Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,026)

Search Parameters:
Keywords = XPS study

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 3918 KB  
Article
Evaluation of Graphene Nanoplatelets and Graphene Oxide Quantum Dots Added to a Polymeric Fiber Matrix Used as Biofilm Support in Anaerobic Systems
by Alexa Mariana Salgado-Arreguín, Juan Manuel Méndez-Contreras, Carlos Velasco-Santos, Norma Alejandra Vallejo-Cantú, Erik Samuel Rosas-Mendoza, Albino Martínez-Sibaja and Alejandro Alvarado-Lassman
Environments 2025, 12(10), 392; https://doi.org/10.3390/environments12100392 - 20 Oct 2025
Abstract
This study aimed to evaluate the incorporation of graphene-based additives, graphene nanoplatelets (GNPs) and graphene oxide quantum dots (GOQDs), into polymeric fiber matrices used as biofilm supports in anaerobic digestion systems, determining additive specific effects by benchmarking the impregnated matrices against the same [...] Read more.
This study aimed to evaluate the incorporation of graphene-based additives, graphene nanoplatelets (GNPs) and graphene oxide quantum dots (GOQDs), into polymeric fiber matrices used as biofilm supports in anaerobic digestion systems, determining additive specific effects by benchmarking the impregnated matrices against the same nylon carrier without additives under identical operational conditions. Modified matrices were assessed through BMP assays using the liquid fraction of fruit and vegetable waste (LF-FVW) as substrate. Intermediate GNP and GOQD loadings (FM50 and FMDOT50) achieved the highest methane yields (317.9 ± 20.2 and 348.4 ± 20.0 mL CH4/g COD(rem)) compared with the control fiber matrix (301.0 ± 20.1 mL CH4/g COD(rem)). Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) analyses confirmed nanomaterial retention on the matrix surface and interaction with microbial aggregates. Embedding the nanostructures within the fiber enhanced biofilm formation and methane yield while minimizing nanomaterial washout. Future work will focus on advanced physicochemical characterization (XRD, XPS, BET, and EDX mapping), leaching tests to assess long term stability, and scale up evaluation for full scale anaerobic digestion applications. Full article
Show Figures

Figure 1

17 pages, 1703 KB  
Article
Whole-Genome Resequencing Identifies Candidate Genes for Tail Fat Deposition in Sheep
by Xiaowen Zhang, Yufei Li, Yongqing Zhao, Penghui Guo, Yong Cai, Hongwei Xu, Xin Cao, Qiongyi Li, Xiaoxia Ma, Derong Zhang and Jialin Bai
Animals 2025, 15(20), 3046; https://doi.org/10.3390/ani15203046 - 20 Oct 2025
Abstract
Excessive adipose tissue accumulation in sheep disrupts insulin signaling, inducing insulin resistance, and alters energy partitioning mechanisms. These changes adversely affect both ovine health and production efficiency. This study employed whole-genome resequencing to conduct selection signal analysis in long-fat-tailed (Lanzhou fat-tailed sheep) and [...] Read more.
Excessive adipose tissue accumulation in sheep disrupts insulin signaling, inducing insulin resistance, and alters energy partitioning mechanisms. These changes adversely affect both ovine health and production efficiency. This study employed whole-genome resequencing to conduct selection signal analysis in long-fat-tailed (Lanzhou fat-tailed sheep) and short-fat-tailed (Hu sheep) breeds, investigating the genetic basis underlying divergent lipid metabolism-related traits between these distinct tail phenotypes. Fifteen healthy adult individuals, each from long-fat-tailed (Lanzhou Large-tailed sheep) and short-fat-tailed (Hu sheep) breeds, underwent whole-genome resequencing. Whole-genome resequencing analyses via FST, XP-CLR, and XP-EHH identified 75 significantly selected regions (p < 0.01), revealing eight key candidate genes (DAB1, DPP10, EPHA6, GPC5, KLF12, PAK7, PTPN3, TENM3). Subsequent functional enrichment analysis demonstrated significant enrichment of DAB1 and GPC5 in lipid metabolic processes (GO:0006629). Employing whole-genome resequencing-based selection signal analysis in long-fat-tailed (Lanzhou Large-tailed sheep) and short-fat-tailed (Hu sheep) breeds, this study identified two key lipid metabolism-associated genes (DAB1 and GPC5). These findings provide critical insights for conserving genetic resources and informing molecular breeding strategies targeting divergent tail phenotypes. Full article
Show Figures

