Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (138)

Search Parameters:
Keywords = Yersinia enterocolitica

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 722 KiB  
Article
Nutritional and Bioactive Characterization of Unconventional Food Plants for Sustainable Functional Applications
by Izamara de Oliveira, José Miguel R. T. Salgado, João Krauspenhar Lopes, Marcio Carocho, Tayse F. F. da Silveira, Vitor Augusto dos Santos Garcia, Ricardo C. Calhelha, Celestino Santos-Buelga, Lillian Barros and Sandrina A. Heleno
Sustainability 2025, 17(15), 6718; https://doi.org/10.3390/su17156718 - 23 Jul 2025
Viewed by 319
Abstract
Unconventional food plants (UFPs) are increasingly valued for their nutritional composition and bioactive potential. This study proposes a comprehensive characterization of the chemical and bioactive properties of Pereskia aculeata Miller (Cactaceae) (PA); Xanthosoma sagittifolium (L.) Schott (Araceae) (XS); Stachys byzantina K. Koch (Lamiaceae) [...] Read more.
Unconventional food plants (UFPs) are increasingly valued for their nutritional composition and bioactive potential. This study proposes a comprehensive characterization of the chemical and bioactive properties of Pereskia aculeata Miller (Cactaceae) (PA); Xanthosoma sagittifolium (L.) Schott (Araceae) (XS); Stachys byzantina K. Koch (Lamiaceae) (SB); and inflorescences from three cultivars of Musa acuminata (Musaceae) var. Dwarf Cavendish, var. BRS Platina, and var. BRS Conquista (MAD, MAP, and MAC), including the assessment of physical, nutritional, phytochemical, and biological parameters. Notably, detailed phenolic profiles were established for these species, many of which are poorly documented in the literature. XS was characterized by a unique abundance of C-glycosylated flavones, especially apigenin and luteolin derivatives, rarely described for this species. SB exhibited high levels of phenylethanoid glycosides, particularly verbascoside and its isomers (up to 21.32 mg/g extract), while PA was rich in O-glycosylated flavonols such as quercetin, kaempferol, and isorhamnetin derivatives. Nutritionally, XS had the highest protein content (16.3 g/100 g dw), while SB showed remarkable dietary fiber content (59.8 g/100 g). Banana inflorescences presented high fiber (up to 66.5 g/100 g) and lipid levels (up to 7.35 g/100 g). Regarding bioactivity, PA showed the highest DPPH radical scavenging activity (95.21%) and SB the highest reducing power in the FRAP assay (4085.90 µM TE/g). Cellular antioxidant activity exceeded 2000% in most samples, except for SB. Cytotoxic and anti-inflammatory activities were generally low, with only SB showing moderate effects against Caco-2 and AGS cell lines. SB and PA demonstrated the strongest antimicrobial activity, particularly against Yersinia enterocolitica, methicillin-resistant Staphylococcus aureus (MRSA), and Enterococcus faecalis, with minimum inhibitory concentrations ranging from 0.156 to 0.625 mg/mL. Linear discriminant analysis revealed distinctive chemical patterns among the species, with organic acids (e.g., oxalic up to 7.53 g/100 g) and fatty acids (e.g., linolenic acid up to 52.38%) as key discriminant variables. Overall, the study underscores the nutritional and functional relevance of these underutilized plants and contributes rare quantitative data to the scientific literature regarding their phenolic signatures. Full article
(This article belongs to the Section Sustainable Food)
Show Figures

