Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (129)

Search Parameters:
Keywords = Z-scheme mechanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 10779 KB  
Review
MXene-Polymer Nanocomposites for High-Efficiency Photocatalytic Antibiotic Degradation Review: Microstructure Control, Environmental Adaptability and Future Prospects
by Zhenfei Chen, Zhifei Meng, Zhongguo Zhang and Weifang Ma
Polymers 2025, 17(19), 2630; https://doi.org/10.3390/polym17192630 - 28 Sep 2025
Abstract
The efficient degradation of antibiotics in pharmaceutical wastewater remains a critical challenge against environmental contaminants. Conventional photocatalysts face potential limitations such as narrow visible-light absorption, rapid carrier recombination, and reliance on precious metal cocatalysts. This review investigates the coordination structure of MXene as [...] Read more.
The efficient degradation of antibiotics in pharmaceutical wastewater remains a critical challenge against environmental contaminants. Conventional photocatalysts face potential limitations such as narrow visible-light absorption, rapid carrier recombination, and reliance on precious metal cocatalysts. This review investigates the coordination structure of MXene as a cocatalyst to synergistically enhance photocatalytic antibiotic degradation efficiency and the coordination structure modification mechanisms. MXene’s tunable bandgap (0.92–1.75 eV), exceptional conductivity (100–20,000 S/cm), and abundant surface terminations (-O, -OH, -F) enable the construction of Schottky or Z-scheme heterojunctions with semiconductors (Cu2O, TiO2, g-C3N4), achieving 50–70% efficiency improvement compared to pristine semiconductors. The “electron sponge” effect of MXene suppresses electron-hole recombination by 3–5 times, while its surface functional groups dynamically optimize pollutant adsorption. Notably, MXene’s localized surface plasmon resonance extends light harvesting from visible (400–800 nm) to near-infrared regions (800–2000 nm), tripling photon utilization efficiency. Theoretical simulations demonstrate that d-orbital electronic configurations and terminal groups cooperatively regulate catalytic active sites at atomic scales. The MXene composites demonstrate remarkable environmental stability, maintaining over 90% degradation efficiency of antibiotic under high salinity (2 M NaCl) and broad pH range (4–10). Future research should prioritize green synthesis protocols and mechanistic investigations of interfacial dynamics in multicomponent wastewater systems to facilitate engineering applications. This work provides fundamental insights into designing MXene-based photocatalysts for sustainable water purification. Full article
(This article belongs to the Special Issue Photoelectrocatalytic Polymer Materials)
Show Figures

Graphical abstract

19 pages, 3413 KB  
Article
Activated Carbon-Modified Porous Carbon Nitride Decorated with Molybdenum Disulfide for Enhanced Photocatalytic Degradation of Rhodamine B
by Kunyang Li, Di Wang, Ning Tang, Zhou Zhou, Wen Zhang, Bohan Liu and Yiying Yue
Catalysts 2025, 15(9), 875; https://doi.org/10.3390/catal15090875 - 12 Sep 2025
Viewed by 387
Abstract
Photocatalytic technology offers significant potential for pollutant remediation through efficient, cost-effective mineralization but faces inherent limitations, including catalyst agglomeration and rapid charge recombination. To address these challenges, we developed activated carbon-modified porous graphitic carbon nitride (APCN) synthesized through the co-polycondensation of dicyandiamide with [...] Read more.
Photocatalytic technology offers significant potential for pollutant remediation through efficient, cost-effective mineralization but faces inherent limitations, including catalyst agglomeration and rapid charge recombination. To address these challenges, we developed activated carbon-modified porous graphitic carbon nitride (APCN) synthesized through the co-polycondensation of dicyandiamide with NH4Cl and fir-wood-derived activated carbon (AC). The incorporated AC effectively prevented the agglomeration of carbon nitride frameworks, thereby enhancing the specific surface area (SBET) of APCN. This matrix was subsequently composited with hydrothermally prepared (1T/2H) mixed-phase MoS2 through ultrasonication, forming a MoS2/APCN heterostructure. Characterizations including Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and N2 adsorption–desorption isotherms (BET) confirmed that MoS2 was successfully loaded onto APCN via an ultrasonic synthesis method. The composite exhibited outstanding photocatalytic activity, degrading 95.5% RhB in 40 min (pH = 7) and 97.4% in 25 min (pH = 3.5), with 87.3% efficiency retention after four cycles (pH = 7). Crucially, AC enhanced visible-light absorption and functioned as an electron-mediating component. Photoelectrochemical analyses and radical-trapping experiments confirmed a direct Z-scheme charge transfer mechanism, wherein conductive AC accelerates electron transport and suppresses carrier recombination. This study establishes both an efficient RhB degradation photocatalyst and a sustainable strategy for valorizing agricultural waste in advanced material design. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Graphical abstract