Figure 1

16 pages, 1421 KB  
Article
Construction of BiOCl/MIL-121 Composites for Efficient Photodegradation of Organic Pollutants Under Visible Light Irradiation
by Tao Xu, Jinmin Chen, Yang Ma, Yuwei Pan, Hui Huang and Guangyu Wu
Catalysts 2025, 15(10), 995; https://doi.org/10.3390/catal15100995 - 19 Oct 2025
Abstract
The increasing discharge of organic pollutants such as dyes and antibiotics poses severe threats to aquatic ecosystems and human health. Conventional wastewater treatment methods are often limited by high energy consumption, secondary pollution, or low efficiency under visible light. It is crucial to [...] Read more.
The increasing discharge of organic pollutants such as dyes and antibiotics poses severe threats to aquatic ecosystems and human health. Conventional wastewater treatment methods are often limited by high energy consumption, secondary pollution, or low efficiency under visible light. It is crucial to design novel photocatalysts that can simultaneously utilize visible photons and enable swift transport of photoinduced charge carriers to drive contaminant decomposition. Herein, novel BiOCl/MIL-121 composites were synthesized via a straightforward hydrothermal route. A suite of complementary microscopic and spectroscopic analyses, including SEM, TEM, XRD and XPS, were employed to elucidate the material’s composition. Furthermore, collective evidence from spectroscopic and electrochemical analyses confirms markedly improved light absorption and charge separation efficiency within the BiOCl/MIL-121 photocatalyst. The 5% BiOCl/MIL-121 composite achieved 93.7% removal of Rhodamine B in 60 min, exhibiting a high photocatalytic degradation rate. Similarly, 5% BiOCl/MIL-121 photodegraded 80.4% of tetracyclin, which was much better than that of BiOCl. A plausible interfacial charge-transfer mechanism was deduced from the band structure of the 5% BiOCl/MIL-121 composite and experimental evidence from radical scavenger studies. This study provides an effective strategy for constructing a composite photocatalyst and offers a green way for the efficient degradation of organic pollutants. Full article
Show Figures

Figure 1

16 pages, 5622 KB  
Article
The Enhancement of Friction Reduction and Anti-Wear Properties of Polyurea Greases Mediated by a Lithium Salt at Elevated Temperatures
by Shukang Nan, Xinhu Wu, Quan Zhou, Xiaozhen Wang, Bin Li, Junming Liu, Qin Zhao, Xiaobo Wang, Bingbing Wang and Kuiliang Gong
Lubricants 2025, 13(10), 452; https://doi.org/10.3390/lubricants13100452 - 17 Oct 2025
Viewed by 136
Abstract
Polyurea grease (PU) is widely used in the lubrication of heavy machinery, but it can still suffer from structural or performance degradation under extreme conditions such as high temperatures and heavy loads. This study successfully synthesized a hybrid polyurea grease (LiTFSI-PU) by incorporating [...] Read more.
Polyurea grease (PU) is widely used in the lubrication of heavy machinery, but it can still suffer from structural or performance degradation under extreme conditions such as high temperatures and heavy loads. This study successfully synthesized a hybrid polyurea grease (LiTFSI-PU) by incorporating lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) into polyurea matrix. LiTFSI coordinates with the carbonyl groups (C=O) in the thickener molecules to form weakly Lewis acidic complex, thereby reinforcing the soap fiber network structure. As a result, LiTFSI-PU exhibits increased apparent viscosity under shear. The tribological properties of LiTFSI-PU were evaluated under both ambient and elevated temperature conditions. At a load of 200 N and 150 °C, the average coefficient of friction for the 3 wt% LiTFSI-PU formulation was 0.094, which is 32.3% lower than that of the baseline polyurea grease (PU), while the wear volume was reduced by 77.5%. XPS and FIB-STEM/EDS analyses confirmed that LiTFSI-PU forms a multicomponent protective film in situ during friction, which simultaneously shields the substrate and provides lubrication. The additive strategy proposed in this work offers novel insights for the development of high-performance lubricants suitable for extreme thermomechanical conditions. Full article
Show Figures