Figure 1

17 pages, 811 KiB  
Article
A Novel GABA-Producing Levilactobacillus brevis Strain Isolated from Organic Tomato as a Promising Probiotic
by Asia Pizzi, Carola Parolin, Davide Gottardi, Arianna Ricci, Giuseppina Paola Parpinello, Rosalba Lanciotti, Francesca Patrignani and Beatrice Vitali
Biomolecules 2025, 15(7), 979; https://doi.org/10.3390/biom15070979 - 8 Jul 2025
Viewed by 531
Abstract
Gamma-aminobutyric acid (GABA) is a non-protein amino acid playing a significant role in the central nervous system and the gut–brain axis. This study investigated the potential to produce GABA by lactic acid bacteria (LAB) isolated from different varieties of organic tomatoes. The isolated [...] Read more.
Gamma-aminobutyric acid (GABA) is a non-protein amino acid playing a significant role in the central nervous system and the gut–brain axis. This study investigated the potential to produce GABA by lactic acid bacteria (LAB) isolated from different varieties of organic tomatoes. The isolated LAB were taxonomically identified by 16S rRNA gene sequencing, the presence of the gadB gene (glutamate decarboxylase) was detected, and GABA production was quantified using HPLC. Levilactobacillus brevis CRAI showed the highest GABA production under optimised fermentation conditions with 4% monosodium glutamate (MSG). The genome sequencing of L. brevis CRAI revealed the presence of gadA and gadB isoforms and assessed the strain’s safety profile. The gene expression analysis revealed that the gadA and gadB genes were upregulated in the presence of 4% MSG. The probiotic potential of L. brevis CRAI was also assessed by functional assays. The strain showed strong antimicrobial activity against representative enteropathogens, i.e., Escherichia coli ETEC, Salmonella choleraesuis, and Yersinia enterocolitica, and anti-inflammatory effect, reducing nitric oxide production in LPS-stimulated RAW264.7 macrophages. In addition, its ability to adhere to intestinal epithelial Caco-2 cells was demonstrated. These results highlight L. brevis CRAI as a promising candidate for the development of GABA-enriched functional foods or probiotic supplements with the perspective to modulate the gut-brain axis. Full article
(This article belongs to the Special Issue Probiotics and Their Metabolites, 2nd Edition)
Show Figures

Graphical abstract

18 pages, 2460 KiB  
Article
Extracellular Synthesis of Bioactive Silver Nanoparticles Using Brevibacillus sp. MAHUQ-41 and Their Potential Application Against Drug-Resistant Bacterial Pathogens Listeria monocytogenes and Yersinia enterocolitica
by Md. Amdadul Huq
J. Funct. Biomater. 2025, 16(7), 241; https://doi.org/10.3390/jfb16070241 - 30 Jun 2025
Viewed by 599
Abstract
The purpose of current study was the green synthesis of bioactive silver nanoparticles (AgNPs) using Brevibacillus sp. MAHUQ-41 and the exploration of their role in controlling drug-resistant bacterial pathogens Listeria monocytogenes and Yersinia enterocolitica. The culture supernatant of strain MAHUQ-41 was employed [...] Read more.
The purpose of current study was the green synthesis of bioactive silver nanoparticles (AgNPs) using Brevibacillus sp. MAHUQ-41 and the exploration of their role in controlling drug-resistant bacterial pathogens Listeria monocytogenes and Yersinia enterocolitica. The culture supernatant of strain MAHUQ-41 was employed for a simple and eco-friendly synthesis of biofunctional silver nanoparticles (AgNPs). The resulting nanoparticles were analyzed using several techniques, including UV–Visible spectroscopy, XRD, FE-TEM, FTIR, and DLS. The UV–Vis spectral analysis of the AgNPs synthesized via Brevibacillus sp. MAHUQ-41 revealed a prominent absorption peak at 400 nm. FE-TEM results confirmed spherical-shaped 15–60 nm sized nanoparticles. XRD results indicated that the synthesized AgNPs were crystalline in nature. The FTIR spectrum determined various functional groups on the surface of synthesized nanoparticles. Potent antibacterial properties were observed in green-synthesized AgNPs against tested pathogens. The MIC value of extracellular synthesized AgNPs for both pathogenic bacteria was 6.2 µg/mL, and the MBCs were 25.0 µg/mL and 12.5 µg/mL for L. monocytogenes and Y. enterocolitica, respectively. Treatment by synthesized AgNPs resulted in morphological alterations and structural damages in both L. monocytogenes and Y. enterocolitica. These alterations can interfere with regular cellular activities, potentially resulting in cell death. This study is the first to report the antimicrobial properties of silver nanoparticles synthesized using Brevibacillus sp. MAHUQ-41. The findings obtained in the present study supported the role of Brevibacillus sp. MAHUQ-41-mediated synthesized AgNPs in controlling drug-resistant bacterial pathogens L. monocytogenes and Y. enterocolitica. Full article
(This article belongs to the Special Issue Antimicrobial Biomaterials for Medical Applications)
Show Figures