24 pages, 5192 KB  
Article
Innovative Z-Scheme Heterojunction Photocatalyst ZnBiGdO4/SnS2 for Photocatalytic Degradation of Tinidazole Under Visible Light Irradiation
by Jingfei Luan, Boyang Liu, Liang Hao, Wenchen Han and Anan Liu
Int. J. Mol. Sci. 2025, 26(17), 8366; https://doi.org/10.3390/ijms26178366 - 28 Aug 2025
Viewed by 412
Abstract
A high-performance Z-scheme heterojunction photocatalytic compound, ZnBiGdO4/SnS2 (ZS), was prepared for the first time using a microwave-assisted solvothermal method. ZS significantly improved the separation efficiency of photoinduced carriers and effectively broadened the response range to visible light through the unique [...] Read more.
A high-performance Z-scheme heterojunction photocatalytic compound, ZnBiGdO4/SnS2 (ZS), was prepared for the first time using a microwave-assisted solvothermal method. ZS significantly improved the separation efficiency of photoinduced carriers and effectively broadened the response range to visible light through the unique mechanism of the Z-type heterojunction. Therefore, ZS exhibited an excellent photocatalytic performance during the degradation process of tinidazole (TNZ). Specifically, the removal rate of TNZ by ZS reached 99.63%, and the removal rate of total organic carbon (TOC) reached 98.37% with ZS as catalyst under visible light irradiation (VLIN). Compared to other photocatalysts, the photocatalytic performance of ZS was significantly better than that of ZnBiGdO4, SnS2, or N-doped TiO2 (N-T). The removal rate of TNZ by ZS was 1.12 times, 1.26 times, or 2.41 times higher than that by ZnBiGdO4, SnS2, or N-T, respectively. The mineralization efficiency of TNZ for TOC with ZS as a catalyst was 1.15 times, 1.28 times, or 2.57 times higher than that with ZnBiGdO4, SnS2, or N-T as a catalyst, respectively. Free radical scavenging experiments and the electron paramagnetic resonance experiments confirmed that ZS could generate multiple reactive species such as hydroxyl radicals (•OH), superoxide anions (•O2), and photoinduced holes (h+) during the photocatalytic degradation process of TNZ. The photocatalytic degradation performance of ZS on TNZ under VLIN was evaluated, concurrently, the reliability, reproducibility, and stability of ZS were verified by five cycle experiments. This study explored the degradation mechanism and degradation pathway of TNZ with ZS as a catalyst under VLIN. This study not only provides new ideas for the design and preparation of Z-type heterojunction photocatalysts but also lays an important foundation for the development of efficient environmental remediation technologies for TNZ pollution. Full article
(This article belongs to the Special Issue Latest Research in Photocatalysis)
Show Figures

