigate the importance of impervious cover and subsurface tile drainage within each watershed and Active River Area (ARA). We find that the percentage of coverage of developed land at the watershed scale is the strongest predictor of stream macroinvertebrate community diversity and integrity. High-intensity development is a stronger negative correlate than low-intensity development or agriculture. There is a significant decline in stream macroinvertebrate diversity and biotic integrity at the watershed and ARA scales when undeveloped land coverage falls below 20–30%. We do not find a significant relationship between stream macroinvertebrate metrics and land use at the 1 km2 scale or in comparison with any instream habitat attributes except sinuosity. Impervious cover has a significant negative relationship with both macroinvertebrate taxon richness and biotic integrity at the watershed and ARA scales. However, subsurface tile-drained land does not have a significant relationship with the stream macroinvertebrate community at any scale. We conclude that impervious land cover at the watershed and ARA scales is a critical factor for the biotic integrity of small streams in this region. Collectively, our conclusions provide evidence to support practices of ecologically sensitive land use planning. Full article
(This article belongs to the Special Issue Aquatic Ecosystems: Biodiversity and Conservation)
Show Figures

Figure 1

10 pages, 3335 KiB  
Article
Spatial Analysis to Retrieve SWAT Model Reservoir Parameters for Water Quality and Quantity Assessment
by Clement D. D. Sohoulande
Water 2025, 17(6), 834; https://doi.org/10.3390/w17060834 - 14 Mar 2025
Cited by 1 | Viewed by 779
Abstract
Owing to their capacity to conserve water and regulate streamflow, small reservoirs are useful for agriculture, domestic water supply, energy production, industry, flood control, recreation, fisheries, and ecosystem conservation. The presence of these small reservoirs often affects the natural water pathways, but the [...] Read more.
Owing to their capacity to conserve water and regulate streamflow, small reservoirs are useful for agriculture, domestic water supply, energy production, industry, flood control, recreation, fisheries, and ecosystem conservation. The presence of these small reservoirs often affects the natural water pathways, but the use of a hydrological model such as the Soil and Water Assessment Tool (SWAT) can help to better apprehend these effects at the watershed scale. Indeed, the SWAT model allows modelers to represent and operate reservoirs by inputting the related parameters while setting the model. However, these reservoir parameters are not automatically generated by the SWAT model algorithms. Subsequently, SWAT users are left alone and must sort out the adequate approach to separately obtain or determine the reservoir parameters. Traditionally, reservoir parameters such as the volumes and surface areas are obtained through in situ hydrographic surveys which are costly and labor demanding. To help SWAT modelers retrieve the input parameters needed for modeling small reservoirs, this paper explicitly presents a spatial analysis procedure using the case study of a small watershed reservoir. In this procedure, the digital elevation model of the watershed is transformed into a triangulated irregular network and turned into contour lines which are used to identify the reservoir surface and volume at the principal and emergency spillways. The retrieved parameters were successfully used to calibrate and validate SWAT simulations of the watershed hydrological behavior. The spatial analysis procedure reported here is a cost-effective alternative to traditional in situ hydrographic surveys and it is useful for addressing watersheds with small reservoirs. The procedure eases the inclusion of reservoirs in SWAT and reduces the risk of model overfitting. Furthermore, the procedure could be useful for developing reservoir elevation–capacity–area curves. Full article
Show Figures

Figure 1

17 pages, 3305 KiB  
Article
Quantitative Resolution of Phosphorus Sources in an Agricultural Watershed of Southern China: Application of Phosphate Oxygen Isotopes and Multiple Models
by Dengchao Wang, Jingwei Tan, Xinhua Gao, Shanbao Liu, Caole Li, Linghui Zeng, Yizhe Wang, Fan Wang, Qiuying Zhang and Gang Chen
Agronomy 2025, 15(3), 663; https://doi.org/10.3390/agronomy15030663 - 6 Mar 2025
Viewed by 828
Abstract
Phosphorus is the primary contributor to eutrophication in water bodies, and identifying phosphorus sources in rivers is crucial for controlling phosphorus pollution and subsequent eutrophication. Although phosphate oxygen isotopes (δ18OP) have the capacity to trace phosphorus sources and [...] Read more.
Phosphorus is the primary contributor to eutrophication in water bodies, and identifying phosphorus sources in rivers is crucial for controlling phosphorus pollution and subsequent eutrophication. Although phosphate oxygen isotopes (δ18OP) have the capacity to trace phosphorus sources and cycling in water and sediments, they have not been used in small- to medium-sized watersheds, such as the Xiaodongjiang River (XDJ), which is located in an agricultural watershed, source–complex region of southern China. This study employed phosphate oxygen isotope techniques in combination with a land-use-based mixed end-member model and the MixSIAR Bayesian mixing model to quantitatively determine potential phosphorus sources in surface water and sediments. The δ18OP values of the surface water ranged from 5.72‰ to 15.02‰, while those of sediment ranged from 10.41‰ to 16.80‰. In the downstream section, the δ18OP values of the surface water and sediment were similar, suggesting that phosphate in the downstream water was primarily influenced by endogenous sediment control. The results of the land-use–source mixing model and Bayesian model framework demonstrated that controlling phosphorus inputs from fertilizers is essential for reducing phosphorus emissions in the XDJ watershed. Furthermore, ongoing rural sewage treatment, manure management, and the resource utilization of aquaculture substrates contributed to reduced phosphorus pollution. This study showed that isotope techniques, combined with multi-model approaches, effectively assessed phosphorus sources in complex watersheds, offering a theoretical basis for phosphorus pollution management to prevent eutrophication. Full article
(This article belongs to the Special Issue The Impact of Land Use Change on Soil Quality Evolution)
Show Figures