Graphical abstract

20 pages, 5178 KB  
Article
Unveiling the Thermal Behavior of SnS2 Anodes Across Delithiation Stages
by Mahmoud Reda, Jana Kupka, Yuri Surace, Damian M. Cupid and Hans Flandorfer
Batteries 2025, 11(10), 378; https://doi.org/10.3390/batteries11100378 - 16 Oct 2025
Viewed by 230
Abstract
This study investigates the thermal behavior of SnS2 anodes for lithium-ion batteries at seven different states of charge (fully discharged (lithiated) at 0 mAh/g, partially charged at 100, 200, 300, 400, and 500 mAh/g, and fully charged (delithiated) at 550 mAh/g) using [...] Read more.
This study investigates the thermal behavior of SnS2 anodes for lithium-ion batteries at seven different states of charge (fully discharged (lithiated) at 0 mAh/g, partially charged at 100, 200, 300, 400, and 500 mAh/g, and fully charged (delithiated) at 550 mAh/g) using differential scanning calorimetry (DSC). To better understand the observed thermal behavior, complementary XRD and XPS analyses were performed. Generally, in all electrodes, the thermal decomposition of the electrode material is initiated by the exothermic decomposition of the SEI followed by a binder decomposition reaction around 265 °C. Interestingly, with increased states of delithiation from 400 mAh/g, endothermic peaks in the heat-flow signal of the DSC measurements are observed, which can be correlated with the structural and compositional changes in the electrode material as determined by XRD and XPS, respectively. These analyses confirmed the progressive formation of metallic tin on advanced delithiation. Additionally, the total heat generation from the electrodes decreased with increased delithiation. The results of this study serve as the basis for better understanding the thermal decomposition of SnS2-based anodes, which are considered promising for advanced lithium-ion battery chemistries. Full article
Show Figures

Graphical abstract

12 pages, 2224 KB  
Article
Tannic Acid-Induced Morphological and Electronic Tuning of Metal–Organic Frameworks Toward Efficient Oxygen Evolution
by Sivalingam Gopi, Mani Durai and Kyusik Yun
Catalysts 2025, 15(10), 991; https://doi.org/10.3390/catal15100991 - 16 Oct 2025
Viewed by 307
Abstract
This study presents a novel dual-temperature synthesis strategy for cobalt, zinc, and iron-based metal–organic frameworks (MOFs) integrated with tannic acid (TA) surface modification to enhance oxygen evolution reaction (OER) performance. MOFs were synthesized at room temperature and 80 °C, enabling controlled crystal growth [...] Read more.
This study presents a novel dual-temperature synthesis strategy for cobalt, zinc, and iron-based metal–organic frameworks (MOFs) integrated with tannic acid (TA) surface modification to enhance oxygen evolution reaction (OER) performance. MOFs were synthesized at room temperature and 80 °C, enabling controlled crystal growth and distinct morphologies. Subsequent TA treatment effectively tuned surface chemistry without altering core crystallinity, as confirmed by PXRD, FT-IR, and XPS analyses. Surface modification introduced oxygen-containing functional groups, improved charge transfer, and increased active-site accessibility. Among the catalysts, the tannic acid-modified Fe-based MOF synthesized at 80 °C (TAFeM-2) exhibited outstanding OER activity, achieving an overpotential of only 254 mV at 10 mA cm−2, outperforming benchmark RuO2 (276 mV) and unmodified counterparts. Tafel slope analysis revealed faster reaction kinetics for surface-tuned MOFs, while electrochemical impedance spectroscopy indicated reduced charge-transfer resistance (12 Ω for TAFeM-2). Chronoamperometry demonstrated exceptional long-term stability, maintaining constant current density over 20 h with minimal performance loss. Post-OER characterization suggested surface oxidation to iron oxyhydroxides without significant structural degradation. This work demonstrates that combining dual-temperature synthesis with TA surface engineering yields MOF-based catalysts with superior activity, conductivity, and durability, offering a promising pathway for developing high-performance electrocatalysts for sustainable energy applications. Full article
Show Figures

