Current Challenges in Yersinia Diagnosis and Treatment
Abstract
:1. Introduction
2. Materials and Methods
3. Historical Background
4. Epidemiology of Yersinia Infection
5. Pathomechanisms of Yersiniosis Infection
6. Animal Reservoirs of Yersinia
6.1. Reservoirs of Yersinia enterocolitica
6.2. Reservoirs of Yersinia pseudotuberculosis
Human Activity | Animal and Plant Sources of Yersinia spp. |
---|---|
Food consumption | Yersinia enterocolitica |
Risky behavior | Yersinia enterocolitica |
Possible zoonotic exposure |
|
Animal contact | The enteropathogenic serotypes of Yersinia include BT2, O:9; BT2 O:5.27; and BT4, O:3 isolated from various animal species.
|
Human-to-human transmission (possible route) |
|
Waterborne transmission |
|
Y. pseudotuberculosis | |
Food consumption | This foodborne pathogen is rarely isolated from food. |
Outbreaks |
7. Yersinia Transmission
General Characteristics | Crucial Yop Function | Mechanism | Therapeutic Use of the Recombinant Form |
---|---|---|---|
YopM | |||
|
|
| Involved in the treatment of auto-inflammatory diseases, e.g.,
|
|
| ||
YopE | |||
|
|
| Involved in the treatment of the following caspase-1-related diseases:
|
YopT | |||
| An irreversible inhibitor of Rho-GTPases | ↓ inflammation in synovial tissues (through ROK inhibition) [116] | RA—also as a local treatment for inflamed synovial tissues. |
↓ inflammation |
| ||
YopO | |||
|
|
|
|
|
| ||
YopJ/P | |||
| Has strong anti-inflammatory effects: |
|
|
|
| ||
|
| ||
YopH | |||
|
| ||
|
| ||
|
| ||
|
| ||
|
| ||
|
| ||
YopQ | |||
|
|
|
|
8. Clinical Symptoms
8.1. Gastrointestinal Symptoms
8.2. Musculoskeletal Symptoms
Type of Infection | Mild and Self-Limiting | Severe |
---|---|---|
Primary (gastrointestinal) | Pseudo-appendicular syndromes
| |
Secondary | Reactive arthritis Erythema nodosum |
|
Y. pseudotuberculosis | ||
Primary (gastrointestinal) | Mild enteritis
|
|
Secondary | Reactive arthritis
|
|
FESLF |
|
|
9. Diagnosis
Diagnostic Test | Characteristics | Clinical Meaning |
---|---|---|
ELISA |
|
|
Western blot |
| Allows for the differentiation of specific antibody isotypes: |
Endoscopy |
|
|
The histological findings of Yersinia infection |
10. Treatment of Yersinia Infection
10.1. Treatment of Intestinal Yersiniosis
Management | ||
---|---|---|
Stage of the Disease | Management | Characteristics |
acute severe Yersiniosis | Supportive care |
|
Hospital admission and antibiotics |
| |
Abdominal abscess |
| |
Appendicitis suspicions |
| |
Antibiotics | ||
The acute phase of ReA |
| |
Chronic infection | Intestinal infection |
|
ReA |
| |
Preventive measures | Education and healthy behavior |
|
10.2. Treatment of Skin and Mucous Membrane Lesions
10.3. Treatment of Reactive Arthritis
11. Prevention
12. Conclusions
Funding
Conflicts of Interest
Abbreviations
Ail | attachment invasion locus |
ECA | enterobacterial common antigen |
FESLF | Far Eastern scarlet fever |
GDI | guanosine dissociation inhibitors (which constitute a family of small GTPases that serve a regulatory role in vesicular membrane traffic) |
Gαq | heterotrimeric G protein complex |
IBD | inflammatory bowel disease |
HPI | high-pathogenicity island |
IFγ | interferon-γ |
inv | invasin |
LPS | lipopolysaccharide |
NK | natural killer |
OPS | O-specific polysaccharide |
PRK (PKN) | the serine/threonine protein kinase C-related kinases |
RA | rheumatoid arthritis |
Rac1 | A specific member of the Rho family of GTPases (intracellular transducer of multiple signaling pathways) |
Rho family proteins | A member of a major branch of the Ras superfamily of small GTPases [a family of small (~21 kDa) signaling G proteins] |
RCTs | randomized control trials |
ReA | reactive arthritis |
ROK | Rho-kinase |
ROS | reactive oxygen species |
RSK | ribosomal S6 kinase |
Ser/Thr | serine/threonine protein kinase |
sIGMD | selective IgM deficiency |
T3SS | type 3 secretion system |
TLRs | Toll-like receptors |
TMP-SMX | trimethoprim–sulfamethoxazole |
TNF-α | tumor necrosis factor |
TSH | thyroid-stimulating immunoglobulin |
yet | Yersinia stable toxin |
Yop | Yersinia outer protein |
YPM | Y. pseudotuberculosis-derived mitogen |
References
- Le Guern, A.S.; Savin, C.; Angermeier, H.; Brémont, S.; Clermont, D.; Mühle, E.; Orozova, P.; Najdenski, H.; Pizarro-Cerdá, J. Yersinia artesiana sp. nov., Yersinia proxima sp. nov., Yersinia alsatica sp. nov., Yersina vastinensis sp. nov., Yersinia thracica sp. nov. and Yersinia occitanica sp. nov., isolated from humans and animals. Int. J. Syst. Evol. Microbiol. 2020, 70, 5363–5372. [Google Scholar] [CrossRef] [PubMed]
- Verhaegen, J.; Dancsa, L.; Lemmens, P.; Janssens, M.; Verbist, L.; Vandepitte, J.; Wauters, G. Yersinia enterocolitica surveillance in Belgium (1979–1989). Contrib. Microbiol. Immunol. 1991, 12, 11–16. [Google Scholar]
- Somova, L.M.; Antonenko, F.F.; Timchenko, N.F.; Lyapun, I.N. Far Eastern Scarlet-Like Fever is a Special Clinical and Epidemic Manifestation of Yersinia pseudotuberculosis Infection in Russia. Pathogens 2020, 9, 436. [Google Scholar] [CrossRef]
- Williamson, D.A.; Baines, S.L.; Carter, G.P.; da Silva, A.G.; Ren, X.; Sherwood, J.; Dufour, M.; Schultz, M.B.; French, N.P.; Seemann, T.; et al. Genomic Insights into a Sustained National Outbreak of Yersinia pseudotuberculosis. Genome Biol. Evol. 2016, 8, 3806–3814. [Google Scholar] [CrossRef]
- Rivas, L.; Strydom, H.; Paine, S.; Wang, J.; Wright, J. Yersiniosis in New Zealand. Pathogens 2021, 10, 191. [Google Scholar] [CrossRef] [PubMed]
- Jalava, K.; Hallanvuo, S.; Nakari, U.M.; Ruutu, P.; Kela, E.; Heinasmaki, T.; Siitonen, A.; Nuorti, J.P. Multiple Outbreaks of Yersinia pseudotuberculosis Infections in Finland. J. Clin. Microbiol. 2004, 42, 2789–2791. [Google Scholar] [CrossRef]
- Savin, C.; Le Guern, A.S.; Chereau, F.; Guglielmini, J.; Heuzé, G.; Demeure, C.; Pizarro-Cerdá, J. First Description of a Yersinia pseudotuberculosis Clonal Outbreak in France, Confirmed Using a New Core Genome Multilocus Sequence Typing Method. Microbiol. Spectr. 2022, 10, e01145-22. [Google Scholar] [CrossRef] [PubMed]
- Noszczyńska, M.; Kasperkiewicz, K.; Duda, K.A.; Podhorodecka, J.; Rabsztyn, K.; Gwizdała, K.; Świerzko, A.S.; Radziejewska-Lebrecht, J.; Holst, O.; Skurnik, M. Serological characterization of the enterobacterial common antigen substitution of the lipopolysaccharide of Yersinia enterocolitica O:3. Microbiology 2015, 161, 219–227. [Google Scholar] [CrossRef]