Figure 1

15 pages, 1789 KB  
Article
Genomic Epidemiology of Vancomycin-Resistant Enterococcus faecium Isolates with Full and Truncated vanA Operons from Russian Hospitals
by Anna Slavokhotova, Andrey Shelenkov, Yulia Mikhaylova, Lyudmila Petrova, Vitaly Gusarov, Mikhail Zamyatin and Vasiliy Akimkin
Antibiotics 2025, 14(9), 858; https://doi.org/10.3390/antibiotics14090858 - 25 Aug 2025
Viewed by 558
Abstract
Background: Vancomycin-resistant Enterococcus faecium (VREfm), particularly vanA-positive strains, represents a growing threat in hospital settings worldwide. These bacteria are able to survive under severe environmental conditions, including high temperatures and saline concentrations. High genome plasticity and advanced ability of inheriting antimicrobial [...] Read more.
Background: Vancomycin-resistant Enterococcus faecium (VREfm), particularly vanA-positive strains, represents a growing threat in hospital settings worldwide. These bacteria are able to survive under severe environmental conditions, including high temperatures and saline concentrations. High genome plasticity and advanced ability of inheriting antimicrobial resistance determinants defined the success of E. faecium as a hospital pathogen. Methods: This study presents the whole genomic characterization of vanA-positive VREfm isolates, analyzing 10 clinical isolates collected from three tertiary care hospitals in Moscow, Russia. Several typing approaches, including two MLST schemes and cgMLST profiles, were used to elucidate the relationship between the isolates. Phylogenetic analysis placed the isolates in context with global VREfm populations, demonstrating both local clonal expansion and possible international connections. Phenotypic and genomic antimicrobial resistance profiles were obtained, as well as data regarding the repertoire of virulence factors and plasmid content. Results: Whole genome sequencing revealed that all isolates belonged to the clinically significant CC17 lineage, specifically sequence types ST80 and ST552. Notably, two isolates possessed truncated Tn1546-type transposons lacking vanY and vanZ genes, representing a potentially emerging variant of the vanA operon in Russian clinical settings. A plasmid carrying a truncated vanA operon was reconstructed using long-read sequencing. Conclusions: The study highlights the utility of genomic investigation for tracking resistance mechanisms and strain dissemination, providing crucial baseline data for epidemiological surveillance of infections caused by VREfm in Russia. These findings emphasize the need for continued genomic monitoring to understand the evolution and spread of antimicrobial resistance in clinically important enterococcal lineages. Full article
Show Figures

Figure 1

20 pages, 10780 KB  
Article
Enhanced Photo-Fenton Removal of Oxytetracycline Hydrochloride via BP/Bi2MoO6 Z-Scheme Heterojunction Photocatalyst
by Jian Feng, Xiaohui Li, Xia Ran, Li Wang, Bo Xiao, Rong Li and Guangwei Feng
Int. J. Mol. Sci. 2025, 26(16), 7751; https://doi.org/10.3390/ijms26167751 - 11 Aug 2025
Viewed by 401
Abstract
Fenton oxidation technology utilizing hydrogen peroxide is recognized as an effective method for producing reactive oxygen species (ROS) to facilitate the degradation of antibiotics. However, the requirement for strongly acidic conditions during this process significantly restricts its broader applicability. In this study, we [...] Read more.
Fenton oxidation technology utilizing hydrogen peroxide is recognized as an effective method for producing reactive oxygen species (ROS) to facilitate the degradation of antibiotics. However, the requirement for strongly acidic conditions during this process significantly restricts its broader applicability. In this study, we synthesized black phosphorus (BP) nanosheets by exposing the {010} crystal planes and then constructed a 0D/2D BP/Bi2MoO6 (PBMO) heterojunction to function as a Fenton catalyst. The PBMO-75 heterojunction exhibited a remarkable increase in photo-Fenton catalytic activity towards oxytetracycline (OTC) under neutral conditions, achieving catalytic efficiencies that were 20 and 8 times greater than those of BP and Bi2MoO6 (BMO), respectively. This can be attributed to its strong absorption of visible light, the establishment of an internal electric field (IEF) at the interface, and the implementation of a Z-scheme catalytic mechanism. Additionally, the photo-Fenton system was further improved in OTC degradation through the continuous conversion of Mo6+/Mo5+ under visible light irradiation in conjunction with H2O2. Based on ERS, XPS, and active species trapping experiments, we propose a Z-scheme charge transfer mechanism for PBMO. This research offers compelling evidence that 0D/2D Z-scheme heterojunctions are promising candidates for the photo-Fenton treatment of antibiotic contaminants. Full article
(This article belongs to the Special Issue Latest Research in Photocatalysis)
Show Figures

