Spatial Analysis to Retrieve SWAT Model Reservoir Parameters for Water Quality and Quantity Assessment
Abstract
:1. Introduction
2. Data and Model
2.1. Data
2.2. SWAT Model
3. Spatial Analysis Procedure
3.1. Step1: Estimating Reservoir Surface Area
3.2. Step 2: Estimating Reservoir Volume
4. Results and Discussion
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, J.; Zhang, N.; Liu, Z.; Zhang, Q.; Shang, C. SWAT model applications: From hydrological processes to ecosystem services. Sci. Total Environ. 2024, 931, 172605. [Google Scholar] [CrossRef] [PubMed]
- White, M.J.; Arnold, J.G.; Bieger, K.; Allen, P.M.; Gao, J.; Čerkasova, N.; Gambone, M.; Park, S.; Bosch, D.D.; Yen, H.; et al. Development of a field scale SWAT+ Modeling Framework for the contiguous US. JAWRA J. Am. Water Resour. Assoc. 2022, 58, 1545–1560. [Google Scholar] [CrossRef]
- Sohoulande, D.C.D.; Szogi, A.A.; Novak, J.M.; Stone, K.C.; Martin, J.H.; Watts, D. Instream constructed wetland capacity at controlling phosphorus outflow under a long-term nutrient loading scenario: Approach using SWAT model. Model. Earth Syst. Environ. 2023, 9, 4349–4362. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Sohoulande, D.D.C. Assessment of sediment inflow to a reservoir using the SWAT model under undammed conditions: A case study for the Somerville reservoir, Texas, USA. Int. Soil Water Conserv. Res. 2018, 6, 222–229. [Google Scholar] [CrossRef]
- Wang, Z.; He, Y.; Li, W.; Chen, X.; Yang, P.; Bai, X. A generalized reservoir module for SWAT applications in watersheds regulated by reservoirs. J. Hydrol. 2023, 616, 128770. [Google Scholar] [CrossRef]
- Jordan, S.; Quinn, J.; Zaniolo, M.; Giuliani, M.; Castelletti, A. Advancing reservoir operations modelling in SWAT to reduce socio-ecological tradeoffs. Environ. Model. Softw. 2022, 157, 105527. [Google Scholar] [CrossRef]
- Kaur, A.; Paul, P.K.; Rudra, R.; Goel, P.K.; Daggupati, P. Evaluating and improving the simulation of channel and reservoir processes for streamflow and water quality modelling in the Lake Erie watersheds. Int. J. River Basin Manag. 2025, 1–16. [Google Scholar] [CrossRef]
- Liu, X.; Yang, M.; Meng, X.; Wen, F.; Sun, G. Assessing the impact of reservoir parameters on runoff in the Yalong River Basin using the SWAT Model. Water 2019, 11, 643. [Google Scholar] [CrossRef]
- Gao, H.; Birkett, C.; Lettenmaier, D.P. Global monitoring of large reservoir storage from satellite remote sensing. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Tsolakidis, I.; Vafiadis, M. Comparison of hydrographic survey and satellite bathymetry in monitoring Kerkini reservoir storage. Environ. Process. 2019, 6, 1031–1049. [Google Scholar] [CrossRef]
- Avisse, N.; Tilmant, A.; Müller, M.F.; Zhang, H. Monitoring small reservoirs' storage with satellite remote sensing in inaccessible areas. Hydrol. Earth Syst. Sci. 2017, 21, 6445–6459. [Google Scholar] [CrossRef]
- Sohoulande, C.D.; Szogi, A.A.; Novak, J.M.; Stone, K.C.; Martin, J.H.; Watts, D.W. Long-term nitrogen and phosphorus outflow from an instream constructed wetland under precipitation variability. Sustainability 2022, 14, 16500. [Google Scholar] [CrossRef]
- Homer, C.; Dewitz, J.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.; Wickham, J.; Megown, K. Completion of the 2011 national land cover database for the conterminous United States: Representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 2015, 81, 345–354. [Google Scholar]
- Gan, T.Y.; Dlamini, E.M.; Biftu, G.F. Effects of model complexity and structure, data quality, and objective functions on hydrologic modeling. J. Hydrol. 1997, 192, 81–103. [Google Scholar] [CrossRef]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Soil and Water Assessment Tool Input/Output Documentation Version 2012; TR-439; Texas Water Resources Institute: College Station, TX, USA, 2013; 654p, Available online: https://hdl.handle.net/1969.1/149194 (accessed on 10 March 2025).
- Abbaspour, K.C. SWAT-CUP 2012 SWAT Calibration and Uncertainty Program—A User Manual. 2013. Available online: https://swat.tamu.edu/media/114860/usermanual_swatcup.pdf (accessed on 10 March 2025).