Figure 1

17 pages, 9921 KB  
Article
Investigating the Impact of Incorporating Alkali Metal Cations on the Properties of ZSM-5 Zeolites in the Methanol Conversion into Hydrocarbons
by Senlin Dong, Jie Yang and Benoit Louis
Catalysts 2025, 15(10), 987; https://doi.org/10.3390/catal15100987 - 15 Oct 2025
Viewed by 351
Abstract
Alkali metal-modified M-ZSM-5 zeolites (M: Li+, Na+, K+) were synthesized by cationic exchange and characterized using ICP-MS, XRD, N2 adsorption–desorption, Py-IR and NH3-TPD techniques to evaluate their elemental composition, structure, textural and acidic properties. [...] Read more.
Alkali metal-modified M-ZSM-5 zeolites (M: Li+, Na+, K+) were synthesized by cationic exchange and characterized using ICP-MS, XRD, N2 adsorption–desorption, Py-IR and NH3-TPD techniques to evaluate their elemental composition, structure, textural and acidic properties. In addition, XPS and DFT calculations were employed to study the effects of metal ion doping on the electronic structure and catalytic behavior. The latter catalytic performance was assessed in the methanol-to-olefin (MTO) reaction. The results showed that alkali metal doping facilitated the enhancement of the zeolite structural stability, adjustment of acid density, and increase in the adsorption energy of light olefins onto the active sites. During the reaction, olefin products shifted from Brønsted acid sites to alkali metal sites, effectively minimizing hydrogen transfer reactions. This change in the active site nature promoted the olefin cycle, resulting in higher yields in propylene and butylenes, reduced coke deposition, and prolonged catalyst lifetime. Among all zeolites, Li-exchanged ZSM-5 exhibited the best and extending the catalyst lifetime by 5 h. Full article
Show Figures

Figure 1

12 pages, 3666 KB  
Article
Development and Experimental Validation of a Filament-Assisted Chemical Vapor Deposition (FACVD) Reactor Using a Plastic Chamber
by Him Chan Kang, Jeong Heon Lee and Jae B. Kwak
Coatings 2025, 15(10), 1213; https://doi.org/10.3390/coatings15101213 - 15 Oct 2025
Viewed by 274
Abstract
This study explored the feasibility of using a plastic vacuum chamber for the Filament-Assisted Chemical Vapor Deposition (FACVD) of polymer thin films. Traditional chemical vapor deposition (CVD) methods often require high vacuum and elevated temperatures, which limit their use for heat-sensitive and flexible [...] Read more.
This study explored the feasibility of using a plastic vacuum chamber for the Filament-Assisted Chemical Vapor Deposition (FACVD) of polymer thin films. Traditional chemical vapor deposition (CVD) methods often require high vacuum and elevated temperatures, which limit their use for heat-sensitive and flexible substrates. FACVD enables polymer deposition under mild vacuum and temperature conditions, providing an opportunity to utilize plastic vacuum chambers as cost-effective and easily machinable alternatives to metallic chambers. In this study, a custom-designed acrylic chamber was fabricated and integrated into an FACVD system. Glycidyl methacrylate (GMA) and tert-butyl peroxide (TBPO) were considered as the monomer and initiator, respectively, for creating thin films under a low-temperature and moderate-vacuum deposition process. Polymeric film (pGMA) contains reactive epoxy groups that allow versatile post-polymerization modifications and are widely applied in coatings and biomedical fields. Preliminary experiments demonstrated the successful growth of pGMA thin films, with Fourier-transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) confirming the characteristic polymer features, including the disappearance of the C=C stretching band as direct evidence of polymerization. Ellipsometry determines a uniformity of film thickness of approximately 85% for the 4-inch wafers’ area, with deposition rates in the range of 18–26 nm/h. These results highlight the potential of polymer-based chambers as cost-effective and versatile alternatives to advanced vapor-phase polymerization processes. Full article
Show Figures