Figure 1

30 pages, 2637 KiB  
Review
Can Nature Overcome Invasive Gastrointestinal Infections?
by Anna Duda-Madej, Szymon Viscardi, Jakub Stecko, Natalia Szymańska, Ewa Topola, Katarzyna Pacyga and Marta Szandruk-Bender
Int. J. Mol. Sci. 2025, 26(12), 5795; https://doi.org/10.3390/ijms26125795 - 17 Jun 2025
Viewed by 671
Abstract
Invasive bacterial gastrointestinal infections represent a substantial clinical burden worldwide, contributing to significant morbidity and, in severe cases, mortality. The causative bacterial agents of these infections include Shigella spp., enteroinvasive Escherichia coli, Salmonella spp., Campylobacter jejuni, Yersinia enterocolitica, and Listeria [...] Read more.
Invasive bacterial gastrointestinal infections represent a substantial clinical burden worldwide, contributing to significant morbidity and, in severe cases, mortality. The causative bacterial agents of these infections include Shigella spp., enteroinvasive Escherichia coli, Salmonella spp., Campylobacter jejuni, Yersinia enterocolitica, and Listeria monocytogenes. Given the growing challenges of therapy failures and rising antibiotic resistance, there is still an unmet need to identify novel, effective, and safe compounds exhibiting antimicrobial, anti-inflammatory, and immunomodulatory activities. In the present review, we aimed to compile current data regarding three alkaloids—berberine, sanguinarine, and cheleritrin—which hold significant promise in treating bacterial invasive gastrointestinal diseases. Our review extended beyond the direct antimicrobial properties of these compounds against pathogens capable of breaching the intestinal epithelial barrier. We also presented their modulatory effects on intestinal barrier integrity and their influence on the composition and function of the resident gut microbiota, thereby highlighting their potential indirect role in attenuating pathogen invasion and disease progression. Thus, our review presents alkaloids as potential preparations that potentiate the activity of classic anti-infective drugs, as well as substances that, by affecting the microbiome and intestinal mucosa, could be used for inflammatory bowel diseases. Full article
Show Figures

Figure 1

18 pages, 1222 KiB  
Article
Biotype Determines Survival of Yersinia enterocolitica in Red Blood Cell Concentrates
by Katarzyna Morka, Sylwia Banaszkiewicz, Jakub Korkus, Jacek Bania, Jarosław Bystroń, Gabriela Bugla-Płoskońska, Marta Stanek, Urszula Sokalska, Małgorzata Szymczyk-Nużka, Samuel K. Sheppard and Ben Pascoe
Int. J. Mol. Sci. 2025, 26(12), 5775; https://doi.org/10.3390/ijms26125775 - 16 Jun 2025
Viewed by 518
Abstract
Red blood cell (RBC) concentrates remain at risk of bacterial contamination during cold storage. Although infrequent, Yersinia enterocolitica poses a significant blood safety risk. This study aimed to assess Y. enterocolitica bioserotype growth in RBC concentrates, serum sensitivity, and genetic diversity including iron [...] Read more.
Red blood cell (RBC) concentrates remain at risk of bacterial contamination during cold storage. Although infrequent, Yersinia enterocolitica poses a significant blood safety risk. This study aimed to assess Y. enterocolitica bioserotype growth in RBC concentrates, serum sensitivity, and genetic diversity including iron metabolism genes. Ten Y. enterocolitica isolates from bioserotypes 1A, 1B/O:8, 4/O:3, and 2/O:9 were incubated in RBC concentrates and counted on days 3, 7, 14, 21, and 28. After incubation, the isolates were tested in human serum (NHS). Eight genomes were sequenced, analyzed using cgMLST, and screened for iron metabolism genes. The isolates formed two clusters, with 186dz (1A) and Ye8 (1B/O:8) as singletons. After 28 days in the RBC concentrates, the bacterial counts ranged from 1.98 × 10⁵ to 1.2 × 10⁹ CFU/mL, with Ye8 (1B/O:8) achieving the highest growth and one 4/O:3 isolate showing the lowest. All isolates survived 15–30 min in NHS, but the 28s isolate did not survive at 60 min. Serum sensitivity increased in two isolates, decreased in three, and remained unchanged in five. Isolates contained 27–42 iron metabolism genes with multiple allelic variants. The iron metabolism gene content or variants may influence the growth of Y. enterocolitica in RBC. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

