Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = XBEACH

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6037 KiB  
Article
Storm-Induced Evolution on an Artificial Pocket Gravel Beach: A Numerical Study with XBeach-Gravel
by Hanna Miličević, Dalibor Carević, Damjan Bujak, Goran Lončar and Andrea Tadić
J. Mar. Sci. Eng. 2025, 13(7), 1209; https://doi.org/10.3390/jmse13071209 - 22 Jun 2025
Viewed by 221
Abstract
Coarse-grained beaches consisting of gravel, pebbles, and cobbles play a crucial role in coastal protection. On the Croatian Adriatic coast, there are artificial gravel pocket beaches created for recreational and protective purposes. However, these beaches are subject to constant morphological changes due to [...] Read more.
Coarse-grained beaches consisting of gravel, pebbles, and cobbles play a crucial role in coastal protection. On the Croatian Adriatic coast, there are artificial gravel pocket beaches created for recreational and protective purposes. However, these beaches are subject to constant morphological changes due to natural forces and human intervention. This study investigates the morphodynamics of artificial gravel pocket beaches, focusing on berm formation and crest build-up processes characteristic for low to moderate wave conditions. Despite mimicking natural formations, artificial beaches require regular maintenance due to sediment shifts dominantly caused by wave action and storm surges. Structure-from-Motion (SfM) photogrammetry and UAV-based surveys were used to monitor morphological changes on the artificial gravel pocket beach Ploče (City of Rijeka). The XBeach-Gravel model, originally adapted to simulate the effects of high-energy waves, was calibrated and validated to analyze low to moderate wave dynamics on gravel pocket beaches. The calibration includes adjustments to the inertia coefficient (ci), which influences sediment transport by shear stress at the bottom; the angle of repose (ϕ), which controls avalanching and influences sediment transport on sloping beds; and the bedload transport calibration coefficient (γ), which scales the transport rates linearly. By calibrating XBeach-G for low to moderate wave conditions, this research improves the accuracy of the model for the cases of morphological responses “berm formation” and “crest build-up”. Full article
(This article belongs to the Section Marine Hazards)
Show Figures

Figure 1

23 pages, 7071 KiB  
Article
Numerical Simulation of Ship Wave Characteristics Under Different Navigation Conditions in the Restricted Waterway of the Pinglu Canal
by Chu Zhang, Tiejun Cheng, Shishuang Wu, Jian Pan, Jiacheng You, Xiangyu Xu, Jianan Shi, Sudong Xu and Jianxin Hao
Water 2025, 17(12), 1822; https://doi.org/10.3390/w17121822 - 18 Jun 2025
Viewed by 362
Abstract
The Pinglu Canal is a strategic inland restricted waterway under construction in southwest China. Its ship wave superposition characteristics under conditions of high-density shipping and large ships may threaten navigation safety, but little related research has been performed. Based on the Pinglu Canal [...] Read more.
The Pinglu Canal is a strategic inland restricted waterway under construction in southwest China. Its ship wave superposition characteristics under conditions of high-density shipping and large ships may threaten navigation safety, but little related research has been performed. Based on the Pinglu Canal project, this study uses the XBeach numerical model, which is validated by field observations on the Chengzi River waterway, to analyze the ship wave characteristics under single-ship navigation (SN) and two-ship navigation in opposite directions (2NOD). The results show the influences of ship type and water depth. For SN, secondary waves of the navigation administration boat (NAB) dominate, with wave height decreasing as water depth increases. Larger cargo ships (CSs) present significant primary wave effects and a complex relationship between the secondary wave’s height and water depth. For 2NOD, the NAB wave effect is stronger due to superposition. As for larger CSs, the primary wave effect is significantly enhanced and occupies the dominant position, with secondary wave height tending to increase with the increase in water depth. The study reveals the characteristics of single-ship and two-ship waves in the Pinglu Canal, providing a theoretical basis and technical support for ship wave risk assessment and ecological revetment design. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