Figure 1

15 pages, 3213 KB  
Article
Mechanical Ball Milling-Assisted Synthesis of Esterified Starch for Polybutylene Succinate Blend with Improved Performance
by Wenjing Cai, Canqi Huo, Jisuan Tan, Zirun Chen, Yanzhen Yin and Yong Jin
Molecules 2025, 30(20), 4088; https://doi.org/10.3390/molecules30204088 - 15 Oct 2025
Viewed by 229
Abstract
Polybutylene succinate (PBS), as one of the most promising multi-application polymer, still suffers from low toughness, poor miscibility, and high crystallinity. Blending with starch is an effective strategy to improve the properties of PBS, but the compatibility and dispersity between starch and PBS [...] Read more.
Polybutylene succinate (PBS), as one of the most promising multi-application polymer, still suffers from low toughness, poor miscibility, and high crystallinity. Blending with starch is an effective strategy to improve the properties of PBS, but the compatibility and dispersity between starch and PBS still need to be optimized. In this study, mechanical ball milling was carried out to synthesize esterified starch and the subsequent PBS/esterified starch blend. The FT-IR and XPS analyses confirmed the existence of molecular interactions between PBS and esterified starch. SEM images showed a homogeneous surface for the PBS/esterified starch blend, highlighting the favorable compatibility and good dispersion of starch within the PBS matrix. TGA, DSC, and VSP tests indicated that the introduction of esterified starch into PBS lowered the thermal transition temperatures, thereby enhancing the processability. WCA measurements displayed that the water contact angle of the PBS/esterified starch blends gradually decreased with increasing esterified starch content, proving the improved hydrophilicity of PBS/esterified starch blends. Mechanical testing indicated that incorporating 5 wt% esterified starch into PBS significantly improved the tensile strength to 36.35 ± 2.16 MPa and the breaking elongation to 27.18 ± 5.08%, surpassing those of the pure PBS, PBS/esterified starch mixture, and PBS/starch blend. Our study indicates that mechanical ball milling is an efficient method to improve the properties of PBS composites. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Graphical abstract

30 pages, 4851 KB  
Article
Scalable Production of Boron Nitride-Coated Carbon Fiber Fabrics for Improved Oxidation Resistance
by Cennet Yıldırım Elçin, Muhammet Nasuh Arık, Kaan Örs, Uğur Nakaş, Zeliha Bengisu Yakışık Özgüle, Özden Acar, Salim Aslanlar, Özkan Altay, Erdal Çelik and Korhan Şahin
J. Compos. Sci. 2025, 9(10), 564; https://doi.org/10.3390/jcs9100564 - 14 Oct 2025
Viewed by 425
Abstract
This study aimed to develop an industrially scalable coating route for enhancing the oxidation resistance of carbon fiber fabrics, a critical requirement for next-generation aerospace and high-temperature composite structures. To achieve this goal, synthesis of hexagonal boron nitride (h-BN) layers was achieved via [...] Read more.
This study aimed to develop an industrially scalable coating route for enhancing the oxidation resistance of carbon fiber fabrics, a critical requirement for next-generation aerospace and high-temperature composite structures. To achieve this goal, synthesis of hexagonal boron nitride (h-BN) layers was achieved via a single wet step in which the fabric was impregnated with an ammonia–borane/THF solution and subsequently nitrided for 2 h at 1000–1500 °C in flowing nitrogen. Thermogravimetric analysis coupled with X-ray diffraction revealed that amorphous BN formed below ≈1200 °C and crystallized completely into (002)-textured h-BN (with lattice parameters a ≈ 2.50 Å and c ≈ 6.7 Å) once the dwell temperature reached ≥1300 °C. Complementary XPS, FTIR and Raman spectroscopy confirmed a near-stoichiometric B:N ≈ 1:1 composition and the elimination of O–H/N–H residues as crystallinity improved. Low-magnification SEM (100×) confirmed the uniform and large-area coverage of the BN layer on the carbon fiber tows, while high-magnification SEM revealed a progressive densification of the coating from discrete nanospheres to a continuous nanosheet barrier on the fibers. Oxidation tests in flowing air shifted the onset of mass loss from 685 °C for uncoated fibers to 828 °C for the coating produced at 1400 °C; concurrently, the peak oxidation rate moved ≈200 °C higher and declined by ~40%. Treatment at 1500 °C conferred no additional benefit, indicating that 1400 °C provides the optimal balance between full crystallinity and limited grain coarsening. The resulting dense h-BN film, aided by an in situ self-healing B2O3 glaze above ~800 °C, delayed carbon fiber oxidation by ≈140 °C. Overall, the process offers a cost-effective, large-area alternative to vapor-phase deposition techniques, positioning BN-coated carbon fiber fabrics for robust service in extreme oxidative environments. Full article
(This article belongs to the Section Fiber Composites)
Show Figures