Figure 1

23 pages, 4361 KB  
Article
Novel Visible Light-Driven Ho2InSbO7/Ag3PO4 Photocatalyst for Efficient Oxytetracycline Contaminant Degradation
by Jingfei Luan and Tiannan Zhao
Molecules 2025, 30(15), 3289; https://doi.org/10.3390/molecules30153289 - 6 Aug 2025
Viewed by 494
Abstract
In this study, a Z-scheme Ho2InSbO7/Ag3PO4 (HAO) heterojunction photocatalyst was successfully fabricated for the first time by ultrasound-assisted solvothermal method. The structural features, compositional components and morphological characteristics of the synthesized materials were thoroughly characterized by [...] Read more.
In this study, a Z-scheme Ho2InSbO7/Ag3PO4 (HAO) heterojunction photocatalyst was successfully fabricated for the first time by ultrasound-assisted solvothermal method. The structural features, compositional components and morphological characteristics of the synthesized materials were thoroughly characterized by a series of techniques, including X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectrum, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. A comprehensive array of analytical techniques, including ultraviolet-visible diffuse reflectance absorption spectra, photoluminescence spectroscopy, time-resolved photoluminescence spectroscopy, photocurrent testing, electrochemical impedance spectroscopy, electron paramagnetic resonance, and ultraviolet photoelectron spectroscopy, was employed to systematically investigate the optical, chemical, and photoelectronic properties of the materials. Using oxytetracycline (OTC), a representative tetracycline antibiotic, as the target substrate, the photocatalytic activity of the HAO composite was assessed under visible light irradiation. Comparative analyses demonstrated that the photocatalytic degradation capability of the HAO composite surpassed those of its individual components. Notably, during the degradation process, the application of the HAO composite resulted in an impressive removal efficiency of 99.89% for OTC within a span of 95 min, along with a total organic carbon mineralization rate of 98.35%. This outstanding photocatalytic performance could be ascribed to the efficient Z-scheme electron-hole separation system occurring between Ho2InSbO7 and Ag3PO4. Moreover, the adaptability and stability of the HAO heterojunction were thoroughly validated. Through experiments involving the capture of reactive species and electron paramagnetic resonance analysis, the active species generated by HAO were identified as hydroxyl radicals (•OH), superoxide anions (•O2), and holes (h+). This identification provides valuable insights into the mechanisms and pathways associated with the photodegradation of OTC. In conclusion, this research not only elucidates the potential of HAO as an efficient Z-scheme heterojunction photocatalyst but also marks a significant contribution to the advancement of sustainable remediation strategies for OTC contamination. Full article
(This article belongs to the Special Issue Nanomaterials in Photochemical Devices: Advances and Applications)
Show Figures

Graphical abstract

16 pages, 1547 KB  
Article
Two-Party Quantum Private Comparison with Pauli Operators
by Min Hou, Yue Wu and Shibin Zhang
Axioms 2025, 14(8), 549; https://doi.org/10.3390/axioms14080549 - 22 Jul 2025
Viewed by 337
Abstract
Quantum private comparison (QPC) is a quantum cryptographic protocol designed to enable two mutually distrustful parties to securely compare sensitive data without disclosing their private information to each other or any external entities. This study proposes a novel QPC protocol that leverages Bell [...] Read more.
Quantum private comparison (QPC) is a quantum cryptographic protocol designed to enable two mutually distrustful parties to securely compare sensitive data without disclosing their private information to each other or any external entities. This study proposes a novel QPC protocol that leverages Bell states to ensure data privacy, utilizing the fundamental principles of quantum mechanics. Within this framework, two participants, each possessing a secret integer, encode the binary representation of their values using Pauli-X and Pauli-Z operators applied to quantum states transmitted from a semi-honest third party (TP). The TP, which is bound to protocol compliance and prohibited from colluding with either participant, measures the received sequences to determine the comparison result without accessing the participants’ original inputs. Theoretical analyses and simulations validate the protocol’s strong security, high efficiency, and practical feasibility in quantum computing environments. An advantage of the proposed protocol lies in its optimized utilization of Bell states, which enhances qubit efficiency and experimental practicality. Moreover, the proposed protocol outperforms several existing Bell-state-based QPC schemes in terms of efficiency. Full article
(This article belongs to the Special Issue Recent Advances in Quantum Mechanics and Mathematical Physics)
Show Figures