20 pages, 14265 KiB  
Article
A Tombolo Alternating Between a Double Tombolo and a Salient on the West Coast of Honghai Bay, Guangdong, China, Driven by Dynamic Fluvial and Coastal Interactions
by Mingkun Qiu and Wei Wang
Water 2025, 17(10), 1510; https://doi.org/10.3390/w17101510 - 16 May 2025
Viewed by 490
Abstract
A small tombolo on the west coast of Guangdong’s Honghai Bay was investigated using over a decade of satellite imagery. Occasionally, this stream forms a lagoon behind the island, giving the appearance of a double tombolo. However, analysis of satellite imagery reveals that [...] Read more.
A small tombolo on the west coast of Guangdong’s Honghai Bay was investigated using over a decade of satellite imagery. Occasionally, this stream forms a lagoon behind the island, giving the appearance of a double tombolo. However, analysis of satellite imagery reveals that the double tombolo was not consistently formed and that the tombolo tip was not always attached to the leeward side of the island. This suggests that the tombolo was in a transitional state between the formation of a tombolo and a salient. The beaches on both sides of the tombolo are headland-bay beaches. Therefore, MEPBAY and XBeach, coupled with grain size analysis, were utilized to investigate the dynamic geomorphological processes of the tombolo. This study shows that the headlands at both ends of the beaches, along with waves approaching perpendicular to the shore, inhibit longshore drift on either side of the tombolo. The sediment sustaining the tombolo originates from the stream sands and offshore sands transported onshore by waves. When wave-driven sediment transport exceeds stream sediment supply, a tombolo forms. Conversely, only a salient develops. This specific case study reveals previously undocumented phenomena, thereby offering valuable insights into the mechanisms of double tombolo formation. Full article
Show Figures

Figure 1

17 pages, 5280 KiB  
Article
The Optimization of Four Key Parameters in the XBeach Model by GLUE Method: Taking Chudao South Beach as an Example
by Yunyun Gai, Longsheng Li, Zikang Li and Hongyuan Shi
J. Mar. Sci. Eng. 2025, 13(3), 555; https://doi.org/10.3390/jmse13030555 - 13 Mar 2025
Viewed by 827
Abstract
When the XBeach model is used to simulate beach profiles, the selection of four sensitive parameters—facua, gammax, eps, and gamma—is crucial. Among these, the two key parameters, facua and gamma, are particularly sensitive. However, the XBeach model does not specify the exact choice [...] Read more.
When the XBeach model is used to simulate beach profiles, the selection of four sensitive parameters—facua, gammax, eps, and gamma—is crucial. Among these, the two key parameters, facua and gamma, are particularly sensitive. However, the XBeach model does not specify the exact choice of these four key parameters, offering only a broad range for each one. In this paper, we investigate the applicability of tuning these four parameters within the XBeach model. We employ Generalized Likelihood Uncertainty Estimation (GLUE) to optimize the model settings. The Brier Skill Score (BSS) for each parameter combination is calculated to quantify the likelihood probability distribution of each parameter. The optimal parameter set (facua = 0.20, gamma = 0.50) was ultimately determined. Here, the facua parameter represents the degree of influence of wave skewness and asymmetry on the direction of sediment transport, while the gamma parameter represents the equivalent random wave in the wave dissipation model and is used to calculate the probability of wave breaking. Six profiles of the southern beach on Chudao Island are selected to validate the results, establishing the XBeach model based on profile measurement data before and after Typhoon “Lekima”. The results indicate that after parameter optimization, the simulation accuracy of XBeach is significantly improved, with the BSS increasing from 0.3 and 0.17 to 0.68 and 0.79 in P1 and P6 profiles, respectively. This paper provides a recommended range for parameter values for future research. Full article
(This article belongs to the Special Issue Advances in Storm Tide and Wave Simulations and Assessment)
Show Figures