Figure 1

27 pages, 4882 KB  
Article
Integrated Network Pharmacology and Molecular Dynamics Reveal Multi-Target Anticancer Mechanisms of Myrtus communis Essential Oils
by Ahmed Bayoudh, Nidhal Tarhouni, Riadh Ben Mansour, Saoussen Mekrazi, Raoudha Sadraoui, Karim Kriaa, Zakarya Ahmed, Ahlem Soussi, Imen Kallel and Bilel Hadrich
Pharmaceuticals 2025, 18(10), 1542; https://doi.org/10.3390/ph18101542 - 13 Oct 2025
Viewed by 286
Abstract
Background: Cancer’s multifactorial complexity demands innovative polypharmacological strategies that can simultaneously target multiple oncogenic pathways. Natural products, with their inherent chemical diversity, offer promising multi-target therapeutic potential. This study comprehensively investigates the anticancer mechanisms of Tunisian Myrtus communis essential oils (McEOs) using an [...] Read more.
Background: Cancer’s multifactorial complexity demands innovative polypharmacological strategies that can simultaneously target multiple oncogenic pathways. Natural products, with their inherent chemical diversity, offer promising multi-target therapeutic potential. This study comprehensively investigates the anticancer mechanisms of Tunisian Myrtus communis essential oils (McEOs) using an integrated computational-experimental framework to elucidate their polypharmacological basis and therapeutic potential. Methods: McEO composition was characterized via GC-MS analysis. Antiproliferative activity was evaluated against HeLa (cervical), MCF-7 (breast), and Raji (lymphoma) cancer cell lines using MTT assays. A multi-scale computational pipeline integrated network pharmacology, molecular docking against eight key oncoproteins, and 100 ns all-atom molecular dynamics simulations to elucidate molecular mechanisms and target interactions. Results: GC-MS revealed a 1,8-cineole-rich chemotype (38.94%) containing significant sesquiterpenes. McEO demonstrated potent differential cytotoxicity: HeLa (IC50 = 8.12 μg/mL) > MCF-7 (IC50 = 19.59 μg/mL) > Raji cells (IC50 = 27.32 μg/mL). Network pharmacology quantitatively explained this differential sensitivity through target overlap analysis, showing higher associations with breast (23%) and cervical (18.3%) versus lymphoma (5.5%) cancer pathways. Molecular docking identified spathulenol as a high-affinity Androgen Receptor (AR) antagonist (XP GScore: −9.650 kcal/mol). Molecular dynamics simulations confirmed exceptional spathulenol-AR complex stability, maintaining critical hydrogen bonding with Asn705 for 96% of simulation time. Conclusions: McEO exerts sophisticated multi-target anticancer effects through synergistic constituent interactions, notably spathulenol’s potent AR antagonism. This integrated computational-experimental approach validates McEO’s polypharmacological basis and supports its therapeutic potential, particularly for hormone-dependent malignancies, while establishing a robust framework for natural product bioactivity deconvolution. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