Figure 1

15 pages, 11349 KB  
Article
Three-Dimensional Bi-Enriched Bi2O3/Bi2MoO6 Z-Scheme Heterojunction: Augmented Photocatalytic Phenol Degradation
by Congyu Cai, Shuwen Wang, Pingping Wan, Haoying Cai, Minhui Pan and Weiwei Wang
Inorganics 2025, 13(7), 227; https://doi.org/10.3390/inorganics13070227 - 6 Jul 2025
Viewed by 726
Abstract
A three-dimensional Bi-enriched Bi2O3/Bi2MoO6 Z-scheme heterojunction photocatalyst was successfully synthesized via a facile one-step hydrothermal method for efficient phenol degradation under visible light. Structural and morphological characterizations (SEM, TEM, and XRD) confirmed the formation of a [...] Read more.
A three-dimensional Bi-enriched Bi2O3/Bi2MoO6 Z-scheme heterojunction photocatalyst was successfully synthesized via a facile one-step hydrothermal method for efficient phenol degradation under visible light. Structural and morphological characterizations (SEM, TEM, and XRD) confirmed the formation of a nanoflower-like architecture with a high specific surface area of 81.27 m2/g. Optical and electrochemical analyses revealed efficient charge separation and extended visible-light response. Under visible-light irradiation (λ > 420 nm), this heterojunction (Bi2O3:Bi2MoO6 = 3:7) demonstrated exceptional performance, degrading 97.06% of phenol (30 mg/L) within 60 min. XPS analysis confirmed the Z-scheme charge transfer mechanism: Photogenerated electrons in the conduction band of Bi2O3 (−0.59 eV) facilitated the generation of ·O2 radicals, while holes in the valence band of Bi2MoO6 (2.44 eV) predominantly produced ·OH radicals. This synergistic effect resulted in highly efficient mineralization and degradation of phenol. Full article
Show Figures

Graphical abstract

15 pages, 4049 KB  
Article
Design of Spider Web Biomimetic Structure Car Roof Handrails Based on Additive Manufacturing
by Qing Chai, Huo Wu, Zhe Liang, Yuyang Han and Shuo Yin
J. Manuf. Mater. Process. 2025, 9(7), 228; https://doi.org/10.3390/jmmp9070228 - 3 Jul 2025
Viewed by 622
Abstract
The combination of additive manufacturing technology and biomimetic structures plays an increasingly important role in the lightweight design of automotive parts. This work provides a lightweight design and manufacturing method for the spider web biomimetic structure of car roof handrails. Firstly, in order [...] Read more.
The combination of additive manufacturing technology and biomimetic structures plays an increasingly important role in the lightweight design of automotive parts. This work provides a lightweight design and manufacturing method for the spider web biomimetic structure of car roof handrails. Firstly, in order to obtain a more reasonable combination of spider web structure and roof handrail, three new schemes are designed, namely spider web biomimetic roof handrail distributed along the x, y and z axes. Further simulation and comparison of the three new solutions with traditional handrails are performed to determine the final solution. The simulation results show that under the influence of different loads, the design along the z-axis direction is superior to the design in other directions, and it reduces weight by 32.03% compared to the traditional handrail theoretically while meeting the mechanical performance requirements, demonstrating a good lightweight effect. In addition, multiple material comparative tests are conducted by conducting tensile tests on car roof handrails made of different materials. The results indicate that the handrail made of PA6-CF has excellent overall performance, meeting safety standards and allowing for significant elastic deformation, optimizing the user experience. Full article
Show Figures