- Ljungberg, P.; Valtonen, M.; Harjola, V.P.; Kaukoranta-Tolvanen, S.S.; Vaara, M. Report of four cases of Yersinia pseudotuberculosis septicemia and a literature review. Eur. J. Clin. Microbiol. Infect. Dis. 1995, 14, 804–810. [Google Scholar] [CrossRef]
- Mert, M.; Kocabay, G.; Ozülker, T.; Temizel, M.; Yanar, H.; Uygun, O.; Ozülker, F.; Arman, Y.; Cevizci, E.; Olek, A.C. Liver abscess due to Yersinia bacteremia in a well-controlled type I diabetic patient. Endokrynol. Pol. 2011, 62, 357–360. [Google Scholar]
- Kaasch, A.J.; Dinter, J.; Goeser, T.; Plum, G.; Seifert, H. Yersinia pseudotuberculosis bloodstream infection and septic arthritis: Case report and review of the literature. Infection 2012, 40, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Safa, G.; Loppin, M.; Tisseau, L.; Lamoril, J. Cutaneous aseptic neutrophilic abscesses and Yersinia enterocolitica infection in a case subsequently diagnosed as Crohn’s disease. Dermatology 2008, 217, 340–342. [Google Scholar] [CrossRef] [PubMed]
- Vincent, P.; Leclercq, A.; Martin, L.; Network, Y.S.; Duez, J.-M.; Simonet, M.; Carniel, E. Sudden onset of pseudotuberculosis in humans, France, 2004–2005. Emerg. Infect. Dis. 2008, 14, 1119–1122. [Google Scholar] [CrossRef]
- Galindo, C.L.; Rosenzweig, J.A.; Kirtley, M.L.; Chopra, A.K. Pathogenesis of Y. enterocolitica and Y. pseudotuberculosis in Human Yersiniosis. J. Pathog. 2011, 2011, 182051. [Google Scholar] [CrossRef]
- Bui, T.H.; Ikeuchi, S.; O’Brien, Y.S.; Niwa, T.; Hara-Kudo, Y.; Taniguchi, T.; Hayashidani, H. Multiplex PCR method for differentiating highly pathogenic Yersinia enterocolitica and low pathogenic Yersinia enterocolitica, and Yersinia pseudotuberculosis. J. Vet. Med. Sci. 2021, 83, 1982–1987. [Google Scholar] [CrossRef]
- Binnicker, M.J. Multiplex Molecular Panels for Diagnosis of Gastrointestinal Infection: Performance, Result Interpretation, and Cost-Effectiveness. J. Clin. Microbiol. 2015, 53, 3723–3728. [Google Scholar] [CrossRef]
- Glover, Q.; Jiang, X.; Onderak, A.M.; Mapes, A.; Hollnagel, F.; Buckley, J.; Kim, C.H.; Siraj, D. Comparison between Go-GutDx, a novel diagnostic stool test kit with potential impact in low-income countries, and BioFire test. PLoS ONE 2025, 20, e0319145. [Google Scholar] [CrossRef]
- Freeman, C.N.; Mehta, N.; Rabari, J.; Kosar, J.; Blondeau, J.M.; Hamula, C.L. Retrospective analysis and clinical performance of BD MAX enteric pathogen testing with a focus on reliable identification of vibrio species in stool samples. Diagn. Microbiol. Infect. Dis. 2025, 111, 116715. [Google Scholar] [CrossRef] [PubMed]
- Mollaret, H.H. Fifteen centuries of Yersiniosis. Contrib. Microbiol. Immunol. 1994, 13, 1–4. [Google Scholar] [PubMed]
- Achtman, M.; Zurth, K.; Morelli, G.; Torrea, G.; Guiyoule, A.; Carniel, E. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc. Natl. Acad. Sci. USA 1999, 96, 14043–14048. [Google Scholar] [CrossRef]
- Ostroff, S. Yersinia as an emerging infection: Epidemiologic aspects of Yersiniosis. Contrib. Microbiol. Immunol. 1995, 13, 5–10. [Google Scholar] [PubMed]
- Schleifstein, J.; Coleman, M.B. An unidentified microorganism resembling B. lignieri and Past. pseudotuberculosis and pathogenic for man. N. Y. State J. Med. 1939, 39, 1749–1753. [Google Scholar]
- vanLoghem, J.J. The classification of plaque-bacillus. Antonie Van Leeuwenhoek 1944, 10, 15–16. [Google Scholar] [CrossRef]
- Frederiksen, W. A study of some Yersinia pseudotuberculosis-like bacteria (‘Bacterium enterocoliticum’ and Pasteurella X). In Proceedings of the 14th Scandinavian Congress on Pathology and Microbiology, Oslo, Norway, 25–27 June 1964; pp. 103–104. [Google Scholar]
- Brenner, D.J.; Steigerwalt, A.G.; Falxo, D.P.; Weaver, R.E.; Fanning, G.R. Characterization of Yersinia enterocolitica and Yersinia pseudotuberculosis by deoxyribonucleic acid hybridization and by biochemical reactions. Int. J. Syst. Bacteriol. 1976, 26, 180–194. [Google Scholar] [CrossRef]
- Brenner, D.J.; Bercovier, H.; Ursing, J.; Alonso, J.M.; Steigerwalt, A.G.; Fanning, G.R.; Carter, G.P.; Mollaret, H.H. Yersinia intermedia: A new species of Enterobacteriaceae composed of rhamnose-positive, melibiose positive raffinose-positive strains (formerly called atypical Yersinia enterocolitica or Yersinia enterocolitica-like). Curr. Microbiol. 1980, 4, 207–212. [Google Scholar] [CrossRef]
- Bercovier, H.; Ursing, J.; Brenner, D.J.; Steigerwalt, A.G.; Fanning, G.R.; Carter, G.P.; Mollaret, H.H. Yersinia kristensenii: A new species of Enterobacteriaceae composed of sucrose-negative strains (formerly called atypical Yersinia enterocolitica or Yersinia enterocolitica-like). Curr. Microbiol. 1980, 4, 219–224. [Google Scholar] [CrossRef]
- Nilehn, B. Studies on Yersinia enterocolitica with special reference to bacterial diagnosis and occurrence in human acute enteric disease. Acta. Pathol. Microbiol. Scand. 1969, 206, 1. [Google Scholar]
- Wauters, G.; Kandolo, K.; Janssens, M. Revised biogrouping scheme of Yersinia enterocolitica. Contrib. Microbiol. Immunol. 1987, 9, 14–21. [Google Scholar]
- Wauters, G.; Janssens, M.; Steigerwalt, A.G.; Brenner, D.J. Yersinia mollareti sp., nov., Yersinia bercovieri sp. nov., formerly called Yersinia enterocolitica biogroups 3A and 3B. Int. J. Syst. Bacteriol. 1988, 4, 424–429. [Google Scholar] [CrossRef]
- Bottone, E.J. Yersinia enterocolitica: Overview and epidemiologic correlates. Microbes Infect. 1999, 1, 323–333. [Google Scholar] [CrossRef]
- Eurosurveillance-Editorial-Team. The 2013 joint ECDC/EFSA report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks published. Eurosurveillance 2015, 20, 6. [Google Scholar]
- EFSA. ECDC The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015. EFSA J. 2016, 14, e04634. [Google Scholar]
- SVA. Surveillance of Infectious Diseases in Animals and Humans in Sweden 2015; National Veterinary Institute (SVA): Uppsala, Sweden, 2016; ISSN 1654-7098. [Google Scholar]
- Kasperkiewicz, K.; Świerzko, A.S.; Przybyła, M.; Szemraj, J.; Barski, J.; Skurnik, M.; Kałużyński, A.; Cedzyński, M. The Role of Yersinia enterocolitica O:3 Lipopolysaccharide in Collagen-Induced Arthritis. J. Immunol. Res. 2020, 2020, 7439506. [Google Scholar] [CrossRef] [PubMed]
- Nowacka, Z.; Kosyra, M.; Sadkowska-Todys, M. Yersiniosis in Poland in 2018–2020. Przegl. Epidemiol. 2022, 76, 604–615. [Google Scholar] [CrossRef] [PubMed]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States--major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef]
- Prevention Centers for Disease Control and Yersinia enterocolitica (Yersiniosis). 2016. Available online: https://www.cdc.gov/yersinia/ (accessed on 23 February 2023).