Figure 1

35 pages, 14568 KiB  
Article
Past and Future Storm-Driven Changes to a Dynamic Sandy Barrier System: Outer Cape Cod, Massachusetts
by Daniel J. Harrington, John P. Walsh, Annette R. Grilli, Isaac Ginis, Deborah Crowley, Stephan T. Grilli, Christopher Damon, Roland Duhaime, Peter Stempel and Pam Rubinoff
Water 2025, 17(2), 245; https://doi.org/10.3390/w17020245 - 16 Jan 2025
Viewed by 1252
Abstract
Sandy barrier systems are highly dynamic, with the most significant natural morphological changes to these systems occurring during high-energy storm conditions. These systems provide a range of economic and ecosystem benefits and protect inland areas from flooding and storm impacts, but the persistence [...] Read more.
Sandy barrier systems are highly dynamic, with the most significant natural morphological changes to these systems occurring during high-energy storm conditions. These systems provide a range of economic and ecosystem benefits and protect inland areas from flooding and storm impacts, but the persistence of many coastal barriers is threatened by storms and sea-level rise (SLR). This study employed observations and modeling to examine recent and potential future influences of storms on a sandy coastal barrier system in Nauset Beach, MA. Drone-derived imagery and digital elevation models (DEMs) of the study area collected throughout the 2023–2024 winter revealed significant alongshore variability in the geomorphic response to storms. Severe, highly localized erosion (i.e., an erosional “hotspot”) occurred immediately south of the Nauset Bay spit as the result of a group of storms in December and January. Modeling results demonstrated that the location of the hotspot was largely controlled by the location of a break in a nearshore sandbar system, which induced larger waves and stronger currents that affected the foreshore, backshore and dune. Additionally, model simulations of the December and January storms assuming 0.3 m (1 ft) of SLR showed the system to be relatively resistant to major geomorphic changes in response to an isolated storm event, but more susceptible to significant overwash and breaching in response to consecutive storms. This research suggests that both very strong isolated storm events and sequential moderate storms pose an enhanced risk of major overwash, breaching, and possibly inlet formation today and into the future, raising concern for adjacent communities and resource managers. Full article
Show Figures

Figure 1

23 pages, 5438 KiB  
Article
Impacts of an Artificial Sandbar on Wave Transformation and Runup over a Nourished Beach
by Cuiping Kuang, Liyuan Chen, Xuejian Han, Dan Wang, Deping Cao and Qingping Zou
Geosciences 2024, 14(12), 337; https://doi.org/10.3390/geosciences14120337 - 8 Dec 2024
Cited by 2 | Viewed by 1563
Abstract
Due to increasing coastal flooding and erosion in changing climate and rising sea level, there is a growing need for coastal protection and ecological restoration. Artificial sandbars have become popular green coastal infrastructure to protect coasts from these natural hazards. To assess the [...] Read more.
Due to increasing coastal flooding and erosion in changing climate and rising sea level, there is a growing need for coastal protection and ecological restoration. Artificial sandbars have become popular green coastal infrastructure to protect coasts from these natural hazards. To assess the effect of an artificial sandbar on wave transformation over a beach under normal and storm wave conditions, a high-resolution non-hydrostatic model based on XBeach is established at the laboratory scale. Under normal wave conditions, wave energy is mainly concentrated in short wave frequency bands. The wave setup is negligible on the shoreface but becomes more significant over the beach face, and wave nonlinearity increases with decreasing water depth. The artificial sandbar reduces the wave setup by 22% and causes considerable changes in wave skewness, wave asymmetry, and flow velocity. Under storm wave conditions, as the incident wave height increases, the wave energy in the long wave frequency bands rises, while it decreases in the short wave frequency bands. The wave dissipation coefficient of an artificial sandbar increases first and then decreases with increasing incident wave height, and the opposite is true with the transmission coefficient. It features that the effect of an artificial sandbar on wave energy dissipation strengthens first and then weakens with increasing incident wave height. Additionally, an empirical formula for the wave runup was proposed based on the model results of the wave runup for storm wave conditions. The study reveals the complex processes of wave–structure–coast interactions and provides scientific evidence for the design of an artificial sandbar in beach nourishment projects. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