Figure 1

17 pages, 3368 KB  
Article
Enhanced Photocatalytic Performances and Mechanistic Insights for Novel Ag-Bridged Dual Z-Scheme AgI/Ag3PO4/WO3 Composites
by Chunlei Ma, Jianke Tang, Qi Wang, Rongqian Meng and Qiaoling Li
Inorganics 2025, 13(7), 222; https://doi.org/10.3390/inorganics13070222 - 1 Jul 2025
Viewed by 772
Abstract
In this study, AgI/Ag3PO4/WO3 ternary composite photocatalysts with dual Z-scheme heterojunction were fabricated via the in situ loading of Ag3PO4 onto WO3 followed by anion exchange. Compared to single photocatalysts and binary composites, the [...] Read more.
In this study, AgI/Ag3PO4/WO3 ternary composite photocatalysts with dual Z-scheme heterojunction were fabricated via the in situ loading of Ag3PO4 onto WO3 followed by anion exchange. Compared to single photocatalysts and binary composites, the AgI/Ag3PO4/WO3 composites exhibited enhanced photocatalytic activity in the photodegradation of chlortetracycline hydrochloride (CTC) under visible-light irradiation. Notably, the AAW-40 photocatalyst, which contained an AgI/Ag3PO4 molar ratio of 40%, degraded 75.7% of the CTC within 75 min. Moreover, AAW-40 demonstrated an excellent performance in the cyclic degradation of CTC over four cyclic degradation experiments. The separation and transfer kinetics of the AgI/Ag3PO4/WO3 composite were investigated with photoluminescence spectroscopy, time-resolved photoluminescence spectroscopy, and electrochemical measurements. The improved photocatalytic performance was primarily due to the creation of a silver-bridged dual Z-scheme heterojunction, which facilitated the efficient separation of photoinduced electron–hole pairs, retained the strong reducing capability of electrons in AgI, and ensured the strongly oxidizing nature of the photoexcited holes in WO3. The dual Z-scheme charge-transfer mechanism was further validated using in situ X-ray photoelectron spectroscopy. This study provides a foundation for developing innovative dual Z-scheme photocatalytic systems aimed at the efficient degradation of antibiotics in wastewater. Full article
(This article belongs to the Special Issue Inorganic Photocatalysts for Environmental Applications)
Show Figures

Figure 1

18 pages, 3054 KB  
Article
Self-Attention GAN for Electromagnetic Imaging of Uniaxial Objects
by Chien-Ching Chiu, Po-Hsiang Chen, Yi-Hsun Chen and Hao Jiang
Appl. Sci. 2025, 15(12), 6723; https://doi.org/10.3390/app15126723 - 16 Jun 2025
Viewed by 408
Abstract
This study introduces a Self-Attention (SA) Generative Adversarial Network (GAN) framework that applies artificial intelligence techniques to microwave sensing for electromagnetic imaging. The approach involves illuminating anisotropic objects using Transverse Magnetic (TM) and Transverse Electric (TE) electromagnetic waves, while sensing antennas collecting the [...] Read more.
This study introduces a Self-Attention (SA) Generative Adversarial Network (GAN) framework that applies artificial intelligence techniques to microwave sensing for electromagnetic imaging. The approach involves illuminating anisotropic objects using Transverse Magnetic (TM) and Transverse Electric (TE) electromagnetic waves, while sensing antennas collecting the scattered field data. To simplify the training process, a Back Propagation Scheme (BPS) is employed initially to calculate the preliminary permittivity distribution, which is then fed into the GAN with SA for image reconstruction. The proposed GAN with SA offers superior performance and higher resolution compared with GAN, along with enhanced generalization capability. The methodology consists of two main steps. First, TM waves are used to estimate the initial permittivity distribution along the z-direction using BPS. Second, TE waves estimate the x- and y-direction permittivity distribution. The estimated permittivity values are used as inputs to train the GAN with SA. In our study, we add 5% and 20% noise to compare the performance of the GAN with and without SA. Numerical results indicate that the GAN with SA demonstrates higher efficiency and resolution, as well as better generalization capability. Our innovation lies in the successful reconstruction of various uniaxial objects using a generator integrated with a self-attention mechanism, achieving reduced computational time and real-time imaging. Full article
Show Figures