24 pages, 9203 KB  
Article
Iron-Modified Alkaline Lignin Chitosan Aerogel Microspheres for Sb(III) Removal in Water
by Yaping Cheng, Haimin Liao, Huimei Shan, Yunquan Liu and Huinan Mo
Molecules 2025, 30(20), 4067; https://doi.org/10.3390/molecules30204067 - 13 Oct 2025
Viewed by 243
Abstract
Antimony (Sb), as a toxic heavy metal, has drawn worldwide attention, and its efficient removal from water has become increasingly urgent. In this study, an iron-modified alkaline lignin chitosan (Fe-ALCS) gel bead is prepared by the freeze-drying method to remove Sb(III) from the [...] Read more.
Antimony (Sb), as a toxic heavy metal, has drawn worldwide attention, and its efficient removal from water has become increasingly urgent. In this study, an iron-modified alkaline lignin chitosan (Fe-ALCS) gel bead is prepared by the freeze-drying method to remove Sb(III) from the aqueous solution. The static adsorption experiment discusses the various environmental influences on the adsorption performance of Fe-ALCS for Sb(III) removal. The adsorption mechanism is explored by combining adsorption kinetics, isothermal adsorption, and characterization methods (such as FTIR, XRD, XPS, etc). The results show that the equilibrium adsorption capacity of Sb(III) decreases with the increase in pH and mass–volume ratio. With the increase in the initial Sb(III) concentration, Qe showed a rapid increasing trend in the range of 50–100 mg/L and continued to rise with the extension of contact time (t), reaching the maximum value at 3540 min. Under the optimal conditions of pH = 3, m/v = 1.0 g/L, and C0 = 20 mg/L, the removal efficiency (Re) value is 95.07%, which is still approximately 86.8% after five adsorption–desorption cycles. The maximum adsorption capacity is 266.58 mg/g fitted by the Langmuir model. The adsorption mechanism is mainly related to the iron-based active site of Fe–O(OH), where the O–H on its surface undergoes ligand exchange with Sb(OH)3 to form a stable Fe–O–Sb coordination structure. Additionally, C–OH, C–O, and other functional groups in ALCS also contribute to Sb adsorption. Fe-ALCS is an environmentally friendly, renewable, and convenient biomass adsorbent with good potential for wastewater treatment. Full article
Show Figures

Figure 1

24 pages, 14492 KB  
Article
Inhibition Mechanism of Calcium Hydroxide on Arsenic Volatilization During Sintering of Contaminated Excavated Soils
by Xu Li, Yu Jin, Yaocheng Wang, Zhijun Dong and Weipeng Feng
Sustainability 2025, 17(20), 9027; https://doi.org/10.3390/su17209027 - 12 Oct 2025
Viewed by 305
Abstract
Urbanization generates large quantities of arsenic-contaminated excavated soils that pose environmental risks due to arsenic volatilization during high-temperature sintering processes. While these soils have potential for recycling into construction materials, their reuse is hindered by arsenic release. This study demonstrated calcium hydroxide (Ca(OH) [...] Read more.
Urbanization generates large quantities of arsenic-contaminated excavated soils that pose environmental risks due to arsenic volatilization during high-temperature sintering processes. While these soils have potential for recycling into construction materials, their reuse is hindered by arsenic release. This study demonstrated calcium hydroxide (Ca(OH)2) as a highly effective additive for suppressing arsenic volatilization during soil sintering, while simultaneously improving material properties. Through comprehensive characterization using inductively coupled plasma-mass spectrometry (ICP-MS), scanning electron microscopy (SEM) and X-ray microtomography (μCT), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), results demonstrated that Ca(OH)2 addition (0.5–2 wt.%) reduces arsenic volatilization by 57% through formation of thermally stable calcium arsenate (Ca3(AsO4)2). Ca(OH)2 acted via two mechanisms: (a) chemical immobilization through Ca-As-O compound formation, (b) physical encapsulation in a calcium-aluminosilicate matrix during liquid-phase sintering, and (c) pH buffering that maintains arsenic in less volatile forms. Optimal performance was achieved at 0.5% Ca(OH)2, yielding 9.14 MPa compressive strength (29% increase) with minimal arsenic leaching (<110 ppb). Microstructural analysis showed Ca(OH)2 promoted densification while higher doses increased porosity. This work provides a practical solution for safe reuse of arsenic-contaminated soils, addressing both environmental concerns and material performance requirements for construction applications. Full article
Show Figures