- Nesbakken, T. Surveillance and Control of Enteric Yersinioses. In Yersinia: System Biology and Control; Carniel, E., Hinnebusch, B.J., Eds.; Caister Academic Press: Norfolk, UK, 2012; pp. 217–238. [Google Scholar]
- European Food Safety Authority (EFSA). European Centre for Disease Prevention and Control (ECDC). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J. 2018, 16, e05500. [Google Scholar]
- European Food Safety Authority (EFSA). European Centre for Disease Prevention and Control (ECDC). The European Union One Health 2023 Zoonoses report. EFSA J. 2024, 22, e9106. [Google Scholar] [CrossRef]
- Inoue, M.; Nakashima, H.; Ueba, O.; Ishida, T.; Date, H.; Kobashi, S.; Takagi, K.; Nishu, T.; Tsubokura, M. Community outbreak of Yersinia pseudotuberculosis. Microbiol. Immunol. 1984, 28, 883–891. [Google Scholar] [CrossRef]
- Nowgesic, E.; Fyfe, M.; Hockin, J.; King, A.; Ng, H.; Paccagnella, A.; Trinidad, A.; Wilcott, L.; Smith, R.; Denney, A.; et al. Outbreak of Yersinia pseudotuberculosis in British Columbia—November 1998. Can. Commun. Dis. Rep. 1999, 25, 97–100. [Google Scholar]
- Zganjer, M.; Roic, G.; Cizmic, A.; Pajic, A. Infectious ileocecitis—Appendicitis mimicking syndrome. Bratisl. Lek. Listy 2005, 106, 201–202. [Google Scholar]
- Grant, H.; Rode, H.; Cywes, S. Yersinia pseudotuberculosis affecting the appendix. J. Pediatr. Surg. 1994, 29, 1621. [Google Scholar] [CrossRef]
- Amphlett, A. Far East Scarlet-Like Fever: A Review of the Epidemiology, Symptomatology, and Role of Superantigenic Toxin: Yersinia pseudotuberculosis-Derived Mitogen A. Open Forum Infect. Dis. 2015, 3, ofv202. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Suzuki, K.; Furukawa, T.; Nakajima, M.; Sakai, H. Past Endemic Izumi Fever or Yersinia pseudotuberculosis Infection Reappears Sporadically. Intern. Med. 2024, 63, 1317–1322. [Google Scholar] [CrossRef]
- Fredriksson-Ahomaa, M.; Korkeala, H. Molecular epidemiology of Yersinia enterocolitica 4/O:3. Adv. Exp. Med. Biol. 2003, 529, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Guinet, F.; Carniel, E.; Leclercq, A. Transfusion-transmitted Yersinia enterocolitica sepsis. Clin. Infect. Dis. 2011, 53, 583–591. [Google Scholar] [CrossRef]
- Ackers, M.L.; Schoenfeld, S.; Markman, J.; Smith, M.G.; Nicholson, M.A.; DeWitt, W.; Cameron, D.N.; Griffin, P.M.; Slutsker, L. An outbreak of Yersinia enterocolitica O:8 infections associated with pasteurized milk. J. Infect. Dis. 2000, 181, 1834–1837. [Google Scholar] [CrossRef]
- Tsubokura, M.; Aleksić, S. A simplified antigenic scheme for serotyping of Yersinia pseudotuberculosis: Phenotypic characterization of reference strains and preparation of O and H factor sera. Contrib. Microbiol. Immunol. 1995, 13, 99–105. [Google Scholar] [PubMed]
- Jalava, K.; Hakkinen, M.; Valkonen, M.; Nakari, U.M.; Palo, T.; Hallanvuo, S.; Ollgren, J.; Siitonen, A.; Nuorti, J.P. An outbreak of gastrointestinal illness and erythema nodosum from grated carrots contaminated with Yersinia pseudotuberculosis. J. Infect. Dis. 2006, 194, 1209–1216. [Google Scholar] [CrossRef]
- Carniel, E. The Yersinia high-pathogenicity island. Int. Microbiol. 1999, 2, 161–167. [Google Scholar]
- Uchiyama, T.; Miyoshi-Akiyama, T.; Kato, H.; Fujimaki, W.; Imanishi, K.; Yan, X.J. Superantigenic properties of a novel mitogenic substance produced by Yersinia pseudotuberculosis isolated from patients manifesting acute and systemic symptoms. J. Immunol. 1993, 151, 4407–4413. [Google Scholar] [CrossRef]
- Fukushima, H.; Matsuda, Y.; Seki, R.; Tsubokura, M.; Takeda, N.; Shubin, F.N.; Paik, I.K.; Zheng, X.B. Geographical heterogeneity between Far Eastern and Western countries in prevalence of the virulence plasmid, the superantigen Yersinia pseudotuberculosis-derived mitogen, and the high-pathogenicity island among Yersinia pseudotuberculosis strains. J. Clin. Microbiol. 2001, 39, 3541–3547. [Google Scholar] [CrossRef] [PubMed]
- Fredriksson-Ahomaa, M.; Stolle, A.; Siitonen, A.; Korkeala, H. Sporadic human Yersinia enterocolitica infections caused by bioserotype 4/O:3 originate mainly from pigs. J. Med. Microbiol. 2006, 55, 747–749. [Google Scholar] [CrossRef]
- Bonardi, S.; Paris, A.; Bassi, L.; Salmi, F.; Bacci, C.; Riboldi, E.; Boni, E.; D’Incau, M.; Tagliabue, S.; Brindani, F. Detection, semiquantitative enumeration, and antimicrobial susceptibility of Yersinia enterocolitica in pork and chicken meats in Italy. J. Food Prot. 2010, 73, 1785–1792. [Google Scholar] [CrossRef] [PubMed]
- Huovinen, E.; Sihvonen, L.M.; Virtanen, M.J.; Haukka, K.; Siitonen, A.; Kuusi, M. Symptoms and sources of Yersinia enterocolitica-infection: A case-control study. BMC Infect. Dis. 2010, 10, 122. [Google Scholar] [CrossRef] [PubMed]
- Boqvist, S.; Pettersson, H.; Svensson, A.; Andersson, Y. Sources of sporadic Yersinia enterocolitica infection in children in Sweden, 2004: A case-control study. Epidemiol. Infect. 2009, 137, 897–905. [Google Scholar] [CrossRef]
- Raymond, P.; Houard, E.; Denis, M.; Esnault, E. Diversity of Yersinia enterocolitica isolated from pigs in a French slaughterhouse over 2 years. Microbiologyopen 2019, 8, e00751. [Google Scholar] [CrossRef]
- Guillier, L.; Fravalo, P.; Leclercq, A.; Thébault, A.; Kooh, P.; Cadavez, V.; Gonzales-Barron, U. Risk factors for sporadic Yersinia enterocolitica infections: A systematic review and meta-analysis. Microbial. Risk Anal. 2021, 17, 100141. [Google Scholar] [CrossRef]
- Wang, X.; Cui, Z.; Wang, H.; Tang, L.; Yang, J.; Gu, L.; Jin, D.; Luo, L.; Qiu, H.; Xiao, Y.; et al. Pathogenic strains of Yersinia enterocolitica isolated from domestic dogs (Canis familiaris) belonging to farmers are of the same subtype as pathogenic Y. enterocolitica strains isolated from humans and may be a source of human infection in Jiangsu Province, China. J. Clin. Microbiol. 2010, 48, 1604–1610. [Google Scholar] [CrossRef]
- Espenhain, L.; Riess, M.; Müller, L.; Colombe, S.; Ethelberg, S.; Litrup, E.; Jernberg, C.; Kühlmann-Berenzon, S.; Lindblad, M.; Hove, N.K.; et al. Cross-border outbreak of Yersinia enterocolitica O3 associated with imported fresh spinach, Sweden and Denmark, March 2019. Euro Surveill. 2019, 24, 1900368. [Google Scholar] [CrossRef]
- Jayarao, B.M.; Donaldson, S.C.; Straley, B.A.; Sawant, A.A.; Hegde, N.V.; Brown, J.L. A survey of foodborne pathogens in bulk tank milk and raw milk consumption among farm families in Pennsylvania. J. Dairy Sci. 2006, 89, 2451–2458. [Google Scholar] [CrossRef]