Figure 1

23 pages, 6315 KB  
Article
BiOBr@PZT Nanocomposite Membranes via Electrospinning-SILAR Technology: A Sustainable Green Material for Photocatalytic Degradation in Coloration-Related Wastewater Remediation
by Zhengyu Ding, Jun Zhang, Zheyao Xia, Binjie Xin, Jiali Yu and Xiaoyuan Lei
Sustainability 2025, 17(11), 4984; https://doi.org/10.3390/su17114984 - 29 May 2025
Viewed by 813
Abstract
The textile industry encounters serious environmental challenges from wastewater with persistent organic pollutants, demanding sustainable solutions for remediation. Herein, we report a novel green synthesis of flexible BiOBr@PZT nanocomposite membranes via electrospinning and successive ionic layer adsorption and reaction (SILAR) for visible-light-driven photocatalytic [...] Read more.
The textile industry encounters serious environmental challenges from wastewater with persistent organic pollutants, demanding sustainable solutions for remediation. Herein, we report a novel green synthesis of flexible BiOBr@PZT nanocomposite membranes via electrospinning and successive ionic layer adsorption and reaction (SILAR) for visible-light-driven photocatalytic degradation. The hierarchical structure integrates leaf-like BiOBr nanosheets with PAN/ZnO/TiO2 (PZT) nanofibers, forming a Z-scheme heterojunction. This enhances the separation of photogenerated carriers while preserving mechanical integrity. SILAR-enabled low temperature deposition ensures eco-friendly fabrication by avoiding toxic precursors and cutting energy use. Optimized BiOBr@PZT-5 shows exceptional photocatalytic performance, achieving 97.6% tetracycline hydrochloride (TCH) degradation under visible light in 120 min. It also has strong tensile strength (4.29 MPa) and cycling stability. Mechanistic studies show efficient generation of O2 and OH radicals through synergistic light absorption, charge transfer, and turbulence-enhanced mass diffusion. The material’s flexibility allows reusable turbulent flow applications, overcoming rigid catalyst limitations. Aligning with green chemistry and UN SDGs, this work advances multifunctional photocatalytic systems for scalable, energy-efficient wastewater treatment, offering a paradigm that integrates environmental remediation with industrial adaptability. Full article
Show Figures

Figure 1

24 pages, 8965 KB  
Article
Nitrogen-Doped Hollow Carbon Spheres-Decorated Co2SnO4/WS2 Heterostructures with Improved Visible-Light Photocatalytic Degradation of Organic Dye
by Muthuraj Arunpandian and Tae Hwan Oh
Molecules 2025, 30(9), 2081; https://doi.org/10.3390/molecules30092081 - 7 May 2025
Cited by 2 | Viewed by 715
Abstract
Advanced photocatalytic materials for environmental cleanup need to be developed in response to growing concerns about water pollution. This paper presents a novel N-doped hollow carbon spheres (NHCSs)-supported Co2SnO4/WS2 heterostructure synthesized using a hydrothermal approach and examined using [...] Read more.
Advanced photocatalytic materials for environmental cleanup need to be developed in response to growing concerns about water pollution. This paper presents a novel N-doped hollow carbon spheres (NHCSs)-supported Co2SnO4/WS2 heterostructure synthesized using a hydrothermal approach and examined using various characterization techniques to evaluate the crystal structures, functional groups, surface morphology, chemical properties, and optical characteristics. The photocatalytic performance of the Co2SnO4/WS2@NHCSs composite was assessed by degrading Congo red (CR) under visible light, resulting in a notable degradation rate of 87.22% in 60 min. The enhanced degradation efficiency is ascribed to the Z-scheme heterojunction charge-transfer mechanism, which augments sustained charge separation while suppressing recombination under visible-light irradiation. Furthermore, the quenching experiments revealed that specific superoxide radicals (O2-) and hydroxyl radicals (OH) were integral to the degradation reaction, and a potential Z-scheme charge-transfer pathway mechanism for the effective Co2SnO4/WS2@NHCSs photocatalysts was also suggested. The potential degradation mechanism was suggested using LC-MS analysis. This study highlights the promise of Co2SnO4/WS2@NHCSs composites for practical wastewater treatment applications, providing a sustainable and effective solution for environmental remediation. Full article
Show Figures