29 pages, 455 KiB  
Review
Current Challenges in Yersinia Diagnosis and Treatment
by Bogna Grygiel-Górniak
Microorganisms 2025, 13(5), 1133; https://doi.org/10.3390/microorganisms13051133 - 15 May 2025
Viewed by 1668
Abstract
Yersinia bacteria (Yersinia enterocolitica, Yersinia pseudotuberculosis) are commonly found in nature in all climatic zones and are isolated from food (mainly raw pork, unpasteurized milk, or contaminated water), soil, and surface water, rarely from contaminated blood. Yersinia infection occurs through sick or [...] Read more.
Yersinia bacteria (Yersinia enterocolitica, Yersinia pseudotuberculosis) are commonly found in nature in all climatic zones and are isolated from food (mainly raw pork, unpasteurized milk, or contaminated water), soil, and surface water, rarely from contaminated blood. Yersinia infection occurs through sick or asymptomatic carriers and contact with the feces of infected animals. The invasion of specific bacterial serotypes into the host cell is based on the type 3 secretion system (T3SS), which directly introduces many effector proteins (Yersinia outer proteins—Yops) into the host cell. The course of yersiniosis can be acute or chronic, with the predominant symptoms of acute enteritis (rarely pseudo-appendicitis or septicemia develops). Clinical and laboratory diagnosis of yersiniosis is difficult. The infection requires confirmation by isolating Yersinia bacteria from feces or other biological materials, including lymph nodes, synovial fluid, urine, bile, or blood. The detection of antibodies in blood serum or synovial fluid is useful in the diagnostic process. The treatment of yersiniosis is mainly symptomatic. Uncomplicated infections (diarrhea and abdominal pain) usually do not require antibiotic therapy, which is indicated in severe cases. Surgical intervention is undertaken in the situations of intestinal necrosis. Given the diagnostic and therapeutic difficulties, this review discusses the prevalence of Y. enterocolitica and Y. pseudotuberculosis, their mechanisms of disease induction (virulence factors and host response), clinical manifestations, diagnostic and preventive methods, and treatment strategies in the context of current knowledge and available recommendations. Full article
(This article belongs to the Special Issue Advances in Enteric Infections Research)
17 pages, 4980 KiB  
Article
Synthesis, Evaluation of Biological Activity, and Structure–Activity Relationships of New Amidrazone Derivatives Containing Cyclohex-1-ene-1-Carboxylic Acid
by Renata Paprocka, Jolanta Kutkowska, Ewelina Paczkowska, Godwin Munroe Mwaura, Andrzej Eljaszewicz and Anna Helmin-Basa
Molecules 2025, 30(8), 1853; https://doi.org/10.3390/molecules30081853 - 21 Apr 2025
Viewed by 1028
Abstract
In recent years, the incidence of acute and chronic inflammatory diseases has increased significantly worldwide, intensifying the search for new therapeutic agents, especially anti-inflammatory drugs. Therefore, the aim of this work was to synthesize, biologically assess, and explore the structure–activity relationships of new [...] Read more.
In recent years, the incidence of acute and chronic inflammatory diseases has increased significantly worldwide, intensifying the search for new therapeutic agents, especially anti-inflammatory drugs. Therefore, the aim of this work was to synthesize, biologically assess, and explore the structure–activity relationships of new compounds containing the cyclohex-1-ene-1-carboxylic acid moiety. Six new derivatives, 2a2f, were synthesized through the reaction of amidrazones 1a1f with 3,4,5,6-tetrahydrophthalic anhydride. Their toxicity was evaluated in cultures of human peripheral blood mononuclear cells (PBMCs). Additionally, their antiproliferative properties and effects on the synthesis of TNF-α, IL-6, IL-10, and IL-1β were assessed in mitogen-stimulated PBMCs. The antimicrobial activity of derivatives 2a2f was determined by measuring the minimal inhibitory concentration (MIC) values against five bacterial strains—Staphylococcus aureus, Mycobacterium smegmatis, Escherichia coli, Yersinia enterocolitica, and Klebsiella pneumoniae—and the fungal strain Candida albicans. All compounds demonstrated antiproliferative activity, with derivatives 2a, 2d, and 2f at a concentration of 100 µg/mL being more effective than ibuprofen. Compound 2f strongly inhibited the secretion of TNF-α by approximately 66–81% at all studied doses (10, 50, and 100 µg/mL). Derivative 2b significantly reduced the release of cytokines, including TNF-α, IL-6, and IL-10, at a high dose (by approximately 92–99%). Compound 2c exhibited bacteriostatic activity against S. aureus and M. smegmatis, while derivative 2b selectively inhibited the growth of Y. enterocolitica (MIC = 64 µg/mL). Some structure–activity relationships were established for the studied compounds. Full article
(This article belongs to the Special Issue Design, Synthesis, and Analysis of Potential Drugs, 3rd Edition)
Show Figures