- Fredriksson-Ahomaa, M.; Wacheck, S.; Koenig, M.; Stolle, A.; Stephan, R. Prevalence of pathogenic Yersinia enterocolitica and Yersinia pseudotuberculosis in wild boars in Switzerland. Int. J. Food Microbiol. 2009, 135, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Frölich, K.; Wisser, J.; Schmüser, H.; Fehlberg, U.; Neubauer, H.; Grunow, R.; Nikolaou, K.; Priemer, J.; Thiede, S.; Streich, W.J.; et al. Epizootiologic and ecologic investigations of European brown hares (Lepus europaeus) in selected populations from Schleswig-Holstein, Germany. J. Wildl. Dis. 2003, 39, 751–761. [Google Scholar] [CrossRef]
- Muhldorfer, K.; Wibbelt, G.; Haensel, J.; Riehm, J.; Speck, S. Yersinia species isolated from bats, Germany. Emerg. Infect. Dis. 2010, 16, 578–580. [Google Scholar] [CrossRef]
- Backhans, A.; Fellström, C.; Lambertz, S.T. Occurrence of pathogenic Yersinia enterocolitica and Yersinia pseudotuberculosis in small wild rodents. Epidemiol. Infect. 2011, 139, 1230–1238. [Google Scholar] [CrossRef] [PubMed]
- Bancerz-Kisiel, A.; Platt-Samoraj, A.; Szczerba-Turek, A.; Syczyło, K.; Szweda, W. The first pathogenic Yersinia enterocolitica bioserotype 4/O:3 strain isolated from a hunted wild boar (Sus scrofa) in Poland. Epidemiol. Infect. 2015, 143, 2758–2765. [Google Scholar] [CrossRef]
- Syczyło, K.; Platt-Samoraj, A.; Bancerz-Kisiel, A.; Szczerba-Turek, A.; Pajdak-Czaus, J.; Łabuć, S.; Procajło, Z.; Socha, P.; Chuzhebayeva, G.; Szweda, W. The prevalence of Yersinia enterocolitica in game animals in Poland. PLoS ONE 2018, 13, e0195136. [Google Scholar] [CrossRef] [PubMed]
- Arrausi-Subiza, M.; Gerrikagoitia, X.; Alvarez, V.; Ibabe, J.C.; Barral, M. Prevalence of Yersinia enterocolitica and Yersinia pseudotuberculosis in wild boars in the Basque Country, northern Spain. Acta Vet. Scand. 2016, 58, 4. [Google Scholar] [CrossRef]
- Nuorti, J.P.; Niskanen, T.; Hallanvuo, S.; Mikkola, J.; Kela, E.; Hatakka, M.; Fredriksson-Ahomaa, M.; Lyytikainen, O.; Siitonen, A.; Korkeala, H.; et al. A widespread outbreak of Yersinia pseudotuberculosis O:3 infection from iceberg lettuce. J. Infect. Dis. 2004, 189, 766–774. [Google Scholar] [CrossRef]
- Rimhanen-Finne, R.; Niskanen, T.; Hallanvuo, S.; Makary, P.; Haukka, K.; Pajunen, S.; Siitonen, A.; Ristolainen, R.; Pöyry, H.; Ollgren, J.; et al. Yersinia pseudotuberculosis causing a large outbreak associated with carrots in Finland, 2006. Epidemiol. Infect. 2009, 137, 342–347. [Google Scholar] [CrossRef]
- Pärn, T.; Hallanvuo, S.; Salmenlinna, S.; Pihlajasaari, A.; Heikkinen, S.; Telkki-Nykänen, H.; Hakkinen, M.; Ollgren, J.; Huusko, S.; Rimhanen-Finne, R. Outbreak of Yersinia pseudotuberculosis O:1 infection associated with raw milk consumption, Finland, spring 2014. Euro Surveill. 2015, 20. [Google Scholar] [CrossRef]
- Barnes, P.D.; Bergman, M.A.; Mecsas, J.; Isberg, R.R. Yersinia pseudotuberculosis disseminates directly from a replicating bacterial pool in the intestine. J. Exp. Med. 2006, 203, 1591–1601. [Google Scholar] [CrossRef]
- He, Y.X.; Ye, C.L.; Zhang, P.; Li, Q.; Park, C.G.; Yang, K.; Jiang, L.Y.; Lv, Y.; Ying, X.L.; Ding, H.H.; et al. Yersinia pseudotuberculosis Exploits CD209 Receptors for Promoting Host Dissemination and Infection. Infect. Immun. 2018, 87, e00654-18. [Google Scholar] [CrossRef] [PubMed]
- Laukkanen, R.; Martínez, P.O.; Siekkinen, K.M.; Ranta, J.; Maijala, R.; Korkeala, H. Transmission of Yersinia pseudotuberculosis in the pork production chain from farm to slaughterhouse. Appl. Environ. Microbiol. 2008, 74, 5444–5450. [Google Scholar] [CrossRef]
- Sannö, A.; Aspán, A.; Hestvik, G.; Jacobson, M. Presence of Salmonella spp., Yersinia enterocolitica, Yersinia pseudotuberculosis and Escherichia coli O157:H7 in wild boars. Epidemiol. Infect. 2014, 142, 2542–2547. [Google Scholar] [CrossRef] [PubMed]
- Al Dahouk, S.; Nöckler, K.; Tomaso, H.; Splettstoesser, W.D.; Jungersen, G.; Riber, U.; Petry, T.; Hoffmann, D.; Scholz, H.C.; Hensel, A.; et al. Seroprevalence of brucellosis, tularemia, and yersiniosis in wild boars (Sus scrofa) from north-eastern Germany. J. Vet. Med. B Infect. Dis. Vet. Public Health 2005, 52, 444–455. [Google Scholar] [CrossRef]
- Niskanen, T.; Fredriksson-Ahomaa, M.; Korkeala, H. Yersinia pseudotuberculosis with limited genetic diversity is a common finding in tonsils of fattening pigs. J. Food Prot. 2002, 65, 540–545. [Google Scholar] [CrossRef]
- Nikolova, S.; Tzvetkov, Y.; Najdenski, H.; Vesselinova, A. Isolation of pathogenic Yersiniae from wild animals in Bulgaria. J. Vet. Med. B Infect. Dis. Vet. Public Health 2001, 48, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Niskanen, T.; Waldenström, J.; Fredriksson-Ahomaa, M.; Olsen, B.; Korkeala, H. virF-positive Yersinia pseudotuberculosis and Yersinia enterocolitica found in migratory birds in Sweden. Appl. Environ. Microbiol. 2003, 69, 4670–4675. [Google Scholar] [CrossRef]
- MacDonald, E.; Einöder-Moreno, M.; Borgen, K.; Thorstensen Brandal, L.; Diab, L.; Fossli, Ø.; Guzman Herrador, B.; Hassan, A.A.; Johannessen, G.S.; Johansen, E.J.; et al. National outbreak of Yersinia enterocolitica infections in military and civilian populations associated with consumption of mixed salad, Norway, 2014. Euro Surveill. 2016, 21, 30321. [Google Scholar] [CrossRef]
- Rosner, B.M.; Stark, K.; Höhle, M.; Werber, D. Risk factors for sporadic Yersinia enterocolitica infections, Germany 2009–2010. Epidemiol. Infect. 2012, 140, 1738–1747. [Google Scholar] [CrossRef]
- Rahuma, N.; Ghenghesh, K.S.; Ben Aissa, R.; Elamaari, A. Carriage by the housefly (Musca domestica) of multiple-antibiotic-resistant bacteria that are potentially pathogenic to humans, in hospital and other urban environments in Misurata, Libya. Ann. Trop. Med. Parasitol. 2005, 99, 795–802. [Google Scholar] [CrossRef]
- Fredriksson-Ahomaa, M.; Wacheck, S.; Bonke, R.; Stephan, R. Different enteropathogenic Yersinia strains found in wild boars and domestic pigs. Foodborne Pathog. Dis. 2011, 8, 733–737. [Google Scholar] [CrossRef]
- Moriki, S.; Nobata, A.; Shibata, H.; Nagai, A.; Minami, N.; Taketani, T.; Fukushima, H.; Fukushima, H. Familial outbreak of Yersinia enterocolitica serotype O9 biotype 2. J. Infect. Chemther. 2010, 16, 56–58. [Google Scholar] [CrossRef] [PubMed]