Figure 1

11 pages, 4787 KB  
Article
From Type II to Z-Scheme: A DFT Study of Enhanced Water Splitting in the SGa2Se/TeMoS Heterojunction
by Fan Yang, Marie-Christine Record and Pascal Boulet
Crystals 2025, 15(5), 442; https://doi.org/10.3390/cryst15050442 - 7 May 2025
Viewed by 667
Abstract
Harnessing solar energy for photocatalytic water splitting and hydrogen fuel production necessitates the development of advanced photocatalysts with broad solar spectrum absorption and efficient electron-hole separation. In this study, we systematically explore the potential of the SGa2Se/TeMoS heterojunction as a water-splitting [...] Read more.
Harnessing solar energy for photocatalytic water splitting and hydrogen fuel production necessitates the development of advanced photocatalysts with broad solar spectrum absorption and efficient electron-hole separation. In this study, we systematically explore the potential of the SGa2Se/TeMoS heterojunction as a water-splitting photocatalyst using first-principles calculations. Our results indicate that while the heterojunction exhibits type-II band alignment, its band edge positions are inadequate for initiating water redox reactions. To overcome this limitation, we successfully engineered a Z-scheme SGa2Se/Zr/TeMoS heterojunction by incorporating a Zr layer to modulate the charge transfer mechanism between the SGa2Se and TeMoS layers. The potential positions of the HER and OER in this Z-scheme heterojunction overcome the limitation of the bandgap on water decomposition, allowing the optimized heterojunction to exhibit suitable band edge positions for water splitting across a wide pH range (0 ≤ pH ≤ 11.3), from acidic to weakly basic conditions. Additionally, the heterojunction exhibits exceptional light absorption capabilities across the entire spectrum, particularly in the infrared and visible regions, which greatly enhances the utilization of solar energy and highlights its potential as an efficient broad-spectrum photocatalyst for water splitting. Full article
(This article belongs to the Special Issue Advanced Materials for Applications in Water Splitting)
Show Figures

Figure 1

14 pages, 3729 KB  
Article
First-Principles Study on Direct Z-Scheme SnC/SnS2 Heterostructures for Photocatalytic Water Splitting
by Sisi Zhou and Yuliang Mao
Chemistry 2025, 7(3), 76; https://doi.org/10.3390/chemistry7030076 - 4 May 2025
Viewed by 961
Abstract
Direct Z-scheme heterojunctions are known for their unique carrier mobility mechanism, which significantly improves photocatalytic water splitting efficiency. In this study, we use first-principles simulations to determine the stability, electrical, and photocatalytic properties of a SnC/SnS2 heterojunction. Analyses of the projected energy [...] Read more.
Direct Z-scheme heterojunctions are known for their unique carrier mobility mechanism, which significantly improves photocatalytic water splitting efficiency. In this study, we use first-principles simulations to determine the stability, electrical, and photocatalytic properties of a SnC/SnS2 heterojunction. Analyses of the projected energy band and state density demonstrate that the SnC/SnS2 heterojunction exhibits an indirect band gap of 0.80 eV and a type-II band alignment. Analysis of its work function shows that the SnC/SnS2 heterojunction has a built-in electric field pointing from the SnC monolayer to the SnS2 monolayer. The band edge position and the differential charge density indicate that the SnC/SnS2 heterostructure exhibits a Z-scheme photocatalytic mechanism. Furthermore, the SnC/SnS2 heterojunction exhibits excellent visible-light absorption and high solar-to-hydrogen efficiency of 32.8%. It is found that the band gap and light absorption of the heterojunction can be effectively tuned by biaxial strain. These results demonstrate that the fabricated SnC/SnS2 heterojunction has significant photocatalysis potential. Full article
(This article belongs to the Section Theoretical and Computational Chemistry)
Show Figures

Graphical abstract

Back to TopTop