9 pages, 1033 KiB  
Data Descriptor
A Dataset of Two-Dimensional XBeach Model Set-Up Files for Northern California
by Andrea C. O’Neill, Kees Nederhoff, Li H. Erikson, Jennifer A. Thomas and Patrick L. Barnard
Data 2024, 9(10), 118; https://doi.org/10.3390/data9100118 - 11 Oct 2024
Viewed by 2435
Abstract
Here, we describe a dataset of two-dimensional (2D) XBeach model files that were developed for the Coastal Storm Modeling System (CoSMoS) in northern California as an update to an earlier CoSMoS implementation that relied on one-dimensional (1D) modeling methods. We provide details on [...] Read more.
Here, we describe a dataset of two-dimensional (2D) XBeach model files that were developed for the Coastal Storm Modeling System (CoSMoS) in northern California as an update to an earlier CoSMoS implementation that relied on one-dimensional (1D) modeling methods. We provide details on the data and their application, such that they might be useful to end-users for other coastal studies. Modeling methods and outputs are presented for Humboldt Bay, California, in which we compare output from a nested 1D modeling approach to 2D model results, demonstrating that the 2D method, while more computationally expensive, results in a more cohesive and directly mappable flood hazard result. Full article
Show Figures

Figure 1

20 pages, 7831 KiB  
Article
Beach Nourishment Protection against Storms for Contrasting Backshore Typologies
by Filipa S. B. F. Oliveira, André B. Fortunato and Paula Freire
J. Mar. Sci. Eng. 2024, 12(9), 1465; https://doi.org/10.3390/jmse12091465 - 23 Aug 2024
Cited by 2 | Viewed by 1006
Abstract
The protection against a storm event provided by nourishment to Costa da Caparica beaches near Lisbon, Portugal, is investigated numerically with a two-dimensional-horizontal morphodynamic model able to generate and propagate the longer infragravity waves. The beach has a groyne field and a multi-typology [...] Read more.
The protection against a storm event provided by nourishment to Costa da Caparica beaches near Lisbon, Portugal, is investigated numerically with a two-dimensional-horizontal morphodynamic model able to generate and propagate the longer infragravity waves. The beach has a groyne field and a multi-typology backshore. The nourishment of 106 m3 of sand was placed at the beach face and backshore. Pre- and post-nourishment topo-bathymetric surveys of the beach, which suffers from chronic erosion, were performed under a monitoring program. The morphodynamics of the pre- and post-nourished beach when exposed to a simulated historically damaging storm event and the post-storm morphologies were compared to evaluate the efficacy of the nourishment. Results indicate that the lower surface level of the beach face and backshore of the pre-nourished beach induces a larger erosion volume. The nourishment prevented the extreme retreat of the shoreline that occurred during the storm in the pre-nourished beach and reduced the storm-induced erosion volume by 20%, thus protecting the beach effectively against the storm. The beach backshore typology (seawall vs. dune) exerts differential influences on the sandy bottom. As a result, multi-typology backshores induce alongshore variability in cross-shore dynamics. The backshore seawalls exposed to direct wave action cause higher erosion volumes and a larger cross-shore extension of the active zone. The most vulnerable alongshore sectors of the beach were identified and related to the mechanisms responsible for the erosion phenomenon. These findings strengthen the importance of sand nourishment for the protection and sustainability of beaches, particularly those with a seawall at the backshore, where storm events cause higher erosion. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