- Isobe, J.; Kimata, K.; Shimizu, M.; Kanatani, J.; Sata, T.; Watahiki, M. Water-borne outbreak of Yersinia enterocolitica O8 due to a small scale water system. Kansenshogaku Zasshi. J. Jpn. Assoc. Infect. Dis. 2014, 88, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Falcão, J.P.; Brocchi, M.; Proença-Módena, J.L.; Acrani, G.O.; Corrêa, E.F.; Falcão, D.P. Virulence characteristics and epidemiology of Yersinia enterocolitica and Yersiniae other than Y. pseudotuberculosis and Y. pestis isolated from water and sewage. J. Appl. Microbiol. 2004, 96, 1230–1236. [Google Scholar] [CrossRef]
- von Tils, D.; Blädel, I.; Schmidt, M.A.; Heusipp, G. Type II secretion in Yersinia—A secretion system for pathogenicity and environmental fitness. Front. Cell Infect. Microbiol. 2012, 2, 160. [Google Scholar] [CrossRef] [PubMed]
- Montagner, C.; Arquint, C.; Cornelis, G.R. Translocators YopB and YopD from Yersinia enterocolitica form a multimeric integral membrane complex in eukaryotic cell membranes. J. Bacteriol. 2011, 193, 6923–6928. [Google Scholar] [CrossRef]
- Venecia, K.; Young, G.M. Environmental regulation and virulence attributes of the Ysa type III secretion system of Yersinia enterocolitica biovar 1B. Infect. Immun. 2005, 73, 5961–5977. [Google Scholar] [CrossRef]
- Dhar, M.S.; Virdi, J.S. Strategies used by Yersinia enterocolitica to evade killing by the host: Thinking beyond Yops. Microbes Infect. 2014, 16, 87–95. [Google Scholar] [CrossRef]
- Mühlenkamp, M.C.; Hallström, T.; Autenrieth, I.B.; Bohn, E.; Linke, D.; Rinker, J.; Riesbeck, K.; Singh, B.; Leo, J.C.; Hammerschmidt, S.; et al. Vitronectin Binds to a Specific Stretch within the Head Region of Yersinia Adhesin A and Thereby Modulates Yersinia enterocolitica Host Interaction. J. Innate Immun. 2017, 9, 33–51. [Google Scholar] [CrossRef]
- Schmid, Y.; Grassl, G.A.; Bühler, O.T.; Skurnik, M.; Autenrieth, I.B.; Bohn, E. Yersinia enterocolitica adhesin A induces production of interleukin-8 in epithelial cells. Infect. Immun. 2004, 72, 6780–6789. [Google Scholar] [CrossRef]
- Drummond, N.; Murphy, B.P.; Ringwood, T.; Prentice, M.B.; Buckley, J.F.; Fanning, S. Yersinia enterocolitica: A Brief Review of the Issues Relating to the Zoonotic Pathogen, Public Health Challenges, and the Pork Production Chain. Foodborne Pathog. Dis. 2012, 9, 179–189. [Google Scholar] [CrossRef]
- Knirel, Y.A.; Anisimov, A.P.; Kislichkina, A.A.; Kondakova, A.N.; Bystrova, O.V.; Vagaiskaya, A.S.; Shatalin, K.Y.; Shashkov, A.S.; Dentovskaya, S.V. Lipopolysaccharide of the Yersinia pseudotuberculosis Complex. Biomolecules 2021, 11, 1410. [Google Scholar] [CrossRef]
- Ravelli, A.; Martini, A. Juvenile idiopathic arthritis. Lancet 2007, 369, 767–778. [Google Scholar] [CrossRef] [PubMed]
- Saraka, D.; Savin, C.; Kouassi, S.; Cissé, B.; Koffi, E.; Cabanel, N.; Brémont, S.; Faye-Kette, H.; Dosso, M.; Carniel, E. Yersinia enterocolitica, a Neglected Cause of Human Enteric Infections in Côte d’Ivoire. PLoS Negl. Trop. Dis. 2017, 11, e0005216. [Google Scholar] [CrossRef] [PubMed]
- Hietala, M.A.; Nandakumar, K.S.; Persson, L.; Fahlén, S.; Holmdahl, R.; Pekna, M. Complement activation by both classical and alternative pathways is critical for the effector phase of arthritis. Eur. J. Immunol. 2004, 34, 1208–1216. [Google Scholar] [CrossRef] [PubMed]
- Banda, N.K.; Kraus, D.; Vondracek, A.; Huynh, L.H.; Bendele, A.; Holers, V.M.; Arend, W.P. Mechanisms of effects of complement inhibition in murine collagen-induced arthritis. Arthritis Rheum. 2002, 46, 3065–3075. [Google Scholar] [CrossRef]
- Benabdillah, R.; Mota, L.J.; Lützelschwab, S.; Demoinet, E.; Cornelis, G.R. Identification of a nuclear targeting signal in YopM from Yersinia spp. Microb. Pathog. 2004, 36, 247–261. [Google Scholar] [CrossRef]
- Cheng, L.W.; Schneewind, O. Yersinia enterocolitica TyeA, an intracellular regulator of the type III machinery, is required for specific targeting of YopE, YopH, YopM, and YopN into the cytosol of eukaryotic cells. J. Bacteriol. 2000, 182, 3183–3190. [Google Scholar] [CrossRef]
- McCoy, M.W.; Marré, M.L.; Lesser, C.F.; Mecsas, J. The C-terminal tail of Yersinia pseudotuberculosis YopM is critical for interacting with RSK1 and for virulence. Infect. Immun. 2010, 78, 2584–2598. [Google Scholar] [CrossRef]
- LaRock, C.N.; Cookson, B.T. The Yersinia virulence effector YopM binds caspase-1 to arrest inflammasome assembly and processing. Cell Host Microbe 2012, 12, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Kerschen, E.J.; Cohen, D.A.; Kaplan, A.M.; Straley, S.C. The plague virulence protein YopM targets the innate immune response by causing a global depletion of NK cells. Infect. Immun. 2004, 72, 4589–4602. [Google Scholar] [CrossRef]
- Ye, Z.; Gorman, A.A.; Uittenbogaard, A.M.; Myers-Morales, T.; Kaplan, A.M.; Cohen, D.A.; Straley, S.C. Caspase-3 mediates the pathogenic effect of Yersinia pestis YopM in liver of C57BL/6 mice and contributes to YopM’s function in spleen. PLoS ONE 2014, 9, e110956. [Google Scholar] [CrossRef]
- Stasulli, N.M.; Eichelberger, K.R.; Price, P.A.; Pechous, R.D.; Montgomery, S.A.; Parker, J.S.; Goldman, W.E. Spatially distinct neutrophil responses within the inflammatory lesions of pneumonic plague. mBio 2015, 6, e01530-15. [Google Scholar] [CrossRef] [PubMed]
- McPhee, J.B.; Mena, P.; Bliska, J.B. Delineation of regions of the Yersinia YopM protein required for interaction with the RSK1 and PRK2 host kinases and their requirement for interleukin-10 production and virulence. Infect. Immun. 2010, 78, 3529–3539. [Google Scholar] [CrossRef] [PubMed]
- Songsungthong, W.; Higgins, M.C.; Rolán, H.G.; Murphy, J.L.; Mecsas, J. ROS-inhibitory activity of YopE is required for full virulence of Yersinia in mice. Cell Microbiol. 2010, 12, 988–1001. [Google Scholar] [CrossRef]
- Viboud, G.I.; Mejía, E.; Bliska, J.B. Comparison of YopE and YopT activities in counteracting host signalling responses to Yersinia pseudotuberculosis infection. Cell Microbiol. 2006, 8, 1504–1515. [Google Scholar] [CrossRef] [PubMed]
- Schotte, P.; Denecker, G.; Van Den Broeke, A.; Vandenabeele, P.; Cornelis, G.R.; Beyaert, R. Targeting Rac1 by the Yersinia effector protein YopE inhibits caspase-1-mediated maturation and release of interleukin-1beta. J. Biol. Chem. 2004, 279, 25134–25142. [Google Scholar] [CrossRef] [PubMed]
- Biro, M.; Munoz, M.A.; Weninger, W. Targeting Rho-GTPases in immune cell migration and inflammation. Br. J. Pharmacol. 2014, 171, 5491–5506. [Google Scholar] [CrossRef]