Graphical abstract

14 pages, 1968 KiB  
Article
Pathogenic Yersinia enterocolitica’s Contamination of Cheeks, Tongues, and Other Pork Meats at Retail in France, 2023
by Martine Denis, Arnaud Felten, Linda Ducret, Emmanuelle Houard, Manon Tasset, Delphine Novi and Marianne Chemaly
Appl. Microbiol. 2025, 5(1), 15; https://doi.org/10.3390/applmicrobiol5010015 - 1 Feb 2025
Viewed by 881
Abstract
Pathogenic Y. enterocolitica’s contamination of cheeks, tongues, and other pork meats at retail was assessed in 2023, over 9 months. A total of 111 samples of cheeks, 104 of tongues, and 160 of fresh meat were taken at retail from the 13 [...] Read more.
Pathogenic Y. enterocolitica’s contamination of cheeks, tongues, and other pork meats at retail was assessed in 2023, over 9 months. A total of 111 samples of cheeks, 104 of tongues, and 160 of fresh meat were taken at retail from the 13 regions of mainland France. The level of contamination was 16.0%, with a higher contamination in tongues (39.4%), followed by cheeks (16.4%). Only one meat sample was contaminated. Of the 128 isolated strains, 97.6% were of the BT4 biotype. Depending on the method used to check the presence of the plasmid—yadA-PCR, CR-MOX testing, or sequencing—the results were not consistent for some strains, but most of the strains (≥ to 65%) had the virulent plasmid pYV. All the BT4 strains (except two strains) carried the sequence ST18; they were distributed in 54 cgMLST genotypes. The genetic diversity of the strains was very high, whatever the typing method used, including cgMLST, wgMLST, and cgSNP. There was higher contamination in tongues and cheeks, and lower contamination in meat, suggesting that the head deboning step is riskier than the evisceration step for contamination by pathogenic Y. enterocolitica. This pathogen remains a zoonotic agent of public health importance to be monitored in pigs. Full article
(This article belongs to the Special Issue Applied Microbiology of Foods, 2nd Edition)
Show Figures

Figure 1

16 pages, 1960 KiB  
Article
Thyme Essential Oil as a Potential Tool Against Common and Re-Emerging Foodborne Pathogens: Biocidal Effect on Bacterial Membrane Permeability
by Martina Di Rosario, Leonardo Continisio, Giuseppe Mantova, Francesca Carraturo, Elena Scaglione, Daniela Sateriale, Giuseppina Forgione, Chiara Pagliuca, Caterina Pagliarulo, Roberta Colicchio, Mariateresa Vitiello and Paola Salvatore
Microorganisms 2025, 13(1), 37; https://doi.org/10.3390/microorganisms13010037 - 27 Dec 2024
Cited by 1 | Viewed by 1330
Abstract
Over the past decade, foodborne diseases have become a significant public health concern, affecting millions of people globally. Major pathogens like Salmonella spp., Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus contaminate food and cause several infections. This study investigates the potential [...] Read more.
Over the past decade, foodborne diseases have become a significant public health concern, affecting millions of people globally. Major pathogens like Salmonella spp., Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus contaminate food and cause several infections. This study investigates the potential of thyme essential oil (Thy-EO) as a natural antimicrobial agent against most common and re-emerging foodborne bacteria, including S. enterica, Yersinia enterocolitica, and L. monocytogenes. Preliminary tests provided qualitative evidence of Thy-EO’s efficacy by evaluating its antibacterial activity through direct contact and vapor phase exposure. Then, the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were defined to quantitatively evaluate the bacteriostatic and bactericidal effects of Thy-EO, revealing a strong inhibitory effect against S. enterica, Y. enterocolitica and L. monocytogenes. Additionally, Thy-EO exerted rapid bactericidal kinetics characterized by the disruption of bacterial cell membrane integrity over time. Results highlight Thy-EO’s potential as an alternative antimicrobial agent, demonstrating that treatment with Thy-EO significantly and irreversibly affects the growth of the tested foodborne pathogens. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