Figure 1

16 pages, 4269 KiB  
Article
Temporal Changes in the Average Contribution of Land Uses in Sediment Yield Using the 137Cs Method and Geochemical Tracers
by Negin Ghaderi Dehkordi, Abdulvahed Khaledi Darvishan, Mohamad Reza Zare and Paolo Porto
Water 2025, 17(1), 73; https://doi.org/10.3390/w17010073 - 31 Dec 2024
Cited by 1 | Viewed by 821
Abstract
The study highlights the increasing significance of understanding sediment sources and their contributions within a watershed, particularly in relation to different land use types. As the demand for effective source apportionment grows, this research aims to quantify how various land uses—specifically rangeland, rainfed [...] Read more.
The study highlights the increasing significance of understanding sediment sources and their contributions within a watershed, particularly in relation to different land use types. As the demand for effective source apportionment grows, this research aims to quantify how various land uses—specifically rangeland, rainfed agriculture, irrigated agriculture, and orchards—contribute to sediment yield over time. To achieve this, the researchers employed geochemical tracers and 137Cs to assess sediment contributions in a small sub-basin located in western Iran. The methodology involved creating a working unit map by overlaying land use maps from 1967 and 2021 with a slope map of the region. A total of 75 and 31 soil samples were systematically collected across different land uses to ensure a representative analysis of 137Cs and geochemical methods, respectively. The study utilized specific models to calculate the average contributions of each land use type. For non-agricultural lands, a diffusion and migration model was applied, while agricultural lands were analyzed using a mass balance type II model. The FingerPro program in R software 4.2.2 facilitated the selection of suitable tracers and allowed for the determination of sediment source contributions through a multivariate mixed model algorithm. The findings revealed significant changes in sediment yield contributions over the past 60 years. In 2021, rainfed agriculture accounted for 72.26% of sediment yield, down from 85.49% six decades earlier. Conversely, irrigated agriculture showed an increase from 1.80% to 15.06%. Rangeland and orchard contributions remained relatively stable but low, at approximately 8% and 4%, respectively. The total erosion rate for the sub-basin was estimated at 526.87 t y−1, with rainfed agriculture being responsible for the majority at 450.43 t y−1. Full article
Show Figures

Graphical abstract

20 pages, 18176 KiB  
Article
Estimation of Water Demand for Riparian Forest Vegetation Based on Sentinel-2 Data: A Case Study of the Kokyar River Basin
by Xianhe Liu, Yilinuer Alifujiang, Abdugheni Abliz, Halidan Asaiduli, Panqing Ye and Buasi Nurahmat
Forests 2024, 15(10), 1749; https://doi.org/10.3390/f15101749 - 4 Oct 2024
Cited by 2 | Viewed by 1105
Abstract
In recent years, due to the shortage of water resources and the fragile ecological environment in arid areas, the relationship between vegetation and water resources has been relatively close. The unreasonable allocation of water resources and the excessive demand for ecological water use [...] Read more.
In recent years, due to the shortage of water resources and the fragile ecological environment in arid areas, the relationship between vegetation and water resources has been relatively close. The unreasonable allocation of water resources and the excessive demand for ecological water use have led to ecological and environmental problems such as river interruption, land desertification, and the extensive withering of vegetation in arid areas; therefore, rapid, accurate estimation of the vegetation ecological water demand has become a hot research topic in related fields. In this study, we classified the land use types in the lower reaches of the Kokyar River Basin based on Sentinel-2A data and calculated the water requirements of each type of vegetation using a combination of the area quota method and improved Penman–Monteith (PM) based on different vegetation coverage levels. The results revealed that in 2020, the water demand of planted woodlands within 0–2 km of the watershed will be the highest, and the water demand of naturally growing arboreal woodlands will be the lowest, and the water demand of the surrounding desert riparian vegetation forests will be very small in relation to the ecological base flow and will not affect the downstream water use for agriculture, industry, and domestic use for the time being. The ecological water demand of the vegetation in the study area can be accurately estimated using Sentinel-2A data, and the research results provide technical support and a theoretical basis for rapid estimation of the ecological water demand of vegetation in typical riparian forests in arid areas and for the allocation of water resources. Full article
Show Figures