- Mohammadi, S.; Isberg, R.R. Yersinia pseudotuberculosis virulence determinants invasin, YopE, and YopT modulate RhoG activity and localization. Infect. Immun. 2009, 77, 4771–4782. [Google Scholar] [CrossRef]
- Aepfelbacher, M.; Trasak, C.; Wilharm, G.; Wiedemann, A.; Trulzsch, K.; Krauss, K.; Gierschik, P.; Heesemann, J. Characterization of YopT effects on Rho GTPases in Yersinia enterocolitica-infected cells. J. Biol. Chem. 2003, 278, 33217–33223. [Google Scholar] [CrossRef]
- He, Y.; Xu, H.; Liang, L.; Zhan, Z.; Yang, X.; Yu, X.; Ye, Y.; Sun, L. Antiinflammatory effect of Rho kinase blockade via inhibition of NF-kappaB activation in rheumatoid arthritis. Arthritis Rheum. 2008, 58, 3366–3376. [Google Scholar] [CrossRef]
- Lee, W.L.; Singaravelu, P.; Wee, S.; Xue, B.; Ang, K.C.; Gunaratne, J.; Grimes, J.M.; Swaminathan, K.; Robinson, R.C. Mechanisms of Yersinia YopO kinase substrate specificity. Sci. Rep. 2017, 7, 39998. [Google Scholar] [CrossRef]
- Park, H.; Teja, K.; O’Shea, J.J.; Siegel, R.M. The Yersinia effector protein YpkA induces apoptosis independently of actin depolymerization. J. Immunol. 2007, 178, 6426–6434. [Google Scholar] [CrossRef] [PubMed]
- Prehna, G.; Ivanov, M.I.; Bliska, J.B.; Stebbins, C.E. Yersinia virulence depends on mimicry of host Rho-family nucleotide dissociation inhibitors. Cell 2006, 126, 869–880. [Google Scholar] [CrossRef] [PubMed]
- Gálvez, J. Role of Th17 Cells in the Pathogenesis of Human IBD. ISRN Inflamm. 2014, 2014, 928461. [Google Scholar] [CrossRef]
- Zheng, Y.; Lilo, S.; Mena, P.; Bliska, J.B. YopJ-induced caspase-1 activation in Yersinia-infected macrophages: Independent of apoptosis, linked to necrosis, dispensable for innate host defense. PLoS ONE 2012, 7, e36019. [Google Scholar] [CrossRef] [PubMed]
- Ruckdeschel, K.; Deuretzbacher, A.; Haase, R. Crosstalk of signalling processes of innate immunity with Yersinia Yop effector functions. Immunobiology 2008, 213, 261–269. [Google Scholar] [CrossRef]
- Denecker, G.; Declercq, W.; Geuijen, C.A.; Boland, A.; Benabdillah, R.; van Gurp, M.; Sory, M.P.; Vandenabeele, P.; Cornelis, G.R. Yersinia enterocolitica YopP-induced apoptosis of macrophages involves the apoptotic signaling cascade upstream of bid. J. Biol. Chem. 2001, 276, 19706–19714. [Google Scholar] [CrossRef]
- Sweet, C.R.; Conlon, J.; Golenbock, D.T.; Goguen, J.; Silverman, N. YopJ targets TRAF proteins to inhibit TLR-mediated NF-kappaB, MAPK and IRF3 signal transduction. Cell Microbiol. 2007, 9, 2700–2715. [Google Scholar] [CrossRef]
- Denecker, G.; Tötemeyer, S.; Mota, L.J.; Troisfontaines, P.; Lambermont, I.; Youta, C.; Stainier, I.; Ackermann, M.; Cornelis, G.R. Effect of low- and high-virulence Yersinia enterocolitica strains on the inflammatory response of human umbilical vein endothelial cells. Infect. Immun. 2002, 70, 3510–3520. [Google Scholar] [CrossRef]
- Davignon, J.L.; Hayder, M.; Baron, M.; Boyer, J.F.; Constantin, A.; Apparailly, F.; Poupot, R.; Cantagrel, A. Targeting monocytes/macrophages in the treatment of rheumatoid arthritis. Rheumatology 2013, 52, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Adkins, I.; Köberle, M.; Gröbner, S.; Bohn, E.; Autenrieth, I.B.; Borgmann, S. Yersinia outer proteins E, H, P, and T differentially target the cytoskeleton and inhibit phagocytic capacity of dendritic cells. Int. J. Med. Microbiol. 2007, 297, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Fahlgren, A.; Westermark, L.; Akopyan, K.; Fällman, M. Cell type-specific effects of Yersinia pseudotuberculosis virulence effectors. Cell Microbiol. 2009, 11, 1750–1767. [Google Scholar] [CrossRef]
- Sauvonnet, N.; Lambermont, I.; van der Bruggen, P.; Cornelis, G.R. YopH prevents monocyte chemoattractant protein 1 expression in macrophages and T-cell proliferation through inactivation of the phosphatidylinositol 3-kinase pathway. Mol. Microbiol. 2002, 45, 805–815. [Google Scholar] [CrossRef] [PubMed]
- Binder, N.B.; Puchner, A.; Niederreiter, B.; Hayer, S.; Leiss, H.; Blüml, S.; Kreindl, R.; Smolen, J.S.; Redlich, K. Tumor necrosis factor-inhibiting therapy preferentially targets bone destruction but not synovial inflammation in a tumor necrosis factor-driven model of rheumatoid arthritis. Arthritis Rheum. 2013, 65, 608–617. [Google Scholar] [CrossRef]
- Goldring, S.R.; Purdue, P.E.; Crotti, T.N.; Shen, Z.; Flannery, M.R.; Binder, N.B.; Ross, F.P.; McHugh, K.P. Bone remodelling in inflammatory arthritis. Ann. Rheum. Dis. 2013, 72, ii52-5. [Google Scholar] [CrossRef]
- Malemud, C.J. The PI3K/Akt/PTEN/mTOR pathway: A fruitful target for inducing cell death in rheumatoid arthritis? Future Med. Chem. 2015, 7, 1137–1147. [Google Scholar] [CrossRef]
- Yu, P.; Fu, Y.X. Tumor-infiltrating T lymphocytes: Friends or foes? Lab. Investig. 2006, 86, 231–245. [Google Scholar] [CrossRef]
- Paudyal, M.P.; Wu, L.; Zhang, Z.Y.; Spilling, C.D.; Wong, C.F. A new class of salicylic acid derivatives for inhibiting YopH of Yersinia pestis. Bioorg. Med. Chem. 2014, 22, 6781–6788. [Google Scholar] [CrossRef]
- Brodsky, I.E.; Palm, N.W.; Sadanand, S.; Ryndak, M.B.; Sutterwala, F.S.; Flavell, R.A.; Bliska, J.B.; Medzhitov, R. A Yersinia effector protein promotes virulence by preventing inflammasome recognition of the type III secretion system. Cell Host Microbe 2010, 7, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Dewoody, R.; Merritt, P.M.; Marketon, M.M.; Dewoody, R.; Merritt, P.M.; Marketon, M.M. YopK controls both rate and fidelity of Yop translocation. Mol. Microbiol. 2013, 87, 301–317. [Google Scholar] [CrossRef] [PubMed]
- Porter, C.K.; Choi, D.; Cash, B.; Pimentel, M.; Murray, J.; May, L.; Riddle, M.S. Pathogen-specific risk of chronic gastrointestinal disorders following bacterial causes of foodborne illness. BMC Gastroenterol. 2013, 13, 46. [Google Scholar] [CrossRef]
- Perdikogianni, C.; Galanakis, E.; Michalakis, M.; Giannoussi, E.; Maraki, S.; Tselentis, Y.; Charissis, G. Yersinia enterocolitica infection mimicking surgical conditions. Pediatr. Surg. Int. 2006, 22, 589–592. [Google Scholar] [CrossRef] [PubMed]
- Laji, N.; Bowyer, R.; Jeyaratnam, D.; Zuckerman, M. Another mistaken case of appendicitis. BMJ Case Rep. 2015, 2015. [Google Scholar] [CrossRef]
- Hannu, T.; Mattila, L.; Nuorti, J.P.; Ruutu, P.; Mikkola, J.; Siitonen, A.; Leirisalo-Repo, M. Reactive arthritis after an outbreak of Yersinia pseudotuberculosis serotype O:3 infection. Ann. Rheum. Dis. 2003, 62, 866–869. [Google Scholar] [CrossRef]