17 pages, 3916 KiB  
Article
Exploring the Link Between Infections and Primary Osteoarthritis: A Next-Generation Metagenomic Sequencing Approach
by Irina Niecwietajewa, Jakub Banasiewicz, Gabriel Zaremba-Wróblewski and Anna Majewska
Int. J. Mol. Sci. 2025, 26(1), 20; https://doi.org/10.3390/ijms26010020 - 24 Dec 2024
Cited by 1 | Viewed by 1142
Abstract
This prospective pilot study examined the association between microorganisms and knee osteoarthritis by identifying pathogens in the synovial membrane, synovial fluid, and blood samples from two patients with primary bilateral knee osteoarthritis, using metagenomic next-generation sequencing (mNGS). Intraoperatively, during routine knee arthroplasty procedures, [...] Read more.
This prospective pilot study examined the association between microorganisms and knee osteoarthritis by identifying pathogens in the synovial membrane, synovial fluid, and blood samples from two patients with primary bilateral knee osteoarthritis, using metagenomic next-generation sequencing (mNGS). Intraoperatively, during routine knee arthroplasty procedures, we collected the following 12 samples from each patient: two synovial membrane samples, two synovial fluid samples, and two venous blood samples. After DNA isolation and library construction, each sample was subjected to deep whole-genome sequencing using the DNBSEQT17 platform with the read length PE150 as the default. Metagenomic sequencing data were mapped to the NCBI NT database to determine species abundance. The predominant species in all samples tested were classified under the Enterobacterales order, the most abundant being Yersinia enterocolitica. The second and third most common microorganisms detected were Escherichia coli and autotrophic, Gram-negative bacteria Synechococcus sp., which is a bioaerosol component, indicating a risk of inhalation of the toxic metabolites of this latter microorganism. This article provides an initial exploration of mNGS use to study the etiopathogenetic mechanisms of knee osteoarthritis (OA). While our analysis identified bacterial DNA, particularly from Yersinia, further cross-sectional studies in larger populations with and without OA are needed to determine the role of these agents in OA pathogenesis. Full article
Show Figures

Figure 1

15 pages, 300 KiB  
Article
Survey on the Occurrence of Zoonotic Bacterial Pathogens in the Feces of Wolves (Canis lupus italicus) Collected in a Protected Area in Central Italy
by Fabrizio Bertelloni, Giulia Cagnoli and Valentina Virginia Ebani
Microorganisms 2024, 12(11), 2367; https://doi.org/10.3390/microorganisms12112367 - 20 Nov 2024
Cited by 1 | Viewed by 1294
Abstract
Previous investigations have explored the involvement of wolves in parasitic and viral diseases, but data on the zoonotic bacteria are limited. The aim of this study was to assess the occurrence of bacterial zoonotic agents in 16 wolf (Canis lupus italicus) [...] Read more.
Previous investigations have explored the involvement of wolves in parasitic and viral diseases, but data on the zoonotic bacteria are limited. The aim of this study was to assess the occurrence of bacterial zoonotic agents in 16 wolf (Canis lupus italicus) fecal samples collected in a protected area in Central Italy. Campylobacter spp., Salmonella spp., Yersinia spp., Listeria monocytogenes, and Shiga Toxin-Producing Escherichia coli (STEC) were investigated by culture, while polymerase chain reaction (PCR) was employed to detect Coxiella burnetii, Mycobacterium spp., Brucella spp., and Francisella tularensis. The presence of Extended Spectrum β-Lactamase (ESBL)- and carbapenemase-producing Enterobacteriaceae was also evaluated, using selective isolation media and detection of antimicrobial resistance genes. All samples were negative for Campylobacter spp., Salmonella spp., C. burnetii, Mycobacterium spp., Brucella spp., F. tularensis, and carbapenemase-producing Enterobacteriaceae. One sample tested positive for Yersinia aldovae and three for Yersinia enterocolitica BT1A. One L. monocytogenes (serogroup IIa) and one STEC, carrying the stx1 gene, were isolated. Two ESBL isolates were detected: one Serratia fonticola, carrying blaFONA-3/6 gene, and one Escherichia coli, carrying blaCTX-M-1 gene. Both ESBL isolates were resistant to different antimicrobials and therefore classified as multi-drug-resistant. Our data suggest that wolves are potential carriers of zoonotic bacteria and may contribute to the environmental contamination through their feces. Full article
(This article belongs to the Special Issue Advances in Veterinary Microbiology)
12 pages, 1953 KiB  
Article
Honeydew Honey as a Reservoir of Bacteria with Antibacterial and Probiotic Properties
by Dorota Grabek-Lejko and Mariusz Worek
Antibiotics 2024, 13(9), 855; https://doi.org/10.3390/antibiotics13090855 - 6 Sep 2024
Cited by 3 | Viewed by 2281
Abstract
The purpose of this study was to isolate, identify, and evaluate the antibacterial and probiotic potential of bacteria from honeydew honey collected in Poland. Isolates (189 colonies from 10 honey samples) were evaluated for their antimicrobial activity against Staphylococcus aureus, Bacillus cereus [...] Read more.
The purpose of this study was to isolate, identify, and evaluate the antibacterial and probiotic potential of bacteria from honeydew honey collected in Poland. Isolates (189 colonies from 10 honey samples) were evaluated for their antimicrobial activity against Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Yersinia enterocolitica, and then identified by MALDI-TOF-MS. The isolates with the greatest antimicrobial properties were screened for their probiotic potential. The total number of bacteria isolated from honey did not exceed the value of 2.5 × 102 CFU/mL. The Bacillus pumilus/altitudinis, B. licheniformis, and Bacillus cereus groups were the dominant identified bacteria. Almost 16% of the isolates expressed antibacterial potential against three pathogenic bacteria, over 20% against two, while almost 34% of the isolates did not inhibit any. The survival rate of the isolates under gastrointestinal tract conditions was higher after 4 h of exposure to bile salts (>60% survival rate for 66.66% of the isolates), while at pH 2.0, it was lower (>50% survival rate for 44% of the isolates). The most resistant isolate B. pumilus/altitudinis survived at a rate of 77% at low pH and 108% with bile salts. These results confirmed that honeydew honey is a promising reservoir of bacteria that produces metabolites with antimicrobial and probiotic potential. Full article
(This article belongs to the Special Issue Honey: Antimicrobial and Anti-infective Function)
Show Figures