20 pages, 5149 KiB  
Article
Evaluating Vegetation Effects on Wave Attenuation and Dune Erosion during Hurricane
by Mengdi Ma, Wenrui Huang, Sungmoon Jung, Christopher Oslon, Kai Yin and Sudong Xu
J. Mar. Sci. Eng. 2024, 12(8), 1326; https://doi.org/10.3390/jmse12081326 - 6 Aug 2024
Cited by 3 | Viewed by 2241
Abstract
This study employs the XBeach surfbeat model (XBSB) to explore the effects of vegetation on wave attenuation and dune erosion in a case study of Mexico Beach during Hurricane Michael. The XBSB model was validated against laboratory experiments of wave-induced dune erosion and [...] Read more.
This study employs the XBeach surfbeat model (XBSB) to explore the effects of vegetation on wave attenuation and dune erosion in a case study of Mexico Beach during Hurricane Michael. The XBSB model was validated against laboratory experiments of wave-induced dune erosion and wave attenuation by vegetation. In the case study of vegetation on dunes in Mexico Beach during Hurricane Michael, different vegetation drag coefficients were evaluated to investigate the effects of vegetation on wave attenuation and dune erosion. LiDAR data of dune profiles before and after Hurricane Michael were used for model validation. The findings reveal that vegetation on dunes significantly affects wave attenuation and dune erosion. Under vegetated conditions, as the vegetation drag coefficient value increases, wave attenuation also increases, leading to a reduction of dune erosion. An increase in vegetation density enhances wave attenuation in the vegetated area, including reductions in significant wave height and flow velocity. However, the rate of change in attenuation decreases as the vegetation density increases. Through simulations under regular wave condition on Mexico Beach, an optimal vegetation density was identified as 800 units/m2. Beyond this density, additional vegetation does not substantially improve wave attenuation. Furthermore, the position of the dune crest elevation is related to the location where the alongshore flow velocity begins to decrease. The findings highlight the essential role of coastal vegetation in enhancing coastal resilience against hurricanes. Full article
(This article belongs to the Special Issue Coastal Disaster Assessment and Response)
Show Figures

Figure 1

16 pages, 4228 KiB  
Article
The Feedback from a Beach Berm during Post-Storm Recovery and How to Improve the Berm’s Restorative Efficiency
by Yu Zhu, Yingtao Zhou, Weite Zeng, Weibing Feng and Yuanshu Jiang
Water 2024, 16(14), 1955; https://doi.org/10.3390/w16141955 - 10 Jul 2024
Viewed by 1581
Abstract
The efficiency of beach recovery during a time of moderate waves following storm waves is closely related to the interaction between dynamics, sediment, and the landform. The existing studies mainly focus on the description of erosion and accretion characteristics, while the response and [...] Read more.
The efficiency of beach recovery during a time of moderate waves following storm waves is closely related to the interaction between dynamics, sediment, and the landform. The existing studies mainly focus on the description of erosion and accretion characteristics, while the response and feedback mechanism of beach berm sediment have not been elucidated. The main controlling factors of recovery efficiency are not clear. In this paper, field observation and the XBeach numerical model are utilized on the sandy beach in Puqian Bay, China, to capture high-frequency cross-shore data during the post-storm recovery period. The variation characteristics and rules of berm elements, including berm ridge height and slope on two sides of the berm ridge, are analyzed. It is observed that the berm constantly changes to adapt to dynamic conditions. Additionally, a correlation between volume change and certain landform parameters is proposed, leading to the identification of a new relationship in wave run-up. The new forum reflects berm influence and considers the berm ridge and berm width. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

22 pages, 7765 KiB  
Article
The Role of Different Total Water Level Definitions in Coastal Flood Modelling on a Low-Elevation Dune System
by Paulo Cabrita, Juan Montes, Enrico Duo, Riccardo Brunetta and Paolo Ciavola
J. Mar. Sci. Eng. 2024, 12(6), 1003; https://doi.org/10.3390/jmse12061003 - 16 Jun 2024
Cited by 3 | Viewed by 1510
Abstract
The present study investigates different combinations and methods for estimating the extreme Total Water Level (TWL) and its implications for predicting flood extension caused by coastal storms. This study analyses various TWL components and approaches and assesses how different methodologies alter flood predictions, [...] Read more.
The present study investigates different combinations and methods for estimating the extreme Total Water Level (TWL) and its implications for predicting flood extension caused by coastal storms. This study analyses various TWL components and approaches and assesses how different methodologies alter flood predictions, with implications for warning systems and emergency responses. Using different combinations of individual TWL components, flood extension simulations were conducted using a hydrodynamic model in the Volano Beach area (Emilia-Romagna, Italy). A real coastal storm event was used as a reference for comparison. The findings indicate that the selection of individual TWL components and calculation methods significantly impacts flood extension predictions. The approaches, which involve calculating extreme values from a combined time series or the water level time series plus the extreme value of wave setup, yield the most realistic results, excluding the runup component. In comparison, the other combinations overestimate the flood. Incorporating hydromorphological models like XBeach could enhance the accuracy of runup estimations and improve the overall method reliability. Despite limitations such as runup estimation and the use of generic regional parameters, this study underscores the importance of the TWL combination selection in accurately predicting flood extents, emphasising the need for context-specific adaptations in environmental contexts. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