- Rees, J.R.; Pannier, M.A.; McNees, A.; Shallow, S.; Angulo, F.J.; Vugia, D.J. Persistent diarrhea, arthritis, and other complications of enteric infections: A pilot survey based on California FoodNet surveillance, 1998–1999. Clin. Infect. Dis. 2004, 38, S311–S317. [Google Scholar] [CrossRef]
- Wuorela, M.; Jalkanen, S.; Toivanen, P.; Granfors, K. Yersinia lipopolysaccharide is modified by human monocytes. Infect. Immun. 1993, 61, 5261–5270. [Google Scholar] [CrossRef] [PubMed]
- Fotis, L.; Shaikh, N.; Baszis, K.W.; Samson, C.M.; Lev-Tzion, R.; French, A.R.; Tarr, P.I. Serologic Evidence of Gut-driven Systemic Inflammation in Juvenile Idiopathic Arthritis. J. Rheumatol. 2017, 44, 1624–1631. [Google Scholar] [CrossRef]
- Yu, J.G.; Kuipers, D. Role of bacteria and HLA-B27 in the pathogenesis of reactive arthritis. Rheum. Dis. Clin. N. Am. 2003, 29, 21–36. [Google Scholar] [CrossRef]
- Rihl, M.; Klos, A.; Köhler, L.; Kuipers, J.G. Infection and musculoskeletal conditions: Reactive arthritis. Best Pract. Res. Clin. Rheumatol. 2006, 20, 1119–1137. [Google Scholar] [CrossRef]
- Rosner, B.M.; Werber, D.; Höhle, M.; Stark, K. Clinical aspects and self-reported symptoms of sequelae of Yersinia enterocolitica infections in a population-based study, Germany 2009–2010. BMC Infect. Dis. 2013, 13, 236. [Google Scholar] [CrossRef]
- Hallanvuo, S.; Nuorti, P.; Nakari, U.M.; Siitonen, A. Molecular epidemiology of the five recent outbreaks of Yersinia pseudotuberculosis in Finland. Adv. Exp. Med. Biol. 2003, 529, 309–312. [Google Scholar] [CrossRef] [PubMed]
- Savin, C.; Leclercq, A.; Carniel, E. Evaluation of a single procedure allowing the isolation of enteropathogenic Yersinia along with other bacterial enteropathogens from human stools. PLoS ONE 2012, 7, e41176. [Google Scholar] [CrossRef] [PubMed]
- Bonardi, S.; Alpigiani, I.; Pongolini, S.; Morganti, M.; Tagliabue, S.; Bacci, C.; Brindani, F. Detection, enumeration and characterization of Yersinia enterocolitica 4/O:3 in pig tonsils at slaughter in Northern Italy. Int. J. Food Microbiol. 2014, 177, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Kachoris, M.; Ruoff, K.L.; Welch, K.; Kallas, W.; Ferraro, M.J. Routine culture of stool specimens for Yersinia enterocolitica is not a cost-effective procedure. J. Clin. Microbiol. 1988, 26, 582–583. [Google Scholar] [CrossRef]
- Triantafillidis, J.K.; Thomaidis, T.; Papalois, A. Terminal Ileitis due to Yersinia Infection: An Underdiagnosed Situation. Biomed. Res. Int. 2020, 2020, 1240626. [Google Scholar] [CrossRef]
- Lahesmaa-Rantala, R.; Granfors, K.; Isomäki, H.; Toivanen, A. Yersinia specific immune complexes in the synovial fluid of patients with yersinia triggered reactive arthritis. Ann. Rheum. Dis. 1987, 46, 510–514. [Google Scholar] [CrossRef]
- Spyropoulos, C. Selective immunoglobulin M deficiency and terminal ileitis due to Yersinia enterocolitica infection: A clinically interesting coexistence. Gastroenterol. Hepatol. Open Access 2015, 2, 00036. [Google Scholar] [CrossRef]
- Montenegro, L.; Piscitelli, D.; Giorgio, F.; Covelli, C.; Fiore, M.G.; Losurdo, G.; Iannone, A.; Ierardi, E.; Di Leo, A.; Principi, M. Reversal of IgM deficiency following a gluten-free diet in seronegative celiac disease. World J. Gastroenterol. 2014, 20, 17686–17689. [Google Scholar] [CrossRef]
- Biagi, F.; Bianchi, P.I.; Zilli, A.; Marchese, A.; Luinetti, O.; Lougaris, V.; Plebani, A.; Villanacci, V.; Corazza, G.R. The significance of duodenal mucosal atrophy in patients with common variable immunodeficiency: A clinical and histopathologic study. Am. J. Clin. Pathol. 2012, 138, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Yel, L. Selective IgA Deficiency. J. Clin. Immunol. 2010, 30, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Vo Ngoc, D.T.L.; Krist, L.; van Overveld, F.J.; Rijkers, G.T. The Long and Winding Road to IgA Deficiency: Causes and Consequences. Expert. Rev. Clin. Immunol. 2017, 13, 371–382. [Google Scholar] [CrossRef]
- Zhang, J.; van Oostrom, D.; Li, J.; Savelkoul, H.F.J. Innate Mechanisms in Selective IgA Deficiency. Front. Immunol. 2021, 12, 649112. [Google Scholar] [CrossRef]
- Swanink, C.M.; Stolk-Engelaar, V.M.; van der Meer, J.W.; Vercoulen, J.H.; Bleijenberg, G.; Fennis, J.F.; Galama, J.M.; Hoogkamp-Korstanje, J.A. Yersinia enterocolitica and the chronic fatigue syndrome. J. Infect. 1998, 36, 269–272. [Google Scholar] [CrossRef] [PubMed]
- Rastawicki, W.; Jakubczak, A. Serum immunoglobulin IgG subclass distribution of antibody responses to Yop proteins and lipopolysaccharide of Yersinia enterocolitica in patients with yersiniosis. Pol. J. Microbiol. 2007, 56, 233–238. [Google Scholar]
- Wunderink, H.F.; Oostvogel, P.M.; Frénay, I.H.; Notermans, D.W.; Fruth, A.; Kuijper, E.J. Difficulties in diagnosing terminal ileitis due to Yersinia pseudotuberculosis. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 197–200. [Google Scholar] [CrossRef]
- Stevens, M.J.A.; Barmettler, K.; Kelbert, L.; Stephan, R.; Nüesch-Inderbinen, M. Genome based characterization of Yersinia enterocolitica from different food matrices in Switzerland in 2024. Infect. Genet. Evol. 2025, 128, 105719. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Jing, H.; Ren, Y.; Zhou, Z.; Wang, S.; Kan, B.; Xu, J.; Wang, L. Complete genome sequence of a Yersinia enterocolitica “Old World” (3/O:9) strain and comparison with the “New World” (1B/O:8) strain. J. Clin. Microbiol. 2011, 49, 1251–1259. [Google Scholar] [CrossRef]
- Miyata, E.; Jimbo, K.; Kyodo, R.; Suzuki, M.; Kudo, T.; Shimizu, T. Differentiation of Yersinia enterocolitica enteritis from other bacterial enteritides by ultrasonography: A single-center case-control study. Pediatr. Neonatol. 2022, 63, 262–268. [Google Scholar] [CrossRef]
- Feakins, R.; Torres, J.; Borralho-Nunes, P.; Burisch, J.; Cúrdia Gonçalves, T.; De Ridder, L.; Driessen, A.; Lobatón, T.; Menchén, L.; Mookhoek, A.; et al. ECCO Topical Review on Clinicopathological Spectrum and Differential Diagnosis of Inflammatory Bowel Disease. J. Crohn′s Colitis 2022, 16, 343–368. [Google Scholar] [CrossRef]