Figure 1

17 pages, 17260 KiB  
Essay
Preliminary Study of the Characterization of the Viable but Noncultivable State of Yersinia enterocolitica Induced by Chloride and UV Irradiation
by Xueyu Hu, Xiaoxu Wang, Honglin Ren, Chengwei Li, Bo Zhang, Ruoran Shi, Yuzhu Wang, Shiying Lu, Yansong Li, Qiang Lu, Zengshan Liu and Pan Hu
Microorganisms 2024, 12(9), 1778; https://doi.org/10.3390/microorganisms12091778 - 28 Aug 2024
Cited by 3 | Viewed by 1317
Abstract
The viable but non-culturable (VBNC) state is a survival strategy for many foodborne pathogens under adverse conditions. Yersinia enterocolitica (Y. enterocolitica) as a kind of primary foodborne pathogen, and it is crucial to investigate its survival strategies and potential risks in [...] Read more.
The viable but non-culturable (VBNC) state is a survival strategy for many foodborne pathogens under adverse conditions. Yersinia enterocolitica (Y. enterocolitica) as a kind of primary foodborne pathogen, and it is crucial to investigate its survival strategies and potential risks in the food chain. In this study, the effectiveness of ultraviolet (UV) irradiation and chlorine treatment in disinfecting the foodborne pathogen Y. enterocolitica was investigated. The results indicated that both UV irradiation and chlorine treatment can induce the VBNC state in Y. enterocolitica. The bacteria completely lost culturability after being treated with 25 mg/L of NaClO for 30 min and a UV dose of 100 mJ/cm². The number of culturable and viable cells were detected using plate counting and a combination of fluorescein and propidium iodide (live/dead cells). Further research found that these VBNC cells exhibited reduced intracellular Adenosine Triphosphate (ATP) levels, and increased levels of reactive oxygen species (ROS) compared to non-induced cells. Morphologically, the cells changed from a rod shape to a shorter, coccobacillary shape with small vacuoles forming at the edges, indicating structural changes. Both condition-induced VBNC-state cells were able to resuscitate in tryptic soy broth (TSB) medium supplemented with Tween 80, sodium pyruvate, and glucose. These findings contribute to a better understanding of the survival mechanisms of Y. enterocolitica in the environment and are of significant importance for the development of effective disinfection strategies. Full article
(This article belongs to the Special Issue Disinfection and Sterilization of Microorganisms (2nd Edition))
Show Figures