Figure 1

23 pages, 4665 KiB  
Article
Natural Water Sources and Small-Scale Non-Artisanal Andesite Mining: Scenario Analysis of Post-Mining Land Interventions Using System Dynamics
by Mohamad Khusaini, Rita Parmawati, Corinthias P. M. Sianipar, Gatot Ciptadi and Satoshi Hoshino
Water 2024, 16(17), 2536; https://doi.org/10.3390/w16172536 - 7 Sep 2024
Viewed by 1367
Abstract
Small-scale open-pit, non-artisanal mining of low-value ores is an understudied practice despite its widespread occurrence and potential impact on freshwater resources due to mining-induced land-use/cover changes (LUCCs). This research investigates the long-term impacts of andesite mining in Pasuruan, Indonesia, on the Umbulan Spring’s [...] Read more.
Small-scale open-pit, non-artisanal mining of low-value ores is an understudied practice despite its widespread occurrence and potential impact on freshwater resources due to mining-induced land-use/cover changes (LUCCs). This research investigates the long-term impacts of andesite mining in Pasuruan, Indonesia, on the Umbulan Spring’s water discharge within its watershed. System Dynamics (SD) modeling captures the systemic and systematic impact of mining-induced LUCCs on discharge volumes and groundwater recharge. Agricultural and reservoir-based land reclamation scenarios then reveal post-mining temporal dynamics. The no-mining scenario sees the spring’s discharge consistently decrease until an inflection point in 2032. With mining expansion, reductions accelerate by ~1.44 million tons over two decades, or 65.31 thousand tons annually. LUCCs also decrease groundwater recharge by ~2.48 million tons via increased surface runoff. Proposed post-mining land interventions over reclaimed mining areas influence water volumes differently. Reservoirs on reclaimed land lead to ~822.14 million extra tons of discharge, 2.75 times higher than the agricultural scenario. Moreover, reservoirs can restore original recharge levels by 2039, while agriculture only reduces the mining impact by 28.64% on average. These findings reveal that small-scale non-artisanal andesite mining can disrupt regional hydrology despite modest operating scales. Thus, evidence-based guidelines are needed for permitting such mines based on environmental risk and site water budgets. Policy options include discharge or aquifer recharge caps tailored to small-scale andesite mines. The varied outputs of rehabilitation scenarios also highlight evaluating combined land and water management interventions. With agriculture alone proving insufficient, optimized mixes of revegetation and water harvesting require further exploration. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

13 pages, 1798 KiB  
Article
Contamination Characteristics and Source Apportionment of Heavy Metal in the Topsoil of a Small Watershed in South Taihang
by Jiafu Liu, Yuxin Chen, Yingtao Shang, Hongbo Li, Quanlai Ma and Fengjie Gao
Land 2024, 13(7), 1068; https://doi.org/10.3390/land13071068 - 16 Jul 2024
Cited by 2 | Viewed by 1543
Abstract
With the rapid development of industrialization and urbanization, the issue of soil environmental pollution is becoming more and more prominent, especially concerning heavy metal contamination, which has garnered significant scholarly attention. The surface watershed formed by waterline is influenced by various factors such [...] Read more.
With the rapid development of industrialization and urbanization, the issue of soil environmental pollution is becoming more and more prominent, especially concerning heavy metal contamination, which has garnered significant scholarly attention. The surface watershed formed by waterline is influenced by various factors such as topography, industrial emissions, and agricultural runoff, resulting in a complex process of migration and accumulation of heavy metal elements from multiple sources. In this study, the pollution characteristics and sources of heavy metal elements Hg, As, Pb, Ni, Cd, Cr, Cu and Zn in 165 surface soil samples from the Manghe River watershed in Jiyuan City were comprehensively analyzed using a variety of methods, including statistics, geostatistics, enriched factor analysis and the Positive Matrix Factorization Model (PMF). The results showed that the concentrations of Hg, Cd, As, Cu, Pb and Zn exceeded their corresponding background values with varying degrees of enrichment. Notably, the average contents of Cd, Hg and Pb were 26.70 times, 3.69 times and 4.49 times higher than those in Chinese soils on average, respectively, showing obvious enrichment characteristics. Moreover, there were distinct spatial distribution patterns for each heavy metal element; Ni and Cr exhibited similar trends mainly controlled by the parent material, while human activities significantly affect the other six elements forming high-value areas around mining and related industries. It is noteworthy that Cu, Hg and Zn were influenced by dominant wind direction in autumn and winter, forming sub-high-value zones in southern forested areas; meanwhile, Cu and Zn were also influenced by agricultural fertilizer application as well as surface runoff, leading to secondary high-value areas in the dryland areas. Further analysis revealed a significant positive correlation among these heavy metal elements, suggesting that they may share common sources. Through the PMF Model, four main factors were identified, with factor 2 (36.25%), factor 1 (23.00%), factor 3 (21.20%) and factor 4 (19.55%) ranked in descending order of contribution rate. The heavy metal pollution in the study area was attributed to anthropogenic activities and natural factors, accounting for 63.75% and 36.25%, respectively. Coal mining, chemical industry smelting, vehicle emissions and excessive use of agrochemicals were identified as the main sources of heavy metal pollution. These pollutants entered the soil through direct emissions, atmospheric deposition, transportation and agricultural activities, exerting a significant impact on the soil environment. Therefore, delving into the spatial distribution pattern of soil heavy metal pollution and precise analysis of its sources are of great importance for effective treatment and remediation of soil heavy metal pollution in small watersheds, maintaining healthy soil ecology and safeguarding human health. Full article
(This article belongs to the Special Issue Impact of Pollutants on Soil Health)
Show Figures

Figure 1

26 pages, 10608 KiB  
Article
The Future Sustainability of the São Francisco River Basin in Brazil: A Case Study
by Cristina Andrade, Irving de Souza and Luiz da Silva
Sustainability 2024, 16(13), 5521; https://doi.org/10.3390/su16135521 - 28 Jun 2024
Cited by 4 | Viewed by 2206
Abstract
The viewpoint and reaction of a country towards climate change are shaped by its political, cultural, and scientific backgrounds, in addition to the distinct characteristics of its evolving climate and the anticipated and actual consequences of the phenomenon in the times ahead. A [...] Read more.
The viewpoint and reaction of a country towards climate change are shaped by its political, cultural, and scientific backgrounds, in addition to the distinct characteristics of its evolving climate and the anticipated and actual consequences of the phenomenon in the times ahead. A region’s climate has a significant impact on how water is managed and used, mostly in the primary sector, and both the distribution of ecosystem types and the amount and spreading of species on Earth. As a result, the environment and agricultural practices are affected by climate, so evaluating both distribution and evolution is extremely pertinent. Towards this aim, the climate distribution and evolution in the São Francisco River basin (SFRB) is assessed in three periods (1970–2000, 1981–2022) in the past and 2041–2060 in the future from an ensemble of GCMs under two SSPs (Shared Socioeconomic Pathways), SSP2-4.5 and SSP5-8.5. The Köppen-Geiger (KG) climate classification system is analyzed, and climate change impacts are inferred for this watershed located in central-eastern Brazil, covering an area equivalent to 8% of the country. Results predict the disappearance of the hot summer (Csa) and warm summer (Csb) Mediterranean climates, and a reduction/increase in the tropical savanna with dry winter (Aw)/dry summer (As). A striking increase in the semi-arid hot (BSh-steppe) climate is predicted with a higher percentage (10%) under SSP5-8.5. The source and the mouth of SFRB are projected to endure the major impacts of climate change that are followed by a predicted increase/decrease in temperature/precipitation. Future freshwater resource availability and quality for human use will all be impacted. Consequences on ecosystems, agricultural, and socioeconomic sectors within the SFRB might deepen the current contrasts between regions, urban and rural areas, and even between population groups, thus translating, to a greater extent, the inequality that still characterizes Brazilian society. Maps depicting land use and cover changes in SFRB from 1985 to 2022 highlight tendencies such as urbanization, agricultural expansion, deforestation, and changes in shrubland and water bodies. Urban areas fluctuated slightly, while cropland significantly increased from 33.57% to 45.45% and forest areas decreased from 3.88% to 3.50%. Socioeconomic data reveals disparities among municipalities: 74.46% with medium Human Development Index (HDI), 0.59% with very high HDI, and 9.11% with low HDI. Most municipalities have a Gross Domestic Product (GDP) per capita below US$6000. Population distribution maps show a predominance of small to medium-sized urban and rural communities, reflecting the basin’s dispersed demographic and economic profile. To achieve sustainable adaptation and mitigation of climate change impacts in SFRB, it is imperative that integrated measures be conducted with the cooperation of stakeholders, the local population, and decision-makers. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

21 pages, 4989 KiB  
Review
A Review on Nitrogen Flows and Obstacles to Sustainable Nitrogen Management within the Lake Victoria Basin, East Africa
by Cargele Masso, Joseph Gweyi-Onyango, Hilda Pius Luoga, Martin Yemefack and Bernard Vanlauwe
Sustainability 2024, 16(11), 4816; https://doi.org/10.3390/su16114816 - 5 Jun 2024
Cited by 3 | Viewed by 1990
Abstract
The Lake Victoria Basin (LVB) is located in the upper reaches of the Nile River Basin and is shared by five East-African countries. The population in the catchment is growing rapidly and the lake is facing several environmental problems. During the past few [...] Read more.
The Lake Victoria Basin (LVB) is located in the upper reaches of the Nile River Basin and is shared by five East-African countries. The population in the catchment is growing rapidly and the lake is facing several environmental problems. During the past few decades, numerous efforts have been made across the five countries, with the coordination of the Lake Victoria Basin Commission (LVBC) to reduce the loading of reactive nitrogen (Nr) into the lake and Lake Watershed. However, most of the measures envisaged to ensure long-term sustainable N management are not as easily adopted as planned. This paper reports on a review study on N flows and obstacles in achieving sustainable N management in the LVB, with the objectives of improving the understanding of the N cycle and examining the N management practices and policies that can help reduce the loss of Nr in the region. The scientific literature related to a range of N flows, N management obstacles, and options to overcome obstacles has been analyzed using N prospects developed at the global level for their potential applicability across the LVB. The study showed that an unbalanced use of N input is a serious threat to agricultural productivity leading to extreme soil N mining and degradation, with the majority of LVB farms operating within negative N balances and above the safe operating boundary for N in production systems. From the projections in N input as recommended by various stakeholders, there would likely be changes in both current yield and N use efficiency (NUE) values; however, most small-scale farmers will continue to experience low yields, which remains a challenge for food security in the area. These results suggest that scientists as well as those involved in decision-making and policymaking processes should formulate new targets for fertilizer increment to reduce the yield gap for sustainability, focusing on more integrated soil fertility as a package for nutrient management in cropping systems. Full article
Show Figures

Figure 1

21 pages, 2481 KiB  
Article
Catchment Storage Command Relationship for Sustainable Rainfed Agriculture in the Semi-Arid Regions of Rajasthan, India
by Boini Narsimlu, J. V. N. S. Prasad, A. Amarender Reddy, Gajjala Ravindra Chary, Kodigal A. Gopinath, K. B. Sridhar, J. K. Balyan, Anil K. Kothari and Vinod Kumar Singh
Sustainability 2024, 16(10), 3996; https://doi.org/10.3390/su16103996 - 10 May 2024
Viewed by 1771
Abstract
This study conducted to evaluate catchment storage and command relationship and water use strategies under supplemental irrigation for sustainable rainfed agriculture in the semi-arid regions of Rajasthan, India. In southern Rajasthan, a small category of farmers is above 78%, the potential evapotranspiration is [...] Read more.
This study conducted to evaluate catchment storage and command relationship and water use strategies under supplemental irrigation for sustainable rainfed agriculture in the semi-arid regions of Rajasthan, India. In southern Rajasthan, a small category of farmers is above 78%, the potential evapotranspiration is greater than the average rainfall with prevailing arid conditions, and rainfed agriculture is a challenging task. An agricultural micro watershed of 2.0 ha evaluated to establish a catchment storage command area (CSC) relationship and micro irrigation system as an effective water use strategy. The significant results indicate that a farm pond with a storage capacity of 560 m3 with permanent lining (cement + brick) is sufficient to harvest runoff water from a 2.0 ha catchment under the rainfall conditions of below normal (up to 50% deficit), long-term average, and wet years. Harvested rainwater can be used to irrigate a command area of even up to 1.0 ha, with supplemental irrigation of 5 cm in both the seasons of kharif as well as rabi. The two crops, maize (Zea mays) in the kharif season and coriander (Coriandrum sativum) in the rabi season, were significantly profitable with supplemental irrigation by adopting a drip irrigation system. Full article
(This article belongs to the Special Issue Agricultural Water Saving Technologies in Yield Enhancing)
Show Figures

Figure 1

Back to TopTop