Figure 1

22 pages, 3343 KB  
Article
Experimental Investigation of Nickel-Based Co-Catalysts for Photoelectrochemical Water Splitting Using Hematite and Cupric Oxide Nanostructured Electrodes
by Maria Aurora Mancuso, Rossana Giaquinta, Carmine Arnese, Patrizia Frontera, Anastasia Macario, Angela Malara and Stefano Trocino
Nanomaterials 2025, 15(20), 1551; https://doi.org/10.3390/nano15201551 - 11 Oct 2025
Viewed by 288
Abstract
Growing interest in sustainable hydrogen production has brought renewed attention to photoelectrochemical (PEC) water splitting as a promising route for direct solar-to-chemical energy conversion. This study explores how integrating hematite (α-Fe2O3) and cupric oxide (CuO) photoelectrodes with a series [...] Read more.
Growing interest in sustainable hydrogen production has brought renewed attention to photoelectrochemical (PEC) water splitting as a promising route for direct solar-to-chemical energy conversion. This study explores how integrating hematite (α-Fe2O3) and cupric oxide (CuO) photoelectrodes with a series of nickel-based co-catalysts can improve photoelectrochemical activity. Photoanodic (NiOx, NiFeOx, NiWO4) and photocathodic (Ni, NiCu, NiMo) co-catalysts were synthesized via co-precipitation and mechanochemical methods and characterized through X-ray Diffraction (XRD), X-ray Fluorescence (XRF), Transmission Electron Microscopy–Energy Dispersive X-ray Spectroscopy (TEM-EDX), Scanning Electron Microscopy–Energy Dispersive X-ray Spectroscopy (SEM-EDX), X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) gas-adsorption analyses to clarify their crystallographic, morphological, and compositional properties, as well as their surface chemistry and textural properties (surface area and porosity). Electrochemical tests under 1 SUN illumination showed that NiOx significantly improves the photocurrent of hematite photoanodes. Among the cathodic co-catalysts, NiMo demonstrated the best performance when combined with CuO photocathodes. For both photoelectrodes, an optimal co-catalyst loading was identified, beyond which performance declined due to potential charge transfer limitations and light attenuation. These findings highlight the critical role of co-catalyst composition and loading in optimizing the efficiency of PEC systems based on earth-abundant materials, offering a pathway toward scalable and cost-effective hydrogen production. Full article
(This article belongs to the Special Issue Hydrogen Production and Evolution Based on Nanocatalysts)
Show Figures

Graphical abstract

16 pages, 4519 KB  
Article
Preparation of CoMn Layered Double Metal Oxide and Its Performance in Activating Peroxymonosulfate to Degrade Bisphenol A
by Guanyu Wang and Mengmeng Jin
Catalysts 2025, 15(10), 973; https://doi.org/10.3390/catal15100973 - 11 Oct 2025
Viewed by 365
Abstract
To address the technical challenges in bisphenol A (BPA) pollution control, this research introduced a novel synthetic approach combining co-precipitation with subsequent thermal treatment to engineer layered double hydroxides (LDHs) with a spinel-structured CoMn-LDO catalyst. Systematic material characterizations such as a scanning electron [...] Read more.
To address the technical challenges in bisphenol A (BPA) pollution control, this research introduced a novel synthetic approach combining co-precipitation with subsequent thermal treatment to engineer layered double hydroxides (LDHs) with a spinel-structured CoMn-LDO catalyst. Systematic material characterizations such as a scanning electron microscope (SEM), an X-ray diffractometer (XRD), a transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS) were employed to analyze the structural and chemical properties of the synthesized CoMn-LDO calcined at 500 °C. The catalytic performance was evaluated under optimized conditions (35 °C, pH 7.0, 2.0 mM PMS, 0.3 g/L catalyst), and mechanistic studies were conducted to identify the dominant reactive oxygen species. The CoMn-LDO exhibited exceptional peroxymonosulfate (PMS) activation performance, achieving 96.75% BPA degradation within 90 min and 58.22% TOC removal. The synergistic redox cycling between Co2+/Co3+ and Mn3+/Mn4+ promoted the generation of ·OH (72.3% contribution) and SO4·−. The catalyst demonstrated superior stability, maintaining 89% degradation efficiency after five cycles. These results provide theoretical and practical insights for developing high-efficiency persulfate-activating catalysts. Full article
Show Figures

Figure 1

Back to TopTop