18 pages, 5933 KiB  
Article
Semicircular Coastal Defence Structures: Impact of Gap Spacing on Shoreline Dynamics during Storm Events
by Bárbara F. V. Vieira, José L. S. Pinho and Joaquim A. O. Barros
J. Mar. Sci. Eng. 2024, 12(6), 850; https://doi.org/10.3390/jmse12060850 - 21 May 2024
Cited by 1 | Viewed by 2053
Abstract
Coastal erosion poses significant challenges to shoreline management, exacerbated by rising sea levels and changing climate patterns. This study investigates the influence of gap spacing between semicircular coastal defence structures on shoreline dynamics during storm events. The innovative design of these structures aims [...] Read more.
Coastal erosion poses significant challenges to shoreline management, exacerbated by rising sea levels and changing climate patterns. This study investigates the influence of gap spacing between semicircular coastal defence structures on shoreline dynamics during storm events. The innovative design of these structures aims to induce a drift reversal of prevalent sediment transport while avoiding interruption of alongshore sediment drift, thus protecting the beach. Three different gap spacings, ranging from 152 m to 304 m, were analysed using the XBeach numerical model, focusing on storm morphodynamic behaviour. Methodologically, hydrodynamic and morphodynamic analyses were conducted to understand variations in significant wave heights adjacent to the structures, in accretion and erosion volumes, and changes in bed level under storm conditions. The study aims to elucidate the complex interaction between engineered coastal protection solutions and natural coastal processes, providing practical insights for coastal management practices. Results indicate that installing semicircular coastal defence structures influences sediment dynamics during storm events, effectively protecting stretches of the coast at risk. Optimal gap spacing between structures is crucial to mitigating coastal erosion and enhancing sediment accumulation, offering a sustainable shoreline protection approach. The findings underscore the importance of balanced location selection to optimize protection benefits while minimizing adverse morphological effects. Overall, this research contributes to advancing knowledge of hydro-morphological phenomena essential for effective coastal engineering and informs the design and implementation of more sustainable coastal protection strategies in the face of increasing coastal erosion and sea level rise challenges. Full article
Show Figures

Figure 1

22 pages, 3721 KiB  
Review
Review of the Quantification of Aeolian Sediment Transport in Coastal Areas
by Paul Husemann, Frederico Romão, Márcia Lima, Susana Costas and Carlos Coelho
J. Mar. Sci. Eng. 2024, 12(5), 755; https://doi.org/10.3390/jmse12050755 - 30 Apr 2024
Cited by 6 | Viewed by 3350
Abstract
Coastal dunes, formed and shaped by aeolian sediment transport, play a crucial role in ecosystem services and act as natural flood and coastal erosion defenses. This paper delves into theoretical equations and numerical models predicting sediment transport. Numerical models like cellular automata, XBeach-DUNA, [...] Read more.
Coastal dunes, formed and shaped by aeolian sediment transport, play a crucial role in ecosystem services and act as natural flood and coastal erosion defenses. This paper delves into theoretical equations and numerical models predicting sediment transport. Numerical models like cellular automata, XBeach-DUNA, the coastal dune model, and others are analyzed for their ability to simulate dune morphology, erosion processes, and vegetation impacts accurately. Evaluated are field observation and measurement techniques, such as sand traps, impact sensors, and optical sensors, for their precision in quantifying aeolian dynamics. Further examined is the effectiveness of vegetation and fencing in dune stabilization, noting species-specific responses and the influence of fence design on sediment accumulation. These tools offer insights into optimizing aeolian sediment management for coastal protection. By conducting a systematic review and connecting theoretical, empirical, and modeling findings, this study highlights the complex challenge of measuring and managing aeolian sediment transport and proposes integrated strategies for enhancing coastal dune resilience against the backdrop of climate change and erosion. This study’s objectives to bridge gaps in current understanding are met, highlighting the need for a multidisciplinary approach to coastal dune management and conservation, especially combining wind- and wave-driven processes. Full article
Show Figures