- Revés, J.; Frias-Gomes, C.; Ramos, L.R.; Glória, L. Positive Yersinia Serology and Colonic Cobblestone Pattern: A Diversion or Main Culprit? GE Port. J. Gastroenterol. 2024, 32, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Marubashi, K.; Takagi, H.; Wakagi, T.; Takakusagi, S.; Yokoyama, Y.; Kizawa, K.; Kosone, T.; Uraoka, T. Endoscopic and video capsule endoscopic observation of Yersinia enterocolitis. DEN Open 2023, 3, e242. [Google Scholar] [CrossRef]
- Matsumoto, T.; Iida, M.; Matsui, T.; Sakamoto, K.; Fuchigami, T.; Haraguchi, Y.; Fujishima, M. Endoscopic findings in Yersinia enterocolitica enterocolitis. Gastrointest. Endosc. 1990, 36, 583–587. [Google Scholar] [CrossRef]
- Sorobetea, D.; Matsuda, R.; Peterson, S.T.; Grayczyk, J.P.; Rao, I.; Krespan, E.; Lanza, M.; Assenmacher, C.A.; Mack, M.; Beiting, D.P.; et al. Inflammatory monocytes promote granuloma control of Yersinia infection. Nat. Microbiol. 2023, 8, 666–678. [Google Scholar] [CrossRef]
- Fàbrega, A.; Ballesté-Delpierre, C.; Vila, J. Antimicrobial resistance in Yersinia enterocolitica. Antimicrob. Resist. Food Saf. Methods Tech. 2015, 9, 77–104. [Google Scholar] [CrossRef]
- Manatsathit, S.; Dupont, H.L.; Farthing, M.; Kositchaiwat, C.; Leelakusolvong, S.; Ramakrishna, B.S.; Sabra, A.; Speelman, P.; Surangsrirat, S. Working Party of the Program Committ of the Bangkok World Congress of Gastroenterology 2002. Guideline for the management of acute diarrhea in adults. J. Gastroenterol. Hepatol. 2002, 17, S54–S71. [Google Scholar] [CrossRef] [PubMed]
- Guarino, A.; Albano, F.; Ashkenazi, S.; Gendrel, D.; Hoekstra, J.H.; Shamir, R.; Szajewska, H. The ESPGHAN/ESPID Evidence-Based Guidelines for the Management of Acute Gastroenteritis in Children in Europe Expert Working Group. European Society for Paediatric Gastroenterology, Hepatology, and Nutrition/European Society for Paediatric Infectious Diseases evidence-based guidelines for the management of acute gastroenteritis in children in Europe: Executive summary. J. Pediatr. Gastroenterol. Nutr. 2008, 46, 619–621. [Google Scholar] [CrossRef]
- Richardson, T.; Jones, M.; Akhtar, Y.; Pollard, J. Suspicious Yersinia granulomatous enterocolitis mimicking appendicitis. BMJ Case Rep. 2018, 2018, bcr-2018. [Google Scholar] [CrossRef]
- Ostroff, S.M.; Kapperud, G.; Lassen, J.; Aasen, S.; Tauxe, R.V. Clinical features of sporadic Yersinia enterocolitica infections in Norway. J. Infect. Dis. 1992, 166, 812–817. [Google Scholar] [CrossRef]
- Hoogkamp-Korstanje, J.A.; Moesker, H.; Bruyn, G.A. Ciprofloxacin v placebo for treatment of Yersinia enterocolitica triggered reactive arthritis. Ann. Rheum. Dis. 2000, 59, 914–917. [Google Scholar] [CrossRef]
- Sotohy, S.A.; Diab, M.S.; Ewida, R.M.; Aballah, A.; Eldin, N.K.A. An investigative study on Yersinia enterocolitica in animals, humans and dried milk in New Valley Governorate, Egypt. BMC Microbiol. 2024, 24, 395. [Google Scholar] [CrossRef] [PubMed]
- Hoogkamp-Korstanje, J.A.; de Koning, J.; Heesemann, J.; Festen, J.J.; Houtman, P.M.; van Oyen, P.L. Influence of antibiotics on IgA and IgG response and persistence of Yersinia enterocolitica in patients with Yersinia-associated spondylarthropathy. Infection 1992, 20, 53–57. [Google Scholar] [CrossRef]
- Delibato, E.; Luzzi, I.; Pucci, E.; Proroga, Y.T.R.; Capuano, F.; De Medici, D. Fresh produce and microbial contamination: Persistence during the shelf life and efficacy of domestic washing methods. Ann. Dell’istituto Super. Sanità 2018, 54, 358–363. [Google Scholar] [CrossRef]
- Palazzi, C.; Olivieri, I.; D’Amico, E.; Pennese, E.; Petricca, A. Management of reactive arthritis. Expert. Opin. Pharmacother. 2004, 5, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Honda, K.; Iwanaga, N.; Izumi, Y.; Tsuji, Y.; Kawahara, C.; Michitsuji, T.; Higashi, S.; Kawakami, A.; Migita, K. Reactive Arthritis Caused by Yersinia enterocolitica Enteritis. Intern. Med. 2017, 56, 1239–1242. [Google Scholar] [CrossRef]
- Brusa, V.; Costa, M.; Oteiza, J.M.; Galli, L.; Barril, P.A.; Leotta, G.A.; Signorini, M. Prioritization of vegetable-borne biological hazards in Argentina using a multicriteria decision analysis tool. Food Sci. Technol. Int. 2024, 30, 680–696. [Google Scholar] [CrossRef]
- Johnson, P.T.; de Roode, J.C.; Fenton, A.; Fenton, A. Why infectious disease research needs community ecology. Science 2015, 349, 1259504. [Google Scholar] [CrossRef]
- Liang, J.; Duan, R.; Xia, S.; Hao, Q.; Yang, J.; Xiao, Y.; Qiu, H.; Shi, G.; Wang, S.; Gu, W.; et al. Ecology and geographic distribution of Yersinia enterocolitica among livestock and wildlife in China. Vet. Microbiol. 2015, 178, 125–131. [Google Scholar] [CrossRef]
- Yue, Y.; Zheng, J.; Sheng, M.; Liu, X.; Hao, Q.; Zhang, S.; Xu, S.; Liu, Z.; Hou, X.; Jing, H.; et al. Public health implications of Yersinia enterocolitica investigation: An ecological modeling and molecular epidemiology study. Infect. Dis. Poverty 2023, 12, 41. [Google Scholar] [CrossRef]
- Martins, B.T.F.; Camargo, A.C.; Tavares, R.M.; Nero, L.A. Relevant foodborne bacteria associated to pork production chain. Adv. Food Nutr. Res. 2025, 113, 181–218. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Biological Hazards (BIOHAZ); Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bover-Cid, S.; Chemaly, M.; De Cesare, A.; Herman, L.; Hilbert, F.; Lindqvist, R.; et al. Microbiological safety of aged meat. EFSA J. 2023, 21, e07745. [Google Scholar] [CrossRef] [PubMed]
- Gravemann, U.; Handke, W.; Schulze, T.J.; Seltsam, A. Growth and Distribution of Bacteria in Contaminated Whole Blood and Derived Blood Components. Transfus. Med. Hemother. 2024, 51, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Ren, F.; Xie, X.; Meng, J.; Wu, X. The implication of viability and pathogenicity by truncated lipopolysaccharide in Yersinia enterocolitica. Appl. Microbiol. Biotechnol. 2023, 107, 7165–7180. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grygiel-Górniak, B. Current Challenges in Yersinia Diagnosis and Treatment. Microorganisms 2025, 13, 1133. https://doi.org/10.3390/microorganisms13051133
Grygiel-Górniak B. Current Challenges in Yersinia Diagnosis and Treatment. Microorganisms. 2025; 13(5):1133. https://doi.org/10.3390/microorganisms13051133
Chicago/Turabian StyleGrygiel-Górniak, Bogna. 2025. "Current Challenges in Yersinia Diagnosis and Treatment" Microorganisms 13, no. 5: 1133. https://doi.org/10.3390/microorganisms13051133
APA StyleGrygiel-Górniak, B. (2025). Current Challenges in Yersinia Diagnosis and Treatment. Microorganisms, 13(5), 1133. https://doi.org/10.3390/microorganisms13051133