Figure 1

15 pages, 1585 KiB  
Article
Microbiological Quality and Antibiotic Resistance of Relevant Bacteria from Horsemeat
by Elena Gonzalez-Fandos and Jessica da Silva Guedes
Microorganisms 2024, 12(9), 1775; https://doi.org/10.3390/microorganisms12091775 - 28 Aug 2024
Viewed by 1307
Abstract
The aim of this work was to assess the microbiological safety and quality of horsemeat. A total of 19 fresh horsemeat samples were analysed. Mesophile counts were 4.89 ± 1.08 log CFU/g, and Enterobacteriaceae, Staphylococcus spp., and enterococci were only isolated from [...] Read more.
The aim of this work was to assess the microbiological safety and quality of horsemeat. A total of 19 fresh horsemeat samples were analysed. Mesophile counts were 4.89 ± 1.08 log CFU/g, and Enterobacteriaceae, Staphylococcus spp., and enterococci were only isolated from 36.84%, 21.05%, and 15.79% of the samples, respectively. Neither Staphylococcus aureus nor Escherichia coli were found in any sample. Listeria spp. and Listeria monocytogenes were detected in 31.58% and 21.05% of the samples, respectively. Campylobacter jejuni was not detected in any sample. The dominant bacteria were lactic acid bacteria. Seven different Staphylococcus spp. were identified, the most common being S. delphini, S. saprophyticus, and S. warneri. S. delphini showed resistance against mupirocin and cefoxitin. All the L. monocytogenes strains showed resistance against ampicillin, cefotaxime, and oxacillin. Multi-resistant Yersinia enterocolitica, Stenotrophomonas maltophilia, and Vagococcus. fluvialis strains were found, with resistance to 11, 7, and 8 antibiotics, respectively, causing significant concern. Therefore, specific actions should be taken to decrease the contamination of horsemeat. Full article
Show Figures

Figure 1

15 pages, 1819 KiB  
Article
In Silico Evaluation of Lawsonia intracellularis Genes Orthologous to Genes Associated with Pathogenesis in Other Intracellular Bacteria
by Mirtha E. Suarez-Duarte, Renato L. Santos, Carlos E. R. Pereira, Talita P. Resende, Matheus D. Araujo, Paula A. Correia, Jessica C. R. Barbosa, Ricardo P. Laub, Diego L. N. Rodrigues, Flavia F. Aburjaile and Roberto M. C. Guedes
Microorganisms 2024, 12(8), 1596; https://doi.org/10.3390/microorganisms12081596 - 6 Aug 2024
Viewed by 1914
Abstract
Proliferative enteropathy is an enteric disease caused by the bacterium Lawsonia intracellularis, which affects several species of domestic and wild animals. The mechanisms underlying the mechanisms employed by L. intracellularis to cause host cell proliferation are poorly understood, mostly because this bacterium [...] Read more.
Proliferative enteropathy is an enteric disease caused by the bacterium Lawsonia intracellularis, which affects several species of domestic and wild animals. The mechanisms underlying the mechanisms employed by L. intracellularis to cause host cell proliferation are poorly understood, mostly because this bacterium is extremely difficult to isolate and propagate in vitro. Comparative genomics methods for searching for genes orthologous to genes known to be associated with pathogenesis allow identification of genes potentially involved in pathogenesis by the pathogen of interest. The goal of this study was to carry out in silico research on L. intracellularis genes orthologous to genes required for intracellular invasion and survival present in other pathogenic bacteria, particularly Brucella abortus, B. melitensis, B. suis, Listeria monocytogenes, Mycobacterium tuberculosis, Mycobacterium avium subspecies paratuberculosis, Salmonella enterica, Yersinia pestis, Y. enterocolitica, and Y. pseudotuberculosis. A total of 127 genes associated with invasion and intracellular survival from five known intracellular bacteria were mapped against the predicted proteomes of all L. intracellularis strains publicly available on GenBank, using the OrthoFinder program. A total of 45 L. intracellularis genes were orthologous to genes associated with pathogenesis of other intracellular bacteria. Genes putatively associated with signal the transduction of chemotaxis and cell motility were identified. Genes related to DNA binding and repair were also identified, with some of them supporting a possible association of bacteria with macrophages or inducing pro-inflammatory responses. The homology-based identification of these genes suggests their potential involvement in the virulence and pathogenicity of L. intracellularis, opening avenues for future research and insights into the molecular mechanisms of Lawsonia-elicited proliferative enteropathy. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

Back to TopTop