Figure 1

21 pages, 10541 KiB  
Article
Rapid Changes in Permeability: Numerical Investigation into Storm-Driven Pebble Beach Morphodynamics with XBeach-G
by Antoine Soloy, Carlos Lopez Solano, Emma Imen Turki, Ernesto Tonatiuh Mendoza and Nicolas Lecoq
J. Mar. Sci. Eng. 2024, 12(2), 327; https://doi.org/10.3390/jmse12020327 - 14 Feb 2024
Cited by 1 | Viewed by 1921
Abstract
This study delves into the morphodynamic changes of pebble beaches in response to storm events, employing a combination of observational and numerical approaches. This research focuses on three extreme events, meticulously examining morhological changes in intertidal topography on the beach of Etretat (Normandy, [...] Read more.
This study delves into the morphodynamic changes of pebble beaches in response to storm events, employing a combination of observational and numerical approaches. This research focuses on three extreme events, meticulously examining morhological changes in intertidal topography on the beach of Etretat (Normandy, France). A robust dataset of daily beach topography, derived from video monitoring systems, validates a set of numerical simulations of cross-shore dynamics performed by the process-based model XBeach-G. Our study evaluates the model’s efficacy in estimating beach profile evolution under high-energy conditions and explores its sensitivity to the physical properties of pebbles, including permeability. The results underscore the significance of considering spatial and temporal variations in permeability during storms to enhance the numerical model’s accuracy in predicting pebble beach dynamics. Furthermore, this study advocates for the incorporation of grain size mapping techniques to refine numerical model implementations. Full article
Show Figures

Figure 1

15 pages, 4659 KiB  
Article
Morphological Changes in Storm Hinnamnor and the Numerical Modeling of Overwash
by Bohyeon Hwang, Kideok Do and Sungyeol Chang
J. Mar. Sci. Eng. 2024, 12(1), 196; https://doi.org/10.3390/jmse12010196 - 22 Jan 2024
Cited by 3 | Viewed by 1642
Abstract
Constant changes occur in coastal areas over different timescales, requiring observation and modeling. Specifically, modeling morphological changes resulting from short-term events, such as storms, is of great importance in coastal management. Parameter calibration is necessary to achieve more accurate simulations of process-based models [...] Read more.
Constant changes occur in coastal areas over different timescales, requiring observation and modeling. Specifically, modeling morphological changes resulting from short-term events, such as storms, is of great importance in coastal management. Parameter calibration is necessary to achieve more accurate simulations of process-based models that focus on specific locations and event characteristics. In this study, the XBeach depth-averaged model was adopted to simulate subaerial data pre- and post-storms, and overwash phenomena were observed using the data acquired through unmanned aerial vehicles. The parameters used for the model calibration included those proposed in previous studies. However, an emphasis was placed on calibrating the parameters related to sediment transport that were directly associated with overwash and deposition. Specifically, the parameters corresponding to the waveform parameters, wave skewness, and wave asymmetry were either integrated or separated to enable an adequate representation of the deposition resulting from overwash events. The performance and sensitivity of the model to changes in volume were assessed. Overall, the waveform parameters exhibit significant sensitivity to volume changes, forming the basis for calibrating the deposition effects caused by overwashing. These results are expected to assist in the more effective selection and calibration of parameters for simulating sediment deposition due to overwash events. Full article
(This article belongs to the Special Issue Coastal Disaster Assessment and Response)
Show Figures

Figure 1

Back to TopTop