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef]
- Willmott, C.J.; Ackleson, S.G.; Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; O’Donnell, J.; Rowe, C.M. Statistics for the evaluation and comparison of models. J. Geophys. Res. Ocean. 1985, 90, 8995–9005. [Google Scholar] [CrossRef]
- Yang, M.; Mou, Y.; Liu, S.; Meng, Y.; Liu, Z.; Li, P.; Xiang, W.; Zhou, X.; Peng, C. Detecting and mapping tree crowns based on convolutional neural network and Google Earth images. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102764. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Y.; Clinton, N.; Wang, J.; Wang, X.; Liu, C.; Gong, P.; Yang, J.; Bai, Y.; Zheng, Y.; et al. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sens. Environ. 2017, 202, 166–176. [Google Scholar] [CrossRef]
- Hu, G.; Xiong, L.; Lu, S.; Chen, J.; Li, S.; Tang, G.; Strobl, J. Mathematical vector framework for gravity-specific land surface curvatures calculation from triangulated irregular networks. GIScience Remote Sens. 2022, 59, 590–608. [Google Scholar] [CrossRef]
- Marín-Comitre, U.; Gómez-Gutiérrez, Á.; Lavado-Contador, F.; Sánchez-Fernández, M.; Alfonso-Torreño, A. Using geomatic techniques to estimate volume–area relationships of watering ponds. ISPRS Int. J. Geo-Inf. 2021, 10, 502. [Google Scholar] [CrossRef]
- Novak, J.M.; Szogi, A.A.; Stone, K.C.; Chu, X.; Watts, D.W.; Johnson, M.H. Transport of Nitrate and Ammonium During Tropical Storm and Hurricane Induced Stream Flow Events from a Southeastern USA Coastal Plain In-Stream Wetland—1997 to 1999. In Advances in Hurricane Research-Modelling, Meteorology, Preparedness and Impacts; Hickey, K.R., Ed.; InTech: London, UK, 2012; pp. 139–158. [Google Scholar]
- Li, Y.; Gao, H.; Allen, G.H.; Zhang, Z. Constructing reservoir area–volume–elevation curve from TanDEM-X DEM data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2249–2257. [Google Scholar] [CrossRef] [PubMed]
- Ouma, Y.O. Evaluation of multiresolution digital elevation model (DEM) from real-time kinematic GPS and ancillary data for reservoir storage capacity estimation. Hydrology 2016, 3, 16. [Google Scholar] [CrossRef]
- Nistoran, D.E.G.; Dragomirescu, A.; Ionescu, C.S.; Schiaua, M.; Vasiliu, N.; Georgescu, M. A procedure to develop elevation-area-capacity curves of reservoirs from depth sounding surveys. In Proceedings of the 2017 International Conference on ENERGY and ENVIRONMENT (CIEM), Bucharest, Romania, 19–20 October 2017; pp. 92–96. [Google Scholar] [CrossRef]
- Fassoni-Andrade, A.C.; De Paiva, R.C.D.; Fleischmann, A.S. Lake topography and active storage from satellite observations of flood frequency. Water Resour. Res. 2020, 56, e2019WR026362. [Google Scholar] [CrossRef]
- Sohoulande, D.D.C. Spectrum of climate change and streamflow alteration at a watershed scale. Environ. Earth Sci. 2017, 76, 653. [Google Scholar] [CrossRef]
- Meadows, M.; Jones, S.; Reinke, K. Vertical accuracy assessment of freely available global DEMs (FABDEM, Copernicus DEM, NASADEM, AW3D30 and SRTM) in flood-prone environments. Int. J. Digit. Earth 2024, 17, 2308734. [Google Scholar] [CrossRef]
- Moudrý, V.; Lecours, V.; Gdulová, K.; Gábor, L.; Moudrá, L.; Kropáček, J.; Wild, J. On the use of global DEMs in ecological modelling and the accuracy of new bare-earth DEMs. Ecol. Model. 2018, 383, 3–9. [Google Scholar] [CrossRef]
Parameter | Description | Default Range | Range Values Used at Calibration and Validation |
---|---|---|---|
CN2 | Soil Conservation Service runoff curve number for moisture condition II | 35–98 | 25–92 |
SOL_AWC | Soil available water capacity | 0–1 | 0.05–0.46 |
SOL_K | Saturated hydraulic conductivity | 0–2000 | 51–1155 |
Input Parameters for Reservoir (.res) | Definition/Description | Input Value |
---|---|---|
RES_ESA | surface area when filled to emergency spillway (ha) | 4.52 |
RES_EVOL | volume when filled to emergency spillway (104 m3) | 2.54 |
RES_PSA | surface area when filled to principal spillway (ha) | 3.04 |
RES_PVOL | volume when filled to principal spillway (104 m3) | 0.6 |
RES_VOL | Initial volume (104 m3) | 0.6 |
RES_K | hydraulic conductivity (mm/hr) | 8 |
IRESCO | Outflow simulation code (0 = uncontrolled reservoir) | 0 |
RES_RR | Average daily principal spillway release rate (m3/s) | 0.06 |
EVRSV | evaporation coefficient | 0.6 |
WURESN | Average amount of water withdrawn each month for consumptive use (104 m3) | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sohoulande, C.D.D. Spatial Analysis to Retrieve SWAT Model Reservoir Parameters for Water Quality and Quantity Assessment. Water 2025, 17, 834. https://doi.org/10.3390/w17060834
Sohoulande CDD. Spatial Analysis to Retrieve SWAT Model Reservoir Parameters for Water Quality and Quantity Assessment. Water. 2025; 17(6):834. https://doi.org/10.3390/w17060834
Chicago/Turabian StyleSohoulande, Clement D. D. 2025. "Spatial Analysis to Retrieve SWAT Model Reservoir Parameters for Water Quality and Quantity Assessment" Water 17, no. 6: 834. https://doi.org/10.3390/w17060834
APA StyleSohoulande, C. D. D. (2025). Spatial Analysis to Retrieve SWAT Model Reservoir Parameters for Water Quality and Quantity Assessment. Water, 17(6), 834. https://doi.org/10.3